Publicado

2023-07-24

Impurezas elementales en las sustancias activas: una perspectiva general

Elemental impurities in Active Substances: a general perspective

Impurezas elementares em Substâncias Ativas: uma perspectiva geral

DOI:

https://doi.org/10.15446/rcciquifa.v52n1.102095

Palabras clave:

Principios activos, impurezas metálicas, seguridad, análisis de riesgo, métodos de control (es)
Pharmaceutical ingredients, elemental impurities, safety, risk analysis, control methods (en)
Insumos farmacêuticos, impurezas elementares, segurança, análise de risco, métodos de controle (pt)

Descargas

Autores/as

  • Juan Carlos Ortiz Lara Sintenovo, S.A. de C.V. Calle 13 Este nº 3 62578 Civac, Jiutepec, Estado de Morelos
  • Mayra Yanelly Salvitano Domínguez Sintenovo, S.A. de C.V. Calle 13 Este nº 3 62578 Civac, Jiutepec, Estado de Morelos
  • Edgar Méndez Campos Sintenovo, S.A. de C.V. Calle 13 Este nº 3 62578 Civac, Jiutepec, Estado de Morelos
  • Paola Valeria Robles Salgado Sintenovo, S.A. de C.V. Calle 13 Este nº 3 62578 Civac, Jiutepec, Estado de Morelos

Las sustancias activas deben cumplir con altos requerimientos de calidad, para lograr este objetivo se debe cumplir con varios parámetros tales como un limitado contenido de impurezas. En esta tesitura se pueden mencionar diferentes tipos de impurezas tales como orgánicas, inorgánicas, mutagénicas, disolventes residuales e impurezas elementales. La importancia de las impurezas es alta, principalmente porque son tóxicas y pueden provocar efectos adversos en los pacientes por lo tanto se deben limitar. Específicamente las impurezas elementales son residuos de elementos metálicos que pueden provenir de varias operaciones en el proceso de fabricación de una sustancia activa. Estos contaminantes se clasifican en la guía ICHQ3D en 4 grupos en función de su toxicidad y su presencia en una sustancia activa se explica por los procesos de síntesis (materias primas, disolventes, agua) o por desgaste de los equipos productivos (reactores, centrifugas, secadores, molinos). Para poder determinar las cantidades de estos compuestos los métodos analíticos son parte fundamental ya que deben ser lo suficientemente sensibles y específicos. Aunado a la parte analítica, la evaluación mediante un análisis de riesgo proporciona la información teórica de las potenciales impurezas metálicas presentes en una sustancia activa. Un caso de estudio ejemplifica este apartado. Otro aspecto de suma importancia es el control de la presencia de las impurezas metálicas en los procesos sintéticos, por lo que tener una visión general de los métodos de control es de capital importancia con objeto establecer la estrategia adecuada, este apartado se ejemplifica con un caso reportado en la literatura. Las tendencias generales de purificación de una sustancia activa proporcionan una perspectiva de los avances en este tema. En esta revisión se incluye una breve revisión de los tópicos previamente mencionados.


The elemental impurities must meet high quality requirements, in order to achieve
this goal several analytical parameters such as a low impurity content is the capital
importance. In this situation, several types of impurities can be mentioned for
example: organic and inorganic impurities, mutagenic compounds, residual
solvents, and elemental impurities. The relevance of the impurities is high because
these compounds are toxic for the patient and can cause adverse effects in patients
therefore they should be limited. Specifically the elemental impurities are residues of
metal elements that come from the unit operations used in the manufacturing process
of an active substance. These contaminant are classified in the ICHQ3D guide in
four groups according to their toxicity and their presence in an active substance is
explained by the synthesis process (raw materials, solvents, water) or by the wear of
the productive equipment (reactors, centrifuges, dryers, mills). In order to determine
the quantities of these compounds analytical methods are a fundamental part, since
they must be sufficiently sensitive and specific. The evaluation through a risk analysis
provides the theoretical information of the potential metallic impurities present in
an active substance; a case study exemplifies this section. Another important aspect
to take in account is the control of the presence of metal impurities in synthetic
processes, so having an overview of the control methods is a paramount importance
in order to establish the appropriate control strategy. In this section, a reported case
is described. Finally, general trends in purification of an active substance provide
an insight into developments in this area. This paper includes a brief review of the
previously mentioned topics.

