Published

2025-07-22

INVESTIGATE THE STRUCTURAL AND ELECTROCHEMICAL PROPERTIES OF CARBON DOPED LiFePO4 PREPARED BY USING CAROXYLON IMBRICATUM FORSSK EXTRACT AS A DOPING AGENT

INVESTIGACIÓN DE LAS PROPIEDADES ESTRUCTURALES Y ELECTROQUÍMICAS DE LiFePO4 RECUBIERTO DE CARBONO PREPARADO UTILIZANDO EXTRACTO DE CAROXYLON IMBRICATUM FORSSK COMO AGENTE DE RECUBRIMIENTO

Keywords:

conductivity, caroxylon Imbricatum, carbon coated LiFePO4, extract, electrochemical, nanoparticle (en)
conductividad, caroxylon imbricatum, extracto, electroquímica, LiFePO4 recubierto de carbono, nanopartículas (es)

Downloads

Authors

This work evaluates the electrochemical performance of carbon-coated LiFePO4 (LiFePO4/C) using a plant extract of Caroxylon Imbricatum Forssk via a green synthesis route. The obtained samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy and cyclic voltammetry to investigate the phase, crystalline structure, morphology and electrochemical performance. Both samples, LiFePO4 and LiFePO4/C, exhibited an olivine LiFePO4 structure and the obtained particle sizes were in the nanoscale. The effects of the carbon coating improved the electrochemical performances of carbon-coated LiFePO4 via enhancing rate capability and electronic conductivity.

Este trabajo evalúa el rendimiento electroquímico del LiFePO4 (LiFePO4/C) recubierto de carbono mediante un extracto vegetal de Caroxylon Imbricatum Forssk mediante una ruta de síntesis ecológica. Las muestras obtenidas se caracterizaron mediante difracción de rayos X (DRX), microscopía electrónica de barrido (MEB), espectroscopía Raman y voltamperometría cíclica para investigar la fase, la estructura cristalina, la morfología y el rendimiento electroquímico. Ambas muestras, LiFePO4 y LiFePO4/C, presentaron una estructura de LiFePO4 de olivino y los tamaños de partícula obtenidos fueron a escala nanométrica. Los efectos del recubrimiento de carbono mejoraron el rendimiento electroquímico del LiFePO4 recubierto de carbono al aumentar su capacidad de velocidad y la conductividad eléctrica.

References

S. Chu and A. Majumdar, Nature 488, 294 (2012). https://www.nature.com/articles/nature11475

G. Wang, L. Zhang, and J. Zhang, Chem. Soc. Rev. 41, 797 (2012). https://pubs.rsc.org/en/content/articlelanding/2012/cs/c1cs15060j

J. Yan, Q. Wang, and et al., Adv. Energy Mater. 4, (2013). https://advanced.onlinelibrary.wiley.com/doi/10.1002/aenm.201300816

D. G. Nocera, Chem. Soc. Rev. 38, 13 (2009). https://pubs.rsc.org/en/content/articlelanding/2009/cs/b820660k

J. Neumann, M. Petranikova, and et al., Adv. Energy Mater. 12, 2102917 (2022). https://advanced.onlinelibrary.wiley.com/doi/10.1002/aenm.202102917

M. Armand and J.-M. Tarascon, Nature 451, 652 (2008). https://advanced.onlinelibrary.wiley.com/doi/10.1002/aenm.202102917

M. Muratori, M. Alexander, and et al., Prog. Energ. 3, 022002 (2021). https://iopscience.iop.org/article/10.1088/2516-1083/abe0ad

J.-M. Tarascon, N. Recham, and et al., Chem. Mater. 22, 724 (2010). https://pubs.acs.org/doi/10.1021/cm9030478

C. Qi, T. Yao, and et al., Ener. Mater. 71, 103623 (2024). https://www.sciencedirect.com/science/article/abs/pii/S2405829724004495?via%3Dihub

B. Chen, M. Liu, and et al., Mater. Chem. Phys. 279, 125750 (2022). https://www.sciencedirect.com/science/article/abs/pii/S0254058422000566?via%3Dihub

A. Nekahi, A. Kumar M.R., and et al., Mater. Sci. Eng. Rep. 159, 100797 (2024). https://www.sciencedirect.com/science/article/pii/S0927796X24000275?via%3Dihub

S. Peng, D. Zhang, and et al., Appl. Energ. 377, 124435 (2025). https://www.sciencedirect.com/science/article/abs/pii/S030626192401818X?via%3Dihub

N. Nitta, F. Wu, and et al., Mater. Today 18, 252 (2015). https://www.sciencedirect.com/science/article/pii/S1369702114004118?via%3Dihub

W. C. M. de Oliveira, G. D. Rodrigues, and et al., Chem. Eng. J. 322, 346 (2017). https://www.sciencedirect.com/science/article/abs/pii/S1385894717305788?via%3Dihub

M. García-Plaza, D. Serrano-Jiménez, and et al., J Power Sources 275, 595 (2015). https://www.sciencedirect.com/science/article/abs/pii/S0378775314018576?via%3Dihub

P. T. Moseley, D. A. Rand, and K. Peters, J. Power Sources 295, 268 (2015). https://www.sciencedirect.com/science/article/abs/pii/S0378775315300574?via%3Dihub

N. Alias and A. A. Mohamad, J. Power Sources 274, 237 (2015). https://www.sciencedirect.com/science/article/abs/pii/S0378775314016188?via%3Dihub

A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough, J. Electrochem. Soc. 144, 1188 (1997). https://iopscience.iop.org/article/10.1149/1.1837571

P. P. Prosini, M. Lisi, and et al., Solid State Ionics 148, 45 (2002). https://www.sciencedirect.com/science/article/abs/pii/S0167273802001340?via%3Dihub

X. Wang, Z. Feng, and et al., Carbon 127, 149 (2018). https://www.sciencedirect.com/science/article/abs/pii/S0008622317311053?via%3Dihub

A. Fedorková, R. Oriňáková, and et al., Int. J. Electrochem. Sci. 8, 10308 (2013). https://www.sciencedirect.com/science/article/pii/S1452398123131129?via%3Dihub

W. Wang, R. Wang, and et al., Nano Lett. 143, 7485 (2023). https://pubs.acs.org/doi/10.1021/acs.nanolett.3c01991

C. Gao, J. Zhou, G. Liu, and L. Wang, J. Alloy. Compounds 727, 501 (2017). https://www.sciencedirect.com/science/article/abs/pii/S0925838817328785?via%3Dihub

M. Park, X. Zhang, and et al., J. Power Sources 195, 7904 (2010). https://www.sciencedirect.com/science/article/abs/pii/S0378775310010463?via%3Dihub

K.-F. Hsu, S.-Y. Tsay, and B.-J. Hwang, J. Mater. Chem. 14, 2690 (2004). https://pubs.rsc.org/en/content/articlelanding/2004/jm/b406774f

M. Li, L. Sun, and et al., J. Solid State Electrochem. 16, 3581 (2012). https://link.springer.com/article/10.1007/s10008-012-1790-8

M. S. Whittingham, Chem. Rev. 104, 4271 (2004). https://pubs.acs.org/doi/10.1021/cr020731c

J. W. Fergus, J. Power Sources 195, 939 (2010). https://www.sciencedirect.com/science/article/abs/pii/S0378775309015304?via%3Dihub

J. B. Goodenough and Y. Kim, Chem. Mater. 22, 587 (2019). https://pubs.acs.org/doi/10.1021/cm901452z

V. Aravindan, J. Gnanaraj, Y.-S. Lee, and S. Madhavi, J. Mater. Chem. A 1, 3518 (2013). https://pubs.rsc.org/en/content/articlelanding/2013/ta/c2ta01393b

M.-R. Yang, T.-H. Teng, and S.-H. Wu, J.Power Sources 159, 307 (2006). https://www.sciencedirect.com/science/article/abs/pii/S0378775306006847?via%3Dihub

S.-C. Jheng and J.-S. Chen, Int. J. Electrochem. Sci. 8, 4901 (2013). https://www.sciencedirect.com/science/article/pii/S1452398123146505?via%3Dihub

J.-H. Lin and J.-S. Chen, Electrochim. Acta 62, 461 (2012). https://www.sciencedirect.com/science/article/abs/pii/S0013468611018937?via%3Dihub

W.-J. Zhang, J. Power Sources 196, 2962 (2011). https://www.sciencedirect.com/science/article/abs/pii/S037877531002104X?via%3Dihub

X.-X. Zhao and et al., Adv. Mat. 36, 2308927 (2024). https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202308927

K. Park, J. Son, H. Chung, and et al., Solid State Commun. 129, 311 (2004). https://www.sciencedirect.com/science/article/abs/pii/S0038109803009414?via%3Dihub

J. Liu, Z. Wang, and et al., Int. J. Electrochem. Sci. 8, 2378 (2013). https://www.sciencedirect.com/science/article/pii/S1452398123143161?via%3Dihub

Y.-W. Chen and J.-S. Chen, Int. J. Electrochem. Sci. 7, 8128 (2012). https://www.sciencedirect.com/science/article/pii/S1452398123179818?via%3Dihub

X. Yin, K. Huang, and et al., J. Power Sources 195, 4308 (2010). https://www.sciencedirect.com/science/article/abs/pii/S0378775310000741?via%3Dihub

M. Pan, X. Lin, and Z. Zhou, J Solid State Electrochem. 16, 1615 (2012). https://link.springer.com/article/10.1007/s10008-011-1564-8

Y.-F. Wu, Y.-N. Liu, and et al., J. Power Sources 256, 336 (2014). https://www.sciencedirect.com/science/article/abs/pii/S0378775314000548?via%3Dihub

J. Mun, H.-W. Ha, and W. Choi, J. Power Sources 251, 386 (2014). https://www.sciencedirect.com/science/article/abs/pii/S0378775313018612?via%3Dihub

F. Croce, A. D’ Epifanio, and et al., Electrochem. Solid St. 5, A47 (2002). https://iopscience.iop.org/article/10.1149/1.1449302

S. Yu, S. Dan, and et al., J. Solid State Electrochem. 16, 1675 (2012). https://link.springer.com/article/10.1007/s10008-011-1571-9

C.-W. Ong, Y.-K. Lin, and J.-S. Chen, J. Electrochem. Soc. 154, A527 (2007). https://iopscience.iop.org/article/10.1149/1.2720714

A. Naik, J. Zhou, and et al., J. Energy Inst. 89, 21 (2016). https://www.sciencedirect.com/science/article/abs/pii/S1743967114204004?via%3Dihub

X. Zhang, H. Guo, and et al., Solid State Ionics 212, 106 (2012). https://www.sciencedirect.com/science/article/abs/pii/S0167273812000598?via%3Dihub

N. Amdouni, K. Zaghib, and et al., Ionics 12, 117 (2006). https://link.springer.com/article/10.1007/s11581-006-0021-7

K. Zheng, Y. Wang, and et al., Water Res. 242, 120300 (2023). https://www.sciencedirect.com/science/article/abs/pii/S0043135423007364?via%3Dihub

J. Li, B. L. Armstrong, and et al., J. Colloid and Interf. Sci. 405, 118 (2013). https://www.sciencedirect.com/science/article/abs/pii/S0021979713004578?via%3Dihub

O. Toprakci, L. Ji, and et al., J. Power Sources 196, 7692 (2011). https://www.sciencedirect.com/science/article/abs/pii/S0378775311008718?via%3Dihub

C. Y. Wu, G. S. Cao, and et al., J. Phys. Chem. C 115, 23090 (2011). https://pubs.acs.org/doi/10.1021/jp205146d

M. M. Doeff, Y. Hu, and et al., Electrochem. Solid State Lett. 6, A207 (2003). https://iopscience.iop.org/article/10.1149/1.1601372

B. Jin, E. M. Jin, and et al., Electrochem. Commun. 10, 1537 (2008). https://www.sciencedirect.com/science/article/abs/pii/S1388248108003469?via%3Dihub

X. Sun, J. Li, and et al., J. Power Sources 220, 264 (2012). https://www.sciencedirect.com/science/article/abs/pii/S0378775312012177?via%3Dihub

L. Kavan, R. Bacsa, and et al., J. Power Sources 195, 5360 (2010). https://www.sciencedirect.com/science/article/abs/pii/S0378775310004180?via%3Dihub

K. Zaghib, A. Guerfi, and et al., J. Power Sources 232, 357 (2013). https://www.sciencedirect.com/science/article/pii/S0378775312019490?via%3Dihub

S. S. M. Safaa H. Ali1 and et al., Chem. Chem. Technol. 19 (2025). http://science2016.lp.edu.ua/chcht/photocatalytic-activity-defective-tio2-x-water-treatmentmethyl-orange-dye-degradation

S. H. Ali and S. S. Mohammed, MOMENTO 70, 45 (2025). https://revistas.unal.edu.co/index.php/momento/article/view/114275

N. Ravet, Y. Chouinard, and et al., J. Power Sources 97-98, 503 (2001). https://www.sciencedirect.com/science/article/abs/pii/S0378775301007273?via%3Dihub

C. Chen, G. Liu, Y. Wang, J. Li, and H. L. al., Electrochimica. Acta 113, 464 (2013). https://www.sciencedirect.com/science/article/abs/pii/S0013468613018574?via%3Dihub

B. Ramasubramanian, S. Sundarrajan, and et al., Batteries 832 (2022). https://www.mdpi.com/2313-0105/8/10/133

How to Cite

APA

Mohammed, S. S. & Ali, S. H. (2025). INVESTIGATE THE STRUCTURAL AND ELECTROCHEMICAL PROPERTIES OF CARBON DOPED LiFePO4 PREPARED BY USING CAROXYLON IMBRICATUM FORSSK EXTRACT AS A DOPING AGENT. MOMENTO, (71), 1–13. https://revistas.unal.edu.co/index.php/momento/article/view/117909

ACM

[1]
Mohammed, S.S. and Ali, S.H. 2025. INVESTIGATE THE STRUCTURAL AND ELECTROCHEMICAL PROPERTIES OF CARBON DOPED LiFePO4 PREPARED BY USING CAROXYLON IMBRICATUM FORSSK EXTRACT AS A DOPING AGENT. MOMENTO. 71 (Jul. 2025), 1–13.

ACS

(1)
Mohammed, S. S.; Ali, S. H. INVESTIGATE THE STRUCTURAL AND ELECTROCHEMICAL PROPERTIES OF CARBON DOPED LiFePO4 PREPARED BY USING CAROXYLON IMBRICATUM FORSSK EXTRACT AS A DOPING AGENT. Momento 2025, 1-13.

ABNT

MOHAMMED, S. S.; ALI, S. H. INVESTIGATE THE STRUCTURAL AND ELECTROCHEMICAL PROPERTIES OF CARBON DOPED LiFePO4 PREPARED BY USING CAROXYLON IMBRICATUM FORSSK EXTRACT AS A DOPING AGENT. MOMENTO, [S. l.], n. 71, p. 1–13, 2025. Disponível em: https://revistas.unal.edu.co/index.php/momento/article/view/117909. Acesso em: 24 dec. 2025.

Chicago

Mohammed, Saad S., and Safaa H. Ali. 2025. “INVESTIGATE THE STRUCTURAL AND ELECTROCHEMICAL PROPERTIES OF CARBON DOPED LiFePO4 PREPARED BY USING CAROXYLON IMBRICATUM FORSSK EXTRACT AS A DOPING AGENT”. MOMENTO, no. 71 (July):1-13. https://revistas.unal.edu.co/index.php/momento/article/view/117909.

Harvard

Mohammed, S. S. and Ali, S. H. (2025) “INVESTIGATE THE STRUCTURAL AND ELECTROCHEMICAL PROPERTIES OF CARBON DOPED LiFePO4 PREPARED BY USING CAROXYLON IMBRICATUM FORSSK EXTRACT AS A DOPING AGENT”, MOMENTO, (71), pp. 1–13. Available at: https://revistas.unal.edu.co/index.php/momento/article/view/117909 (Accessed: 24 December 2025).

IEEE

[1]
S. S. Mohammed and S. H. Ali, “INVESTIGATE THE STRUCTURAL AND ELECTROCHEMICAL PROPERTIES OF CARBON DOPED LiFePO4 PREPARED BY USING CAROXYLON IMBRICATUM FORSSK EXTRACT AS A DOPING AGENT”, Momento, no. 71, pp. 1–13, Jul. 2025.

MLA

Mohammed, S. S., and S. H. Ali. “INVESTIGATE THE STRUCTURAL AND ELECTROCHEMICAL PROPERTIES OF CARBON DOPED LiFePO4 PREPARED BY USING CAROXYLON IMBRICATUM FORSSK EXTRACT AS A DOPING AGENT”. MOMENTO, no. 71, July 2025, pp. 1-13, https://revistas.unal.edu.co/index.php/momento/article/view/117909.

Turabian

Mohammed, Saad S., and Safaa H. Ali. “INVESTIGATE THE STRUCTURAL AND ELECTROCHEMICAL PROPERTIES OF CARBON DOPED LiFePO4 PREPARED BY USING CAROXYLON IMBRICATUM FORSSK EXTRACT AS A DOPING AGENT”. MOMENTO, no. 71 (July 22, 2025): 1–13. Accessed December 24, 2025. https://revistas.unal.edu.co/index.php/momento/article/view/117909.

Vancouver

1.
Mohammed SS, Ali SH. INVESTIGATE THE STRUCTURAL AND ELECTROCHEMICAL PROPERTIES OF CARBON DOPED LiFePO4 PREPARED BY USING CAROXYLON IMBRICATUM FORSSK EXTRACT AS A DOPING AGENT. Momento [Internet]. 2025 Jul. 22 [cited 2025 Dec. 24];(71):1-13. Available from: https://revistas.unal.edu.co/index.php/momento/article/view/117909

Download Citation

Article abstract page views

186

Downloads

Download data is not yet available.