Efectos de forma y tamaño del poro sobre las propiedades mecánicas de las membranas del grafeno nanoporoso
Shape and size effects of the pore on the mechanical properties of nanoporous graphene membranes
DOI:
https://doi.org/10.15446/mo.n62.88422Keywords:
Grafeno con Nanoporos, Curva Tensión-Deformación, Fractura, Módulo de Young, Dinámica Molecular. (es)Graphene with Nanoporous, Curve Stress-Strain, Fracture, Young's Modulus, Molecular Dynamics. (en)
Downloads
En el presente trabajo se estudiaron los efectos de forma y tamaño de los poros sobre las propiedades mecánicas de membranas de grafeno nanoporosas (GNP). Las simulaciones de dinámica molecular fueron ejecutadas para estudiar las respuestas mecánicas y estructurales bajo una tracción uniaxial. Los resultados de las curvas tensión-deformación de las membranas de GNP muestran un comportamiento lineal elástico para razones de deformación pequeñas ($<$0.03) independiente de la dirección quiral. La anisotropía quiral (dirección armchair y zigzag) es notoria conforme se incrementa la deformación hasta el punto de fractura. Las membranas de GNP con poro hexagonal y rectangular presentan una mayor tensión de fractura (65 GPa y 81 GPa, respectivamente). Además, el módulo elástico de Young disminuye conforme se incrementa el tamaño del poro. Se espera que este estudio brinde aplicación práctica como filtros de membranas de alto rendimiento.
In this work, effects of shape and size of the pores on the mechanical properties of nanoporous graphene (NPG) membranes are studied. Molecular dynamics simulations were performed to study the mechanical and structural responses under uniaxial traction. The results of the stress-strain curves of NPG membranes show an elastic linear behavior for small strain (<0.03) independent of the chiral direction. The chiral anisotropy (armchair and zigzag direction) is notable as deformation increases to the point of fracture. The NPG membranes with hexagonal and rectangular pores present a higher fracture stress (65 GPa and 81 GPa, respectively). Furthermore, Young's elastic modulus decreases as pore size increases (porosity). This study is expected to provide practical application as high performance membrane filters.
References
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, science 306, 666 (2004).
J. Wang, J. Song, X. Mu, and M. Sun, Materials Today Physics , 100196 (2020).
J. Charleston, A. Agrawal, and R. Mirzaeifar, Computational Materials Science 178, 109621 (2020).
P. Avouris and F. Xia, Mrs Bulletin 37, 1225 (2012).
J. Zeng, K.-Q. Chen, and Y.-X. Tong, Carbon 127, 611 (2018).
D. A. Brownson, D. K. Kampouris, and C. E. Banks, Journal of Power Sources 196, 4873 (2011).
K. Chen, Q. Wang, Z. Niu, and J. Chen, Journal of energy chemistry 27, 12 (2018).
Y. Han, Z. Xu, and C. Gao, Advanced Functional Materials 23, 3693 (2013).
X. Huang, X. Qi, F. Boey, and H. Zhang, Chemical Society Reviews 41, 666 (2012).
D. Cohen-Tanugi and J. C. Grossman, Nano letters 12, 3602 (2012).
D. Cohen-Tanugi, L.-C. Lin, and J. C. Grossman, Nano letters 16, 1027 (2016).
S. Blankenburg, M. Bieri, R. Fasel, K. Mu¨llen, C. A. Pignedoli, and D. Passerone, Small 6, 2266 (2010).
D.-e. Jiang, V. R. Cooper, and S. Dai, Nano letters 9, 4019 (2009).
M. Shaban, S. Ali, and M. Rabia, Journal of Materials Research and Technology 8, 4510 (2019).
G. Calogero, I. Alcon, N. Papior, A.-P. Jauho, and M. Brandbyge, J. Am. Chem. Soc. 141, 13081 (2019).
C. Lee, X. Wei, J. W. Kysar, and J. Hone, science 321, 385 (2008).
C. Go´mez-Navarro, M. Burghard, and K. Kern, Nano letters 8, 2045 (2008).
J. T. Paci, T. Belytschko, and G. C. Schatz, The Journal of Physical Chemistry C 111, 18099 (2007).
N. Kostoglou, G. Constantinides, G. Charalambopoulou, T. Steriotis, K. Polychronopoulou, Y. Li, K. Liao, V. Ryzhkov, C. Mitterer, and C. Rebholz, Thin Solid Films 596, 242 (2015).
M.-C. Clochard, G. Melilli, G. Rizza, B. Madon, M. Alves, J.-E. Wegrowe, M.-E. Toimil-Molares, M. Christian, L. Ortolani, R. Rizzoli, et al., Materials Letters 184, 47 (2016).
J. Bai, X. Zhong, S. Jiang, Y. Huang, and X. Duan, Nature nanotechnology 5, 190 (2010).
C. Carpenter, A. M. Christmann, L. Hu, I. Fampiou, A. R. Muniz, A. Ramasubramaniam, and D. Maroudas, Applied Physics Letters 104, 141911 (2014).
Y. Liu and X. Chen, Journal of Applied Physics 115, 034303 (2014).
S. Smidstrup, T. Markussen, P. Vancraeyveld, J. Wellendorff, J. Schneider, T. Gunst, B. Verstichel, D. Stradi, P. A. Khomyakov, U. G. Vej-Hansen, et al., Journal of Physics: Condensed Matter 32, 015901 (2019).
Y. Huang, J. Wu, and K.-C. Hwang, Physical review B 74, 245413 (2006).
S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, Tech. Rep. (Sandia National Labs., Albuquerque, NM (United States), 1993).
R. Grantab, V. B. Shenoy, and R. S. Ruoff, Science 330, 946 (2010).
T. Zhang, X. Li, S. Kadkhodaei, and H. Gao, Nano letters 12, 4605 (2012).
J. Zhang, J. Zhao, and J. Lu, ACS nano 6, 2704 (2012).
A. Stukowski, Modelling and Simulation in Materials Science and Engineering 18, 015012 (2009).
T.-H. Fang, Z.-W. Lee, and W.-J. Chang, Current Applied Physics 17, 1323 (2017). [31] H. Zhao, K. Min, and N. R. Aluru, Nano letters 9, 3012 (2009).
H. Zhao, K. Min, and N. R. Aluru, Nano letters 9, 3012 (2009).
Z. Xu, Journal of computational and Theoretical nanoscience 6, 625 (2009).
B. Mortazavi, M. E. Madjet, M. Shahrokhi, S. Ahzi, X. Zhuang, and T. Rabczuk, Carbon 147, 377 (2019).
J. Li, C. Tian, Y. Zhang, H. Zhou, G. Hu, and R. Xia, Carbon (2020).
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Ayesha Kausar, Ishaq Ahmad, Osamah Aldaghri, Khalid H. Ibnaouf, M. H. Eisa, Tran Dai Lam. (2024). Potential of nanoporous graphene and functionalized nanoporous graphene derived nanocomposites for environmental membranes – a review. Nanocomposites, 10(1), p.138. https://doi.org/10.1080/20550324.2024.2335690.
2. Yuanxiu Zhang, Lixin Huang, Jun Huang. (2023). A modified spring finite element model for graphene elastic properties study. Materials Today Communications, 34, p.105158. https://doi.org/10.1016/j.mtcomm.2022.105158.
3. Gustavo Cuba-Supanta, P Amao, F Quispe-Huaynasi, M Z Pinto-Vergara, Elluz Pacheco, S Y Flores, C Soncco, V Loaiza-Tacuri, J Rojas-Tapia. (2024). The composition effect on the structural and thermodynamic properties of Cu–Ag–Au ternary nanoalloys: a study via molecular dynamics approach. Modelling and Simulation in Materials Science and Engineering, 32(4), p.045003. https://doi.org/10.1088/1361-651X/ad332f.
4. Hanaa M. Hegab, Parashuram Kallem, Ravi P. Pandey, Mariam Ouda, Fawzi Banat, Shadi W. Hasan. (2022). Mechanistic insights into the selective mass-transport and fabrication of holey graphene-based membranes for water purification applications. Chemical Engineering Journal, 431, p.134248. https://doi.org/10.1016/j.cej.2021.134248.
5. Gustavo Cuba-Supanta, M Z Pinto-Vergara, E Huaman Morales, M H Romero Peña, J Rojas-Tapia. (2023). Influence of shell thickness on the thermal stability and melting-like behavior of Al@Fe core–shell nanoparticles from atomistic simulations: a structural and dynamic description. Journal of Physics: Condensed Matter, 35(32), p.325403. https://doi.org/10.1088/1361-648X/acd31a.
6. Fabiano Santana da Silva, Carlos Bruno Barreto Luna, Eduardo da Silva Barbosa Ferreira, Anna Raffaela de Matos Costa, Renate Maria Ramos Wellen, Edcleide Maria Araújo. (2024). Polyamide 6 (PA6)/carbon nanotubes (MWCNT) nanocomposites for antistatic application: tailoring mechanical and electrical properties for electronic product protection. Journal of Polymer Research, 31(1) https://doi.org/10.1007/s10965-023-03861-w.
7. M.A. Torkaman-Asadi, M.A. Kouchakzadeh. (2022). Atomistic simulations of mechanical properties and fracture of graphene: A review. Computational Materials Science, 210, p.111457. https://doi.org/10.1016/j.commatsci.2022.111457.
8. Thomas J. Barrett, Marilyn L. Minus. (2025). Nosé-Hoover Integrators at-a-Glance: Barostat Integration Has a Demonstrable Effect on Uniaxial Tension Results of Solid Materials. Journal of Chemical Theory and Computation, 21(2), p.517. https://doi.org/10.1021/acs.jctc.4c01190.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2020 MOMENTO
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Those authors who have publications with this journal, accept the following terms:
a. The authors will retain their copyright and will guarantee the publication of the first publication of their work, which will be subject to the Attribution-SinDerivar 4.0 International Creative Commons Attribution License that permits redistribution, commercial or non-commercial, As long as the Work circulates intact and unchanged, where it indicates its author and its first publication in this magazine.
b. Authors are encouraged to disseminate their work through the Internet (eg in institutional telematic files or on their website) before and during the sending process, which can produce interesting exchanges and increase appointments of the published work.