As impurezas elementares devem atender a requisitos de alta qualidade, para atingir
esse objetivo, vários parâmetros analíticos, como um baixo teor de impurezas, são de
capital importância. Nesta situação, vários tipos de impurezas podem ser mencionados,
por exemplo: impurezas orgânicas e inorgânicas, compostos mutagênicos,
solventes residuais e impurezas elementares. A relevância das impurezas é alta
porque esses compostos são tóxicos para o paciente e podem causar efeitos adversos
nos pacientes, portanto, devem ser limitados. Especificamente as impurezas elementares
são resíduos de elementos metálicos provenientes das operações unitárias utilizadas
no processo de fabricação de uma substância ativa. Esses contaminantes são
classificados no guia ICHQ3D em quatro grupos de acordo com sua toxicidade e
sua presença em uma substância ativa é explicada pelo processo de síntese (matérias-
-primas, solventes, água) ou pelo desgaste dos equipamentos produtivos (reatores,
centrífugas, secadores, moinhos). Para determinar as quantidades desses compostos
os métodos analíticos são parte fundamental, pois devem ser suficientemente sensíveis
e específicos. A avaliação por meio de uma análise de risco fornece a informação
teórica das potenciais impurezas metálicas presentes em uma substância ativa; um
estudo de caso exemplifica esta seção. Outro aspecto importante a ter em conta é o
controlo da presença de impurezas metálicas nos processos sintéticos, pelo que ter
uma visão geral dos métodos de controlo é de suma importância para estabelecer
a estratégia de controlo adequada. Nesta seção, um caso relatado é descrito. Finalmente,
as tendências gerais na purificação de uma substância ativa fornecem uma
visão sobre os desenvolvimentos nesta área. Este artigo inclui uma breve revisão dos
tópicos mencionados anteriormente.

Referencias

1. B.K. Immel, A brief history of the GMPs for Pharmaceuticals, Pharm. Technol., July 2001, 44-52 (2001).

2. J. Tatarkiewicz, M.J. Bujalska-Zadrozny, The antihypertensive drugs and contamination with carcinogenic nitrosamines, Folia Cardiol., 14(6), 564-571 (2019).

3. United States Food and Drug Administration. Statement alerting patients and health care professionals of NDMA found in samples of Ranitidine. [Internet] United States; 2019 [updated 2019 September 13] URL: http://www.fda.gov/news-events/press-announcements/statement-alerting-patients-and-health-careprofessionals-

ndma-found-samples-ranitidine, consultado Marzo de 2021.

4. Cofepris. Norma oficial Mexicana NOM-164-SSA1-2015, Buenas Prácticas de fabricación de fármacos [Internet]. México: Cofepris; 2016 [updated 2016 February 4]. Available from: http://www.dof.gob.mx/nota_detalle.php?codigo=5424377&fecha=04/02/2016, consultado noviembre de 2021.

5. The international Council for Harmonisation of Technical requirements for Pharmaceutical for Human use. ICH Harmonised Tripartite Guideline Good manufacturing practice guide for active pharmaceutical ingredients Q7 [Internet]. Switzerland: The international Council for Harmonisation of Technical requirements for Pharmaceutical for Human use; 2000 [updated 2000 November 10]. URL: https://database.ich.org/sites/default/files/Q7%20Guideline.pdf, consultado Marzo 2022.

6. The international Council for Harmonisation of Technical requirements for Pharmaceutical for Human use. ICH Harmonised Tripartite Guideline. Impurities in new drug substances Q3A(R2) [Internet]. Switzerland: The international Council for Harmonisation of Technical requirements for Pharmaceutical for Human use; 2006 [updated 2006 October 25]. URL: https://database.ich.org/sites/default/files/Q3A_R2__Guideline.pdf, consultado Marzo 2022.

7. J.C. Ortiz-Lara, S. Flores-Teloxa, I.R. Contreras-Mora, A. Díaz, Impurezas orgánicas observadas en el proceso de manufactura de las sustancias, Rev. Mex. Cienc. Farm., 47(1), 7-24 (2016).

8. The international Council for Harmonisation of Technical requirements for Pharmaceutical for Human use. ICH Harmonised Tripartite Guideline. Guideline for residual solvents Q3C R6) [Internet]. Switzerland: The international

Council for Harmonisation of Technical requirements for Pharmaceutical for Human use; 2016 [updated 2016 October 20]. URL: https://database.ich.org/sites/default/files/Q3C-R6_Guideline_ErrorCorrection_2019_0410_0.pdf, consultado Marzo 2022.

9. The international Council for Harmonisation of Technical requirements for Pharmaceutical for Human use. ICH Harmonised Tripartite Guideline. Assessment and control of DNA reactive (mutagenic) impurities in pharmaceuticals to limit Council for Harmonisation of Technical requirements for Pharmaceutical for Human use; 2017 [updated 2017 March 31]. URL: https://database.ich.org/sites/default/files/M7_R1_Guideline.pdf, Consultado Marzo de 2022.

10. L. Muller, R.J. Mauthe, C.M. Riley, M.M. Andino, D. De Antonis, C. Beels, J. DeGeorge, A.G.M. De Knaep, D. Ellison, J.A. Fagerland, R. Frank, B. Fritschel, S. Galloway, E. Harpur, C.D.N. Humpfrey, A.S. Jacks, N. Jagota, J. Mackinnon, G. Mohan, D.K. Ness, M.R. O´Donovan, M.D. Smith, G. Vudathala, L. Yotti, A rationale for determining, testing, and controlling specific impurities in pharmaceuticals that possess potential for genotoxicity, Regul. Toxicol. Pharmacol., 44, 198-211 (2006).

11. C. Pan, F. Liu, M. Motto, Identification of pharmaceutical impurities in formulated dosage forms, J. Pharm. Sci., 100(4), 1228-1259 (2011). N.R. Rao, S.S.M. Kiram, N.L. Prasanthi, Pharmaceutical impurities: An overview, Int. J. Pharm. Educ. Res., 44(3), 1228-1259 (2010).

12. Cofepris. Norma oficial Mexicana NOM-059-SSA1-2015, Buenas Prácticas de Fabricación de Medicamentos [Internet]. México: Cofepris; 2015 [updated 2016 February 4]. URL: http://dof.gob.mx/nota_detalle_popup.php?codigo=5424575. consultado Marzo 2022.

13. The international Council for Harmonisation of Technical requirements for Pharmaceutical for Human use. ICH Harmonised Tripartite Guideline. Guideline Impurities in new drug products Q3B(R2). [Internet]. Switzerland: The international Council for Harmonisation of Technical requirements for Pharmaceutical for Human use; 2006 [updated 2 June 2006]. URL: https://database.ich.org/sites/default/files/Q3B%28R2%29%20Guideline.pdf, consultado Marzo 2022.

14. El termino metal pesado (heavy metal) está referido a la gravedad específica, peso atómico, numero atómico y propiedades químicas. Por ejemplo Plomo, Cadmio y Níquel son elementos químicos cuya gravedad específica es al menos cinco veces mayor que la gravedad especifica del agua. F. Nessa, S.A. Khan, K.Y.I. Abu Shawish, Lead, cadmium and nickel contents of some medicinal agents, Indian J. Pharm. Sci., 78(1), 111-119 (2016).

15. The international Council for Harmonisation of Technical requirements for Pharmaceutical for Human use. ICH Harmonised Tripartite Guideline. Guideline for Elemental Impurities Q3D(R1). [Internet]. Switzerland: The international Council for Harmonisation of Technical requirements for Pharmaceutical for Human use; 2019 [updated 22 March 2019]. URL: http://https://database.ich.org/sites/default/files/Q3D-R1EWG_Document_Step4_Guideline_2019_0322.pdf, consultado Marzo 2022.

16. A. Teasdale, C.C. Chéry, G. Cook, J. Glennon, L. Harris, C.W. Lee, N. Lewen, P. Nethercote, S. Powell, H. Rockstroh, L. Rutter, L. Smallshaw, S. Thompson, V. Woodward, K. Ullman, Implementation of ICHQ3D Elemental impurities Guideline: Challenges and opportunities, Pharm. Technol., 89, 38-49 (2015).

17. A.K. Yadav, A review on research trend in corrosion resistant alloy (hastelloy), Lead, cadmium and nickel contents of some medicinal agents, Int. J. Innov. Res. Sci. Eng., 2(4), 311 (2016).

18. Nickel Development Institute, A designer’s handbook series. No 9014. Design guidelines for the selection and use of stainless steel. [Internet]. United States. URL: http://www.nickelinstitute.org/media/1667/designguidelinesfortheselectionanduseofstainlesssteels_9014_.pdf, consultado Marzo 2022.

19. P. Eugen, M. Bolte, Highly corrosion resistant enamel composition free from heavy metals for its production, use and coted bodies, European patent. EP1231189b1, 4, 2011.

20. Water for pharmaceutical purposes. Chapter 1231. United States Pharmacopea - National Formulary. United States Pharmacopeial Convention, Inc. Rockville, MD. USP 41, NF 36, 1. 6145-6146, 2018.

21. Purified water General chapter 42. United States Pharmacopea - National Formulary. United States Pharmacopeial Convention, Inc. Rockville, MD. USP 41, NF 36, 1. 6145-6146, 2018.

22. D. Jenke, Materials in manufacturing and packaging systems as sources of elemental impurities in packaged drug products: an updated literature review, PDA. J. Pharm. Sci. Technol., 74, 324-347 (2020).

23. D.R. Jenke, C.L.M. Stults, D.M. Paskiet, Materials in manufacturing and packaging systems as sources of elemental impurities in packaged drug products: literature review, PDA. J. Pharm. Sci. Technol., 69, 1-48 (2015).

24. Heavy metals. General chapter 231. United States Pharmacopea - National Formulary. United States Pharmacopeial Convention, Inc. Rockville, MD. USP 41, NF 36, Volume 1; 6145-6146, 2018.

25. Elemental impurities limits. General chapter 232. Name. United States Pharmacopea -National Formulary. United States Pharmacopeial Convention, Inc. Rockville, MD. USP 41, NF 36, Volume 1, 6147-6150, 2018.

26. Elemental impurities procedures. General chapter 233. Name. United States Pharmacopea -National Formulary. United States Pharmacopeial Convention, Inc. Rockville, MD. USP 41, NF 36, Volume 1. 6151-6156, 2018.

27. R. Thomas, Determining elemental impurities in pharmaceuticals material: how to choose the right technique, Spectroscopy, 30, 30-42 (2015).

28. Referencias generales acerca de esta técnica analítica: a) R. Thomas, Measuring elemental impurities in pharmaceuticals a practical guide, CRC Press Ed., Boca Raton (FL), 2018. b). C.B. Boss Fredeen, Concepts, instrumentation and techniques in inductively coupled Plasma Optical Emission spectrometry, Perkin Elmer Ed., 2004.

29. R. Thomas, Measuring elemental impurities in pharmaceuticals a practical guide, CRC Press Ed., Boca Raton (FL), 2018.

30. M.F. Al-Hakkani, Guideline of inductively coupled plasma mass spectrometry “ICP-MS”: Fundamentals, practices, determination of the limits, quality control, and method validation parameters, SN Appl. Sci., 1, 791 (2019).

31. O. Chahrour, J. Malone, M. Collins, V. Salmon, C. Greenan, A. Bombardier, Z. Ma, N. Dunwoody, Development and validation of an ICP-MS method for the determination of elemental impurities in TP-6076 Active pharmaceutical ingredient (API) according to USP (232)/ (233), J. Pharm. Biomed. Anal., 145, 84-90 (2017).

32. P. Pohl, A. Bielawska-Pohl, A. Dzimitrowicz, P. Jamroz, M. Welna, Trends. Anal. Chem., 101, 43-55 (2018).

33. The international Council for Harmonisation of Technical requirements for Pharmaceutical for Human use. ICH Harmonised Tripartite Guideline. Guideline Quality risk management Q9. [Internet]. Switzerland: The international Council for Harmonisation of Technical requirements for Pharmaceutical for Human use; 2005 [updated 9 November 2005]. URL: http://database.ich.org/sites/default/files/Q9%20Guideline.pdf

34. A. Sharma, S.K. Jain, Elemental impurities in drug product, Int. J. Pharm. Sci. Res, 2(2), 31-38 (2017).

35. K.B. Hansen, J. Balsells, S. Dreher, Y. Hsiao, M. Kubryk, M. Palucki, N. Rivera, D.D. Steinhuebel, J.D. Armstrong, D. Askin, E.J.J. Grabowski, First generation process for the preparation of the DPP-IV inhibitor Sitagliptin, Org. Process. Res. Dev., 9, 634-639 (2005).

36. A.A. Desai, Sitagliptin manufacture: A compelling tale of green chemistry, process intensification, and industrial asymmetric catalysis, Angew. Chem. Int. Ed., 50, 1974-1976 (2011).

37. S. Phillips, D. Holdsworth, P. Kauppinen, C. Mac Namara, Palladium impurity removal from active pharmaceutical ingredient process streams. A method for scale up, Johnson Matthey Technol. Rev., 60(4), 277-286 (2016).

38. G. Reginato, P. Sadler, R.D. Wilkes, Scaling up metal scavenging operations for pharmaceutical pilot plant manufactures, Org. Process. Res. Dev., 15, 1396-1405 (2011).

39. H.X. Ding, C.A. Leverett, R.E. Jr. Kyne, K.K.C. Liu, S.J. Fink, A.C. Flick, C.J. O´Donnell, Synthetic approaches to the 2013 new drugs, Bioorg. Med. Chem., 23, 1895-1922 (2015).

40. A.C. Flick, H.X. Ding, C.A. Leverett, R.E. Jr. Kyne, K.K.C. Liu, S.J. Fink, C.J. O´Donnell, Synthetic approaches to the 2014 new drugs, Bioorg. Med. Chem., 24, 1937-1980 (2016).

41. A.C. Flick, H.X. Ding, C.A. Leverett, R.E. Kyne, Jr., K.K.C. Liu, S.J. Fink, C.J. O´Donnell, Synthetic approaches to new drugs approved during 2015, J. Med. Chem., 60, 6480-6515 (2017).

42. A.C. Flick, H.X. Ding, C.A. Leverett, S.J. Fink, C.J. O´Donnell, Synthetic approaches to new drugs approved during 2016, J. Med. Chem., 61, 7004-7031 (2018).

43. A.C. Flick, C.A. Leverett, H.X. Ding, E. McInturff, S.J. Fink, C.J. Helal, C.J., O´Donnell, Synthetic approaches to new drugs approved during 2017, J. Med. Chem., 62, 7340-7382 (2019).

44. A.C. Flick, C.A. Leverett, H.X. Ding, E. McInturff, S.J. Fink, C.J., Helal, J.C. DeForest, P.D. Morse, S. Mahapatra, C.J. O´Donnell, Synthetic approaches to new drugs approved during 2018, J. Med. Chem., 63, 10652-10704 (2020).

45. A.O. King, N. Yasuda, Palladium-catalyzed cross-coupling reactions in the synthesis of pharmaceuticals, Top. Organomet. Chem., 6, 205-245 (2004). A.J. Burke, C.S. Marques, N. Turner, G.J. Hermann, Active Pharmaceutical ingredient in Synthesis: Catalytic processes in research and development, Wiley-VCH Eds., Germany, 2018.

46. C.E. Garret, K. Prasad, The art of meeting Palladium specifications in active pharmaceutical ingredients produced by Pd-catalyzed reactions, Adv. Synth. Catal., 346, 889-900 (2004).

47. H. Ren, C.A. Strulson, G. Humprey, R. Xiang, G. Li, D.R. Gauthier, K. Maloney, Potassium isopropyl xanthate (PIX): an ultra–efficient palladium scavenger, Green Chem., 19, 4002-4006 (2017).

48. D. Chouiki, I. Kulai, D.E. Bergbreiter, M. Al-Hashimi, H.S. Bazzi, Functionalized polyisobutylene and liquid/liquid separations as a method for scavenging transition metals for homogeneously catalyzed reactions, Appl. Sci., 9, 120 (2019).

49. J.C. Ortiz-Lara, A. Balderrábano-López, Importancia de las sales orgánicas en la industria farmacéutica, Rev. Mex. Cienc. Farm., 48(1), 18-42 (2017).

50. P.P. Mpungose, Z.P. Vundla, G.E.M. Maguire, H.B. Friedrich, The current status of heterogeneous Palladium catalyzed Heck and Suzuki Cross-Coupling reactions, Molecules, 23, 1676 (2018).

51. R.A. Arancon, C.S.K. Lin, C. Vargas, R. Luque, To be or not to be metal-free: trend and advances in coupling chemistries, Org. Biomol. Chem., 12, 10-35 (2014).

52. X. Guo, S. Alavi, J. Mostaghimi, Analytical performance of the conical torch in axially viewed inductively coupled plasma optical emission spectroscopy, J. Anal. Atom. Spectrom., 34, 2126-2135 (2019).

53. V. Balaram, Recent advances and trends in inductively coupled plasma-mass spectroscopy and applications. Chromatography online. Special issues. May 01. 2018, 2. 8-13, 38, 2018. URL: http://www.chromatographyonline.com/recentadvances-and-trends-inductively-coupled-plasma-mass-spectrometry-and-applications, Consultado Marzo 2022.

54. B. Sauer, Y. Xiao, M. Zoontjes, C. Kroll, Application of X-ray fluorescence spectrometry for screening pharmaceutical products for elemental impurities according to ICH guideline Q3D, J. Pharm. Biomed. Anal., 179, 113005 (2020).

Cómo citar

APA

Ortiz Lara, J. C., Salvitano Domínguez, M. Y., Méndez Campos, E. y Robles Salgado, P. V. (2023). Impurezas elementales en las sustancias activas: una perspectiva general. Revista Colombiana de Ciencias Químico-Farmacéuticas, 52(1), 11–58. https://doi.org/10.15446/rcciquifa.v52n1.102095

ACM

[1]
Ortiz Lara, J.C., Salvitano Domínguez, M.Y., Méndez Campos, E. y Robles Salgado, P.V. 2023. Impurezas elementales en las sustancias activas: una perspectiva general. Revista Colombiana de Ciencias Químico-Farmacéuticas. 52, 1 (jul. 2023), 11–58. DOI:https://doi.org/10.15446/rcciquifa.v52n1.102095.

ACS

(1)
Ortiz Lara, J. C.; Salvitano Domínguez, M. Y.; Méndez Campos, E.; Robles Salgado, P. V. Impurezas elementales en las sustancias activas: una perspectiva general. Rev. Colomb. Cienc. Quím. Farm. 2023, 52, 11-58.

ABNT

ORTIZ LARA, J. C.; SALVITANO DOMÍNGUEZ, M. Y.; MÉNDEZ CAMPOS, E.; ROBLES SALGADO, P. V. Impurezas elementales en las sustancias activas: una perspectiva general. Revista Colombiana de Ciencias Químico-Farmacéuticas, [S. l.], v. 52, n. 1, p. 11–58, 2023. DOI: 10.15446/rcciquifa.v52n1.102095. Disponível em: https://revistas.unal.edu.co/index.php/rccquifa/article/view/102095. Acesso em: 20 abr. 2025.

Chicago

Ortiz Lara, Juan Carlos, Mayra Yanelly Salvitano Domínguez, Edgar Méndez Campos, y Paola Valeria Robles Salgado. 2023. «Impurezas elementales en las sustancias activas: una perspectiva general». Revista Colombiana De Ciencias Químico-Farmacéuticas 52 (1):11-58. https://doi.org/10.15446/rcciquifa.v52n1.102095.

Harvard

Ortiz Lara, J. C., Salvitano Domínguez, M. Y., Méndez Campos, E. y Robles Salgado, P. V. (2023) «Impurezas elementales en las sustancias activas: una perspectiva general», Revista Colombiana de Ciencias Químico-Farmacéuticas, 52(1), pp. 11–58. doi: 10.15446/rcciquifa.v52n1.102095.

IEEE

[1]
J. C. Ortiz Lara, M. Y. Salvitano Domínguez, E. Méndez Campos, y P. V. Robles Salgado, «Impurezas elementales en las sustancias activas: una perspectiva general», Rev. Colomb. Cienc. Quím. Farm., vol. 52, n.º 1, pp. 11–58, jul. 2023.

MLA

Ortiz Lara, J. C., M. Y. Salvitano Domínguez, E. Méndez Campos, y P. V. Robles Salgado. «Impurezas elementales en las sustancias activas: una perspectiva general». Revista Colombiana de Ciencias Químico-Farmacéuticas, vol. 52, n.º 1, julio de 2023, pp. 11-58, doi:10.15446/rcciquifa.v52n1.102095.

Turabian

Ortiz Lara, Juan Carlos, Mayra Yanelly Salvitano Domínguez, Edgar Méndez Campos, y Paola Valeria Robles Salgado. «Impurezas elementales en las sustancias activas: una perspectiva general». Revista Colombiana de Ciencias Químico-Farmacéuticas 52, no. 1 (julio 24, 2023): 11–58. Accedido abril 20, 2025. https://revistas.unal.edu.co/index.php/rccquifa/article/view/102095.

Vancouver

1.
Ortiz Lara JC, Salvitano Domínguez MY, Méndez Campos E, Robles Salgado PV. Impurezas elementales en las sustancias activas: una perspectiva general. Rev. Colomb. Cienc. Quím. Farm. [Internet]. 24 de julio de 2023 [citado 20 de abril de 2025];52(1):11-58. Disponible en: https://revistas.unal.edu.co/index.php/rccquifa/article/view/102095

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

501

Descargas

Los datos de descargas todavía no están disponibles.