Publicado
Dispersiones sólidas de solubilidad mejorada fabricadas en mezcladores de alto corte: una oportunidad para la industria farmacéutica local mexicana
Solid dispersions with improved solubility manufactured in high shear mixers: an opportunity for the local Mexican pharmaceutical industry
Dispersões sólidas com solubilidade melhorada fabricadas em misturadores de alto cisalhamento: uma oportunidade para a indústria farmacêutica mexicana local
DOI:
https://doi.org/10.15446/rcciquifa.v52n1.102588Palabras clave:
Dispersiones sólidas, granulación por fusión, mezclador de alto corte, solubilidad, tecnología farmacéutica, SCB clase II (es)High shear mixer, melt granulation, pharmaceutic technology, solid dispersions, solubility, class II drugs (en)
Misturador de alto cisalhamento, granulação por fusão, tecnologia farmacêutica, dispersões sólidas, solubilidade, fármacos de classe II (pt)
Descargas
Introducción: los fármacos clase II representan un alto porcentaje de las moléculas en fase de investigación biomédica. Este grupo atrajo la investigación en los últimos años, ya que su baja solubilidad acuosa condiciona su absorción in vivo, lo que plantea un reto para la tecnología farmacéutica. El diseño de dispersiones sólidas (SD) es una técnica que ha tenido éxito y se basa en la dispersión del fármaco en un acarreador polimérico, promoviendo el estado amorfo del primero. Uno de los métodos de obtención de SD es el de fusión, que se puede llevar a cabo en equipos sofisticados, pero los mezcladores de alto corte (HSM) también son una alternativa para obtener granulados por fusión. Objetivo: el objetivo de este trabajo es revisar si han sido reportados procesos de granulación por fusión utilizado HSM para la fabricación de SD y analizar las fortalezas, debilidades, oportunidades y amenazas de este equipo en dicho proceso. Método: en una metodología de revisión documental, se preseleccionaron 90 publicaciones de las bases de datos PubMed, ScienceDirect y Google Scholar de los últimos 20 años, de las cuales ocho describen el uso del método de granulación por fusión en HSM. Resultados: como resultados se vio que el 100% de estos casos reportó mayor solubilidad y velocidad de disolución que el fármaco puro. Se concluye que las empresas locales que cuentan con HSM tienen el potencial para poner en marcha procesos de fabricación de SD exitosos en HSM, con la ventaja de no hacer una inversión adicional.
Introduction: class II drugs represent a high percentage of the molecules in the biomedical research phase. This group has attracted research in recent years, since its low aqueous solubility conditions its absorption in vivo, which poses a challenge for pharmaceutical technology. Solid dispersion design (SD) is a technique that has been successful and is based on the dispersion of the drug in a polymeric carrier, promoting the amorphous state of the former. One of the methods of obtaining SD is melting, which can be carried out in sophisticated equipment, but high shear mixers (HSM) are also an alternative to obtain granules by melting. Aim: the objective of this work is to review if melt granulation processes have been reported using HSM for the manufacture of SD and to analyze the strengths, weaknesses, opportunities and threats of this equipment in said process. Method: in a documentary review methodology, 90 publications from the PubMed, ScienceDirect and Google Scholar databases from the last 20 years were pre-selected, of which eight describe the use of the fusion granulation method in HSM. Results: as results, it was seen that 100% of these cases reported higher solubility and dissolution speed than the pure drug. It is concluded that local companies that have HSM have the potential to launch successful SD manufacturing processes in HSM, with the advantage of not making an additional investment.
Introdução: os medicamentos de classe II representam uma alta porcentagem das moléculas na fase de pesquisa biomédica. Esse grupo tem atraído pesquisas nos últimos anos, pois sua baixa solubilidade aquosa condiciona sua absorção in vivo, o que representa um desafio para a tecnologia farmacêutica. O desenho de dispersão sólida (SD) é uma técnica que tem obtido sucesso e se baseia na dispersão do fármaco em um carreador polimérico, promovendo o estado amorfo do primeiro. Um dos métodos de obtenção de DS é a fusão, que pode ser realizada em equipamentos sofisticados, mas misturadores de alto cisalhamento (HSM) também são uma alternativa para obtenção de grânulos por fusão. Objetivo: o objetivo deste trabalho é revisar se foram relatados processos de granulação por fusão usando HSM para a fabricação de SD e analisar os pontos fortes, fracos, oportunidades e ameaças desse equipamento no referido processo. Método: em uma metodologia de revisão documental, foram pré-selecionadas 90 publicações das bases de dados PubMed, ScienceDirect e Google Scholar dos últimos 20 anos, das quais oito descrevem o uso do método de granulação por fusão em HSM. Resultados: como resultados, foi visto que 100% desses casos relataram maior solubilidade e velocidade de dissolução do que o fármaco puro. Conclui-se que as empresas locais que possuem HSM têm potencial para lançar com sucesso processos de fabricação de SD em HSM, com a vantagem de não realizar um investimento adicional.
Referencias
1. FDA, Generic Drugs: Questions & Answers, 2021. URL: https://www.fda.gov/drugs/questions-answers/generic-drugs-questions-answers#q1, consultado el 28 de marzo de 2022.
2. IQVIA, Valuing the Research-based Pharmaceutical Industry in Latin America: assessing the economic & societal footprint, 2021. URL: https://www.iqvia.com/-/media/iqvia/pdfs/institute-reports/valuing-the-research-based-pharmaceuticalindustry-in-latin-america/iqvia-institute-valuing-the-research-based-pharmaceutical-industry-in-latam-11-21-forweb.pdf
3. K.I. Dhanya, Key shifts in the Latin American Central Lab Market, 2018. URL: https://www.clinicalleader.com/doc/key-shifts-in-the-latin-american-centrallab-market-0001, consultado el 29 de marzo de 2022.
4. L. Di, P.V. Fish, T. Mano, Bridging solubility between drug discovery and development, Drug Discov. Today, 17(9-10), 486-495 (2012).
5. M. Rodriguez-Aller, D. Guillarme, J.L. Veuthey, R. Gurny, Strategies for formulating and delivering poorly water-soluble drugs, J. Drug Deliv. Sci. Technol., 30, 342-351 (2015).
6. P. Clayton, M. Feldman, Academic teams and commercialization in the life sciences, Front. Res. Metrics Anal., 6(Sept.), 1-9 (2021).
7. G.L. Amidon, H. Lennernäs, V.P. Shah, J.R. Crison, A theoretical basis for a biopharmaceutic drug classification: The correlation of in vitro drug product dissolution and in vivo bioavailability, Pharm. Res., 12(3), 413-420 (1995).
8. R.A Bellantone, Fundamentals of Amorphous Systems: Thermodynamic Aspects, en: N. Shah, H. Sandhu, D. Choi, H. Chokshi, A. Malick (editoress), Amorphous Solid Dispersions. Advances in Delivery Science and Technology, Springer, New York (NY), 2014.
9. M.G. Papich, M.N. Martinez, Applying Biopharmaceutical Classification System (BCS) criteria to predict oral absorption of drugs in dogs: Challenges and pitfalls, AAPS J., 17(4), 948-964 (2015).
10. S. Alshehri, S.S. Imam, A. Hussain, M.A. Altamimi, N.K. Alruwaili, F. Alotaibi, A. Alanazi, F. Shakeel, Potential of solid dispersions to enhance solubility, bioavailability, and therapeutic efficacy of poorly water-soluble drugs: newer formulation techniques, current marketed scenario and patents, Drug Deliv., 27(1), 1625-1643 (2020).
11. WHO, Proposal to waive in vivo bioequivalence requirements for WHO Model List of Essential Medicines immediate-release, solid oral dosage forms, WHO Technical Report Series 206AD (937), pp. 1-47.
12. S.H. Park, H.K. Choi, The effects of surfactants on the dissolution profiles of poorly water-soluble acidic drugs, Int. J. Pharm., 321(1–2), 35-41 (2006).
13. V.P. Shah, G.L. Amidon, [G.L. Amidon, H. Lennernas, V.P. Shah, and J.R. Crison. A theoretical basis for a biopharmaceutic drug classification: The correlation of in vitro drug product dissolution and in vivo bioavailability, Pharm Res 12, 413-420, 1995-Backstory of BCS], AAPS J., 16(5), 894-898 (2014).
14. C.Y. Wu, L.Z. Benet, Predicting drug disposition via application of BCS: Transport/absorption/elimination interplay and development of a biopharmaceuticals drug disposition classification system, Pharm. Res., 22(1), 11-23 (2005).
15. L.Z. Benet, The role of BCS (Biopharmaceutics Classification System) and BDDCS (Biopharmaceutics Drug Disposition Classification System) in drug development, J. Pharm. Sci., 102(1), 34-42 (2013).
16. L.Z. Benet, G.L. Amidon, D.M. Barends, H. Lennernäs, J.E. Polli, V.P. Shah, S.A. Stavchansky, L.X. Yu, The use of BDDCS in classifying the permeability of marketed drugs, Pharm. Res., 25(3), 483-488 (2008).
17. T. Vasconcelos, S. Marques, B. Sarmento, The biopharmaceutical classification system of excipients, Ther. Deliv., 8(2), 65-78 (2017).
18. S.R. Byrn, G. Zografi, X.S. Chen, Solid State Properties of Pharmaceutical Materials, Wiley, 2017, pp. 249-264.
19. M. Mosharraf, C. Nyström, Apparent solubility of drugs in partially crystalline systems, Drug Dev. Ind. Pharm., 29(6), 603-622 (2003).
20. D. Mehtani, A. Seth, P. Sharma, R. Maheshwari, S.N. Abed, P.K. Deb, M.B. Chougule, R.K. Tekade, Dissolution profile consideration in pharmaceutical product development, en: R.K. Tekade, Dosage Form Design Considerations: Volume I, Elsevier Inc., 2018, pp. 287-336.
21. V.A. Gray, T.W. Rosanske, Dissolution, en: C.M. Riley, T.W. Rosanske, G. Reid (editors), Specification of Drug Substances and Products, Elsevier, 2020, pp. 481-503.
22. P. Costa, J. Sousa-Lobo, Modeling and comparison of dissolution profiles of diltiazem modified-release formulations, Dissolut. Technol., 16(2), 41-46 (2009).
23. T.X. Viegas, R.U. Curatella, L.L. Van Winkle, G. Brinker, Measurement of intrinsic drug dissolution rates using two types of apparatus, Pharm. Technol., North Am., 25(6), 44-53 (2001).
24. B. Shekunov, E.R. Montgomery, Theoretical analysis of drug dissolution: I. Solubility and intrinsic dissolution rate, J. Pharm. Sci., 105(9), 2685-2697 (2016).
25. J. Rautio, H. Kumpulainen, T. Heimbach, R. Oliyai, D. Oh, T. Järvinen, J. Savolainen, Prodrugs: Design and clinical applications, Nat. Rev. Drug Discov., 7(3), 255-270 (2008).
26. Y. Kawabata, K. Wada, M. Nakatani, S. Yamada, S. Onoue, Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: Basic approaches and practical applications, Int. J. Pharm., 420(1), 1-10 (2011).
27. N. Adawiyah, M. Moniruzzaman, S. Hawatulaila, M. Goto, Ionic liquids as a potential tool for drug delivery systems, MedChemComm, 7(10), 1881-1897 (2016).
28. A.M. Master, M.E. Rodriguez, M.E. Kenney, N.L. Oleinick, A.S. Gupta, Physical stability of salts of weak bases in the solid-state, J. Pharm. Sci., 99(5), 2386-2398 (2010).
29. S.V. Kurkov, T. Loftsson, Cyclodextrins, Int. J. Pharm., 453(1), 167-180 (2013).
30. R. Nagarajan, E. Ruckenstein, Theory of surfactant self-assembly: A predictive molecular thermodynamic approach, Langmuir, 7(12), 2934-2969 (1991).
31. B.Y. Shekunov, P. Chattopadhyay, H.H.Y. Tong, A.H.L. Chow, Particle size analysis in pharmaceutics: Principles, methods and applications, Pharm. Res., 24(2), 203-227 (2007).
32. N. Schultheiss, M. Roe, S.X.M. Boerrigter, Cocrystals of nutraceutical p-coumaric acid with caffeine and theophylline: Polymorphism and solid-state stability explored in detail using their crystal graphs, CrystEngComm, 13(2), 611-619 (2011).
33. A.G. Cid, A. Simonazzi, S.D. Palma, J.M. Bermúdