Publicado

2023-07-24

Dispersiones sólidas de solubilidad mejorada fabricadas en mezcladores de alto corte: una oportunidad para la industria farmacéutica local mexicana

Solid dispersions with improved solubility manufactured in high shear mixers: an opportunity for the local Mexican pharmaceutical industry

Dispersões sólidas com solubilidade melhorada fabricadas em misturadores de alto cisalhamento: uma oportunidade para a indústria farmacêutica mexicana local

Palabras clave:

Dispersiones sólidas, granulación por fusión, mezclador de alto corte, solubilidad, tecnología farmacéutica, SCB clase II (es)
High shear mixer, melt granulation, pharmaceutic technology, solid dispersions, solubility, class II drugs (en)
Misturador de alto cisalhamento, granulação por fusão, tecnologia farmacêutica, dispersões sólidas, solubilidade, fármacos de classe II (pt)

Descargas

Autores/as

  • Abigail Garcia-Radilla Universidad Autónoma del Estado de México
  • Mariana Ortiz-Reynoso Universidad Autónoma del Estado de México https://orcid.org/0000-0002-1003-7881
  • Jonnathan G. Santillán-Benítez Universidad Autónoma del Estado de México
  • Edna T. Alcantara-Fierro Universidad Autónoma del Estado de México

Introducción: los fármacos clase II representan un alto porcentaje de las moléculas en fase de investigación biomédica. Este grupo atrajo la investigación en los últimos años, ya que su baja solubilidad acuosa condiciona su absorción in vivo, lo que plantea un reto para la tecnología farmacéutica. El diseño de dispersiones sólidas (SD) es una técnica que ha tenido éxito y se basa en la dispersión del fármaco en un acarreador polimérico, promoviendo el estado amorfo del primero. Uno de los
métodos de obtención de SD es el de fusión, que se puede llevar a cabo en equipos sofisticados, pero los mezcladores de alto corte (HSM) también son una alternativa para obtener granulados por fusión. Objetivo: el objetivo de este trabajo es revisar si han sido reportados procesos de granulación por fusión utilizado HSM para la
fabricación de SD y analizar las fortalezas, debilidades, oportunidades y amenazas de este equipo en dicho proceso. Método: en una metodología de revisión documental, se preseleccionaron 90 publicaciones de las bases de datos PubMed, ScienceDirect y Google Scholar de los últimos 20 años, de las cuales ocho describen el uso del método de granulación por fusión en HSM. Resultados: como resultados se vio que el 100%
de estos casos reportó mayor solubilidad y velocidad de disolución que el fármaco puro. Se concluye que las empresas locales que cuentan con HSM tienen el potencial para poner en marcha procesos de fabricación de SD exitosos en HSM, con la ventaja de no hacer una inversión adicional.

Introduction: class II drugs represent a high percentage of the molecules in the
biomedical research phase. This group has attracted research in recent years, since its low aqueous solubility conditions its absorption in vivo, which poses a challenge
for pharmaceutical technology. Solid dispersion design (SD) is a technique that has been successful and is based on the dispersion of the drug in a polymeric carrier, promoting the amorphous state of the former. One of the methods of obtaining SD is melting, which can be carried out in sophisticated equipment, but high shear mixers (HSM) are also an alternative to obtain granules by melting. Aim: the objective  of this work is to review if melt granulation processes have been reported using HSM for the manufacture of SD and to analyze the strengths, weaknesses, opportunities
and threats of this equipment in said process. Method: in a documentary
review methodology, 90 publications from the PubMed, ScienceDirect and Google Scholar databases from the last 20 years were pre-selected, of which eight describe the use of the fusion granulation method in HSM. Results: as results, it was seen that 100% of these cases reported higher solubility and dissolution speed than the
pure drug. It is concluded that local companies that have HSM have the potential to launch successful SD manufacturing processes in HSM, with the advantage of not making an additional investment.

Introdução: os medicamentos de classe II representam uma alta porcentagem das
moléculas na fase de pesquisa biomédica. Esse grupo tem atraído pesquisas nos
últimos anos, pois sua baixa solubilidade aquosa condiciona sua absorção in vivo, o
que representa um desafio para a tecnologia farmacêutica. O desenho de dispersão
sólida (SD) é uma técnica que tem obtido sucesso e se baseia na dispersão do fármaco
em um carreador polimérico, promovendo o estado amorfo do primeiro. Um dos
métodos de obtenção de DS é a fusão, que pode ser realizada em equipamentos sofisticados,
mas misturadores de alto cisalhamento (HSM) também são uma alternativa
para obtenção de grânulos por fusão. Objetivo: o objetivo deste trabalho é revisar
se foram relatados processos de granulação por fusão usando HSM para a fabricação
de SD e analisar os pontos fortes, fracos, oportunidades e ameaças desse equipamento
no referido processo. Método: em uma metodologia de revisão documental,
foram pré-selecionadas 90 publicações das bases de dados PubMed, ScienceDirect
e Google Scholar dos últimos 20 anos, das quais oito descrevem o uso do método
de granulação por fusão em HSM. Resultados: como resultados, foi visto que
100% desses casos relataram maior solubilidade e velocidade de dissolução do que o
fármaco puro. Conclui-se que as empresas locais que possuem HSM têm potencial
para lançar com sucesso processos de fabricação de SD em HSM, com a vantagem de
não realizar um investimento adicional.

Referencias

FDA, Generic Drugs: Questions & Answers, 2021. URL: https://www.fda.gov/

drugs/questions-answers/generic-drugs-questions-answers#q1, consultado el 28

de marzo de 2022.

IQVIA, Valuing the Research-based Pharmaceutical Industry in Latin America:

assessing the economic & societal footprint, 2021. URL: https://www.iqvia.com/-/

media/iqvia/pdfs/institute-reports/valuing-the-research-based-pharmaceuticalindustry-

in-latin-america/iqvia-institute-valuing-the-research-based-pharmaceutical-

industry-in-latam-11-21-forweb.pdf

K.I. Dhanya, Key shifts in the Latin American Central Lab Market, 2018. URL:

https://www.clinicalleader.com/doc/key-shifts-in-the-latin-american-centrallab-

market-0001, consultado el 29 de marzo de 2022.

L. Di, P.V. Fish, T. Mano, Bridging solubility between drug discovery and development,

Drug Discov. Today, 17(9-10), 486-495 (2012).

M. Rodriguez-Aller, D. Guillarme, J.L. Veuthey, R. Gurny, Strategies for formulating

and delivering poorly water-soluble drugs, J. Drug Deliv. Sci. Technol., 30,

-351 (2015).

P. Clayton, M. Feldman, Academic teams and commercialization in the life

sciences, Front. Res. Metrics Anal., 6(Sept.), 1-9 (2021).

G.L. Amidon, H. Lennernäs, V.P. Shah, J.R. Crison, A theoretical basis for a

biopharmaceutic drug classification: The correlation of in vitro drug product dissolution

and in vivo bioavailability, Pharm. Res., 12(3), 413-420 (1995).

R.A Bellantone, Fundamentals of Amorphous Systems: Thermodynamic

Aspects, en: N. Shah, H. Sandhu, D. Choi, H. Chokshi, A. Malick (editoress),

Amorphous Solid Dispersions. Advances in Delivery Science and Technology, Springer,

New York (NY), 2014.

M.G. Papich, M.N. Martinez, Applying Biopharmaceutical Classification System

(BCS) criteria to predict oral absorption of drugs in dogs: Challenges and

pitfalls, AAPS J., 17(4), 948-964 (2015).

S. Alshehri, S.S. Imam, A. Hussain, M.A. Altamimi, N.K. Alruwaili, F. Alotaibi,

A. Alanazi, F. Shakeel, Potential of solid dispersions to enhance solubility, bioavailability,

and therapeutic efficacy of poorly water-soluble drugs: newer formulation

techniques, current marketed scenario and patents, Drug Deliv., 27(1),

-1643 (2020).

WHO, Proposal to waive in vivo bioequivalence requirements for WHO Model

List of Essential Medicines immediate-release, solid oral dosage forms, WHO Technical

Report Series 206AD (937), pp. 1-47.

S.H. Park, H.K. Choi, The effects of surfactants on the dissolution profiles of

poorly water-soluble acidic drugs, Int. J. Pharm., 321(1–2), 35-41 (2006).

V.P. Shah, G.L. Amidon, [G.L. Amidon, H. Lennernas, V.P. Shah, and J.R. Crison.

A theoretical basis for a biopharmaceutic drug classification: The correlation of

in vitro drug product dissolution and in vivo bioavailability, Pharm Res 12, 413-

, 1995-Backstory of BCS], AAPS J., 16(5), 894-898 (2014).

C.Y. Wu, L.Z. Benet, Predicting drug disposition via application of BCS: Transport/

absorption/elimination interplay and development of a biopharmaceutics

drug disposition classification system, Pharm. Res., 22(1), 11-23 (2005).

L.Z. Benet, The role of BCS (Biopharmaceutics Classification System) and

BDDCS (Biopharmaceutics Drug Disposition Classification System) in drug

development, J. Pharm. Sci., 102(1), 34-42 (2013).

L.Z. Benet, G.L. Amidon, D.M. Barends, H. Lennernäs, J.E. Polli, V.P. Shah,

S.A. Stavchansky, L.X. Yu, The use of BDDCS in classifying the permeability of

marketed drugs, Pharm. Res., 25(3), 483-488 (2008).

T. Vasconcelos, S. Marques, B. Sarmento, The biopharmaceutical classification

system of excipients, Ther. Deliv., 8(2), 65-78 (2017).

S.R. Byrn, G. Zografi, X.S. Chen, Solid State Properties of Pharmaceutical Materials,

Wiley, 2017, pp. 249-264.

M. Mosharraf, C. Nyström, Apparent solubility of drugs in partially crystalline

systems, Drug Dev. Ind. Pharm., 29(6), 603-622 (2003).

D. Mehtani, A. Seth, P. Sharma, R. Maheshwari, S.N. Abed, P.K. Deb, M.B.

Chougule, R.K. Tekade, Dissolution profile consideration in pharmaceutical

product development, en: R.K. Tekade, Dosage Form Design Considerations:

Volume I, Elsevier Inc., 2018, pp. 287-336.

V.A. Gray, T.W. Rosanske, Dissolution, en: C.M. Riley, T.W. Rosanske, G. Reid

(editors), Specification of Drug Substances and Products, Elsevier, 2020, pp. 481-

P. Costa, J. Sousa-Lobo, Modeling and comparison of dissolution profiles of diltiazem

modified-release formulations, Dissolut. Technol., 16(2), 41-46 (2009).

T.X. Viegas, R.U. Curatella, L.L. Van Winkle, G. Brinker, Measurement of

intrinsic drug dissolution rates using two types of apparatus, Pharm. Technol.,

North Am., 25(6), 44-53 (2001).

B. Shekunov, E.R. Montgomery, Theoretical analysis of drug dissolution: I. Solubility

and intrinsic dissolution rate, J. Pharm. Sci., 105(9), 2685-2697 (2016).

J. Rautio, H. Kumpulainen, T. Heimbach, R. Oliyai, D. Oh, T. Järvinen, J. Savolainen,

Prodrugs: Design and clinical applications, Nat. Rev. Drug Discov., 7(3),

-270 (2008).

Y. Kawabata, K. Wada, M. Nakatani, S. Yamada, S. Onoue, Formulation design

for poorly water-soluble drugs based on biopharmaceutics classification system:

Basic approaches and practical applications, Int. J. Pharm., 420(1), 1-10 (2011).

N. Adawiyah, M. Moniruzzaman, S. Hawatulaila, M. Goto, Ionic liquids as a

potential tool for drug delivery systems, MedChemComm, 7(10), 1881-1897

(2016).

A.M. Master, M.E. Rodriguez, M.E. Kenney, N.L. Oleinick, A.S. Gupta, Physical

stability of salts of weak bases in the solid-state, J. Pharm. Sci., 99(5), 2386-

(2010).

S.V. Kurkov, T. Loftsson, Cyclodextrins, Int. J. Pharm., 453(1), 167-180 (2013).

R. Nagarajan, E. Ruckenstein, Theory of surfactant self-assembly: A predictive

molecular thermodynamic approach, Langmuir, 7(12), 2934-2969 (1991).

B.Y. Shekunov, P. Chattopadhyay, H.H.Y. Tong, A.H.L. Chow, Particle size

analysis in pharmaceutics: Principles, methods and applications, Pharm. Res.,

(2), 203-227 (2007).

N. Schultheiss, M. Roe, S.X.M. Boerrigter, Cocrystals of nutraceutical p-coumaric

acid with caffeine and theophylline: Polymorphism and solid-state stability

explored in detail using their crystal graphs, CrystEngComm, 13(2), 611-619

(2011).

A.G. Cid, A. Simonazzi, S.D. Palma, J.M. Bermúdez, Solid dispersion technology

as a strategy to improve the bioavailability of poorly soluble drugs, Ther.

Deliv., 10(6), 363-382 (2019).

X. Zhang, H. Xing, Y. Zhao, Z. Ma, Pharmaceutical dispersion techniques for

dissolution and bioavailability enhancement of poorly water-soluble drugs,

Pharmaceutics, 10(3), 74 (2018).

K. Sekiguchi, N. Obi, Studies on absorption of eutectic mixture. I. A Comparison

of the behavior of eutectic mixture of sulfathiazole and that of ordinary

sulfathiazole in man, Chem. Pharm. Bull., 9(11), 866-872 (1961).

T.T.D. Tran, P.H.L. Tran, J. Lim, J.B. Park, S.K. Choi, B.J. Lee, Physicochemical

principles of controlled release solid dispersion containing a poorly water-soluble

drug, Ther. Deliv., 1(1), 51-62 (2010).

A.R. Nair, Y.D. Lakshman, V.S.K. Anand, K.S.N. Sree KSN, K. Bhat, S.J. Dengale,

Overview of extensively employed polymeric carriers in solid dispersion

technology, AAPS PharmSciTech, 21(8), 309 (2020).

M. Slámová, T. Školáková, A. Školáková, J. Patera, P. Zámostný, Preparation of

solid dispersions with respect to the dissolution rate of active substance, J. Drug

Deliv. Sci. Technol., 56, 101518 (2020).

S. Janssens, G. Van den Mooter, Review: Physical chemistry of solid dispersions,

J. Pharm. Pharmacol., 61(12), 1571-1586 (2009).

F. Meng, U. Gala, H. Chauhan, Classification of solid dispersions: Correlation

to (I) stability and solubility (II) preparation and characterization techniques,

Drug Dev. Ind. Pharm., 41(9), 1401-1415 (2015).

N.B. Jadav, A. Paradkar, Solid dispersions: Technologies used and future outlook,

en: R. Shegokar (editor), Nanopharmaceuticals: Volume 1: Expectations

and Realities of Multifunctional Drug Delivery Systems, Elsevier Inc., 2020, pp.

-120.

A.R. Tekade, J.N. Yadav, A review on solid dispersion and carriers used therein

for solubility enhancement of poorly water soluble drugs, Adv. Pharm. Bull.,

(3), 359-369 (2020).

C.L.N. Vo, C. Park, B.J. Lee, Current trends and future perspectives of solid dispersions

containing poorly water-soluble drugs, Eur. J. Pharm. Biopharm., 85(3

Part B), 799-813 (2013).

S.R.K. Vaka, M.M. Bommana, D. Desai, J. Djordjevic, W. Phuapradit, N. Shah,

Excipients for Amorphous Solid Dispersions, Springer, New York (NY), 2014, pp.

-161.

S. Sareen, L. Joseph, G. Mathew, Improvement in solubility of poor water-soluble

drugs by solid dispersion, Int. J. Pharm. Investig., 2(1), 12 (2012).

A.N. Ghebremeskel, C. Vemavarapu, M. Lodaya, Use of surfactants as plasticizers

in preparing solid dispersions of poorly soluble API: Stability testing of

selected solid dispersions, Pharm Res., 23(8), 1928-1936 (2006).

D.K. Mishra, V. Dhote, A. Bhargava, D.K. Jain, P.K. Mishra, Amorphous solid

dispersion technique for improved drug delivery: basics to clinical applications,

Drug Deliv. Transl. Res., 5(6), 552-565 (2015).

P.H.L. Tran, T.T.D. Tran, J.B. Park, B.J. Lee, Controlled release systems containing

solid dispersions: Strategies and mechanisms, Pharm. Res., 28(10), 2353-

(2011).

D.G. Yu, J.J. Li, G.R. Williams, M. Zhao, Electrospun amorphous solid dispersions

of poorly water-soluble drugs: A review, J. Control. Release, 292, 91-110

(2018).

H. Sandhu, N. Shah, H. Chokshi, A.W. Malick, Overview of Amorphous Solid

Dispersion Technologies, Springer, New York (NY), 2014, pp. 91-122.

M. Kidokoro, Y. Haramiishi, S. Sagasaki, T. Shimizu, Y. Yamamoto, Application

of Fluidized Hot-Melt Granulation (FHMG) for the preparation of granules for

tableting: Properties of granules and tablets prepared by FHMG, Drug Dev. Ind.

Pharm., 28(1), 67-76 (2002).

S.H. Surasarang, R.O. Williams, Pharmaceutical cryogenic technologies, en:

R.O. Williams III, A.B. Watts, D.A. Miller (editors), Formulating Poorly Water

Soluble Drugs, Springer Cham, 2016, pp. 527-607.

S. Sarabu, S. Bandari, V.R. Kallakunta, R. Tiwari, H. Patil, M.A. Repka, An

update on the contribution of hot-melt extrusion technology to novel drug delivery

in the twenty-first century: Part II, Expert Opin. Drug Deliv., 16(6), 567-

(2019).

D.J. Ellenberger, D.A. Miller, R.O. Williams, Expanding the application and formulation

space of amorphous solid dispersions with KinetiSol®: A review, AAPS

PharmSciTech, 19(5), 1933-1956 (2018).

F. Bossler, E. Koos, Structure of particle networks in capillary suspensions with

wetting and nonwetting fluids, Langmuir, 32(6), 1489-1501 (2016).

T. Schæfer, B. Taagegaard, L.J. Thomsen, H. Gjelstrup-Kristensen, Melt pelletization

in a high shear mixer. IV. Effects of process variables in a laboratory scale

mixer, Eur. J. Pharm. Sci., 1(3), 125-131 (1993).

T. Schaefer, P. Holm, H.G. Kristensen, Melt granulation in a laboratory scale

high shear mixer, Drug Dev. Ind. Pharm., 16(8), 1249-1277 (1990).

R. Gokhale, Y. Sun, A.J. Shukla, Handbook of Pharmaceutical Granulation Technology,

nd ed., CRC Press, Boca Raton (FL), 2005, pp. 191-228.

S. Shanmugam, Granulation techniques and technologies: Recent progresses,

BioImpacts, 5(1), 55-63 (2015).

F. Zhou, C. Vervaet, J.P. Remon, Influence of processing on the characteristics

of matrix pellets based on microcrystalline waxes and starch derivatives, Int. J.

Pharm., 147(1), 23-30 (1997).

T. Vilhelmsen, H. Eliasen, T. Schæfer, Effect of a melt agglomeration process

on agglomerates containing solid dispersions, Int. J. Pharm., 303(1–2), 132-142

(2005).

P.C. Knight, T. Instone, J.M.K. Pearson, M.J. Hounslow, An investigation into

the kinetics of liquid distribution and growth in high shear mixer agglomeration,

Powder Technol., 97(3), 246-257 (1998).

L.X. Yu, G. Amidon, M.A. Khan, S.W. Hoag, J. Polli, G.K. Raju, J. Woodcock,

Understanding pharmaceutical quality by design, AAPS J., 16(4), 771-783

(2014).

L. Rodriguez, C. Cavallari, N. Passerini, B. Albertini, M.L. González-Rodríguez,

A. Fini, Preparation and characterization by morphological analysis of

diclofenac/PEG 4000 granules obtained using three different techniques, Int. J.

Pharm., 242(1–2), 285-289 (2002).

P. Flanders, G.A. Dyer, D. Jordan, The control of drug release from conventional

melt granulation matrices, Drug Dev. Ind. Pharm., 13(6), 1001-1022 (1987).

Malvern Panalytical, Morphologi G3 basic guide (English). URL: https://

www.malvernpanalytical.com/en/learn/knowledge-center/user-manuals/

MAN0493EN

Mettler Toledo, Thermal Analysis Excellence, DSC, Differential scanning calorimetry

for unmatched performance, 2015; URL: https://www.mt.com/dam/

Analytical/ThermalAnalysi/TA-PDF/DSC3_Brochure_en_30247073A_

V05.15_Original_38549.pdf

N. Passerini, B. Albertini, M.L. González-Rodríguez, C. Cavallari, L. Rodriguez,

Preparation and characterisation of ibuprofen-poloxamer 188 granules obtained

by melt granulation, Eur. J. Pharm. Sci., 15(1), 71-78 (2002).

P. Papneja, M.K. Kataria, A. Bilandi, Formulation and evaluation of solid dispersion

for dissolution enhancement of ketoconazole, Eur. J. Pharm. Med. Res.,

(5), 990-1014 (2015). URL: https://storage.googleapis.com/journal-uploads/

ejpmr/article_issue/1441965998.pdf

Surface Measurement Systems, iGC-SEA, Inverse Gas Chromatography Surface

Energy Analyzer, Product Brochure. URL: https://www.surfacemeasurementsystems.

com/wp-content/uploads/2014/05/iGC-SEA-brochure-v1.4.pdf.

Surface Measurement Systems, DVS ADVENTURE, Dynamic Gravimetric

Water Vapor Sorption Analysis, Product Brochure. URL: https://www.

surfacemeasurementsystems.com/wp-content/uploads/2020/09/DVS_

Adventure_E_Brochure.pdf

Centro Conjunto de Investigación en Química Sustentable (CCIQS),

UAEM-UNAM, Difracción de Rayos X. URL: http://cciqs.unam.mx/index.php?option=com_content&view=article&id=105&Itemid=76, consultado el

de abril de 2022.

S.D. Clas, C.R. Dalton, B.C. Hancock, Differential scanning calorimetry: Applications

in drug development, Pharm. Sci. Technol. Today, 2(8), 311-320 (1999).

F. Qian, J. Huang, Q. Zhu, R. Haddadin, J. Gawel, R. Garmise, R, M. Hussain,

Is a distinctive single Tg a reliable indicator for the homogeneity of amorphous

solid dispersion? Int. J. Pharm., 395(1–2), 232-235 (2010).

D. Medarević, J. Djuriš, P. Barmpalexis, K. Kachrimanis, S. Ibrić, Analytical and

computational methods for the estimation of drug-polymer solubility and miscibility

in solid dispersions development, Pharmaceutics, 11(8), 372 (2019).

J. Djuris, I. Nikolakakis, S. Ibric, Z. Djuric, K. Kachrimanis, Preparation of carbamazepine-

Soluplus® solid dispersions by hot-melt extrusion, and prediction

of drug-polymer miscibility by thermodynamic model fitting, Eur. J. Pharm.

Biopharm., 84(1), 228-237 (2013).

A.A. Bunaciu, E.G. Udriştioiu, H.Y. Aboul-Enein, X-Ray Diffraction: Instrumentation

and Applications, Crit. Rev. Anal. Chem., 45(4), 289-299 (2015).

A. Newman, D. Engers, S. Bates, I. Ivanisevic, R.C. Kelly, G. Zografi, Characterization

of amorphous API:Polymer mixtures using X-Ray powder diffraction, J.

Pharm. Sci., 99(5), 2386-2398 (2010).

J. Lu, K. Cuellar, N.I. Hammer, S. Jo, A. Gryczke, K. Kolter, N. Langley, M.A.

Repka, Solid-state characterization of Felodipine-Soluplus amorphous solid dispersions,

Drug Dev. Ind. Pharm., 42(3), 485-496 (2016).

A. Almeida, S. Possemiers, M.N. Boone, T. De Beer, T. Quinten, L. Van Hoorebeke,

J.P. Remon, C. Vervaet, Ethylene vinyl acetate as matrix for oral sustained

release dosage forms produced via hot-melt extrusion, Eur. J. Pharm. Biopharm.,

(2), 297-305 (2011).

Farmacopea de los Estados Unidos Mexicanos (FEUM), 12 ed., México, 2018.

S. Mohammadi-Jam, K.E. Waters, Inverse gas chromatography applications: A

review, Adv. Colloid Interface Sci., 212, 21-44 (2014).

A. Pal, A. Kondor, S. Mitra, K. Thu, S. Harish, B.B. Saha, On surface energy and

acid-base properties of highly porous parent and surface treated activated carbons

using inverse gas chromatography, J. Ind. Eng. Chem., 69, 432-443 (2019).

C. Driemeier, F.M. Mendes, M.M. Oliveira, Dynamic vapor sorption and thermoporometry

to probe water in celluloses, Cellulose, 19(4), 1051-1063 (2012).

D. Voinovich, M. Moneghini, B. Perissutti, J. Filipovic-Grcic, I. Grabnar, Preparation

in high-shear mixer of sustained-release pellets by melt pelletisation, Int. J.

Pharm., 203(1-2), 235-244 (2000).

K.J. Crowley, R.T. Forbes, P. York, H. Nyqvist, O. Camber, Drug-fatty acid salt

with wax-like properties employed as binder in melt granulation, Int. J. Pharm.,

(1-2), 9-17 (2000).

J. Hamdani, A.J. Moës, K. Amighi, Development and evaluation of prolonged

release pellets obtained by the melt pelletization process, Int. J. Pharm., 245(1-

, 167-177 (2002).

A. Seo, P. Holm, H.G. Kristensen, T. Schæfer, The preparation of agglomerates

containing solid dispersions of diazepam by melt agglomeration in a high shear

mixer, Int. J. Pharm., 259(1-2), 161-171 (2003).

B. Perissutti, F. Rubessa, M. Moneghini, D. Voinovich, Formulation design of

carbamazepine fast-release tablets prepared by melt granulation technique, Int.

J. Pharm., 256(1-2), 53-63 (2003).

G. Ye, S. Wang, P. Wan, S. Heng, L. Chen, C. Wang, Development and optimization

of solid dispersion containing pellets of itraconazole prepared by high shear

palletization, Int. J. Pharm., 337(1-2), 80-87 (2007).

P.J. Sirois, G.D. Craig, Scale-Up of a high-shear granulation process using a normalized

impeller work parameter, Pharm. Dev. Technol., 5(3), 365-374 (2000).

Cómo citar

APA

Garcia-Radilla, A., Ortiz-Reynoso, M., Santillán-Benítez, J. G. y Alcantara-Fierro, E. T. (2023). Dispersiones sólidas de solubilidad mejorada fabricadas en mezcladores de alto corte: una oportunidad para la industria farmacéutica local mexicana. Revista Colombiana de Ciencias Químico-Farmacéuticas, 52(1). https://revistas.unal.edu.co/index.php/rccquifa/article/view/102588

ACM

[1]
Garcia-Radilla, A., Ortiz-Reynoso, M., Santillán-Benítez, J.G. y Alcantara-Fierro, E.T. 2023. Dispersiones sólidas de solubilidad mejorada fabricadas en mezcladores de alto corte: una oportunidad para la industria farmacéutica local mexicana. Revista Colombiana de Ciencias Químico-Farmacéuticas. 52, 1 (jul. 2023).

ACS

(1)
Garcia-Radilla, A.; Ortiz-Reynoso, M.; Santillán-Benítez, J. G.; Alcantara-Fierro, E. T. Dispersiones sólidas de solubilidad mejorada fabricadas en mezcladores de alto corte: una oportunidad para la industria farmacéutica local mexicana. Rev. Colomb. Cienc. Quím. Farm. 2023, 52.

ABNT

GARCIA-RADILLA, A.; ORTIZ-REYNOSO, M.; SANTILLÁN-BENÍTEZ, J. G.; ALCANTARA-FIERRO, E. T. Dispersiones sólidas de solubilidad mejorada fabricadas en mezcladores de alto corte: una oportunidad para la industria farmacéutica local mexicana. Revista Colombiana de Ciencias Químico-Farmacéuticas, [S. l.], v. 52, n. 1, 2023. Disponível em: https://revistas.unal.edu.co/index.php/rccquifa/article/view/102588. Acesso em: 10 jul. 2024.

Chicago

Garcia-Radilla, Abigail, Mariana Ortiz-Reynoso, Jonnathan G. Santillán-Benítez, y Edna T. Alcantara-Fierro. 2023. «Dispersiones sólidas de solubilidad mejorada fabricadas en mezcladores de alto corte: una oportunidad para la industria farmacéutica local mexicana». Revista Colombiana De Ciencias Químico-Farmacéuticas 52 (1). https://revistas.unal.edu.co/index.php/rccquifa/article/view/102588.

Harvard

Garcia-Radilla, A., Ortiz-Reynoso, M., Santillán-Benítez, J. G. y Alcantara-Fierro, E. T. (2023) «Dispersiones sólidas de solubilidad mejorada fabricadas en mezcladores de alto corte: una oportunidad para la industria farmacéutica local mexicana», Revista Colombiana de Ciencias Químico-Farmacéuticas, 52(1). Disponible en: https://revistas.unal.edu.co/index.php/rccquifa/article/view/102588 (Accedido: 10 julio 2024).

IEEE

[1]
A. Garcia-Radilla, M. Ortiz-Reynoso, J. G. Santillán-Benítez, y E. T. Alcantara-Fierro, «Dispersiones sólidas de solubilidad mejorada fabricadas en mezcladores de alto corte: una oportunidad para la industria farmacéutica local mexicana», Rev. Colomb. Cienc. Quím. Farm., vol. 52, n.º 1, jul. 2023.

MLA

Garcia-Radilla, A., M. Ortiz-Reynoso, J. G. Santillán-Benítez, y E. T. Alcantara-Fierro. «Dispersiones sólidas de solubilidad mejorada fabricadas en mezcladores de alto corte: una oportunidad para la industria farmacéutica local mexicana». Revista Colombiana de Ciencias Químico-Farmacéuticas, vol. 52, n.º 1, julio de 2023, https://revistas.unal.edu.co/index.php/rccquifa/article/view/102588.

Turabian

Garcia-Radilla, Abigail, Mariana Ortiz-Reynoso, Jonnathan G. Santillán-Benítez, y Edna T. Alcantara-Fierro. «Dispersiones sólidas de solubilidad mejorada fabricadas en mezcladores de alto corte: una oportunidad para la industria farmacéutica local mexicana». Revista Colombiana de Ciencias Químico-Farmacéuticas 52, no. 1 (julio 24, 2023). Accedido julio 10, 2024. https://revistas.unal.edu.co/index.php/rccquifa/article/view/102588.

Vancouver

1.
Garcia-Radilla A, Ortiz-Reynoso M, Santillán-Benítez JG, Alcantara-Fierro ET. Dispersiones sólidas de solubilidad mejorada fabricadas en mezcladores de alto corte: una oportunidad para la industria farmacéutica local mexicana. Rev. Colomb. Cienc. Quím. Farm. [Internet]. 24 de julio de 2023 [citado 10 de julio de 2024];52(1). Disponible en: https://revistas.unal.edu.co/index.php/rccquifa/article/view/102588

Descargar cita

Visitas a la página del resumen del artículo

254

Descargas

Los datos de descargas todavía no están disponibles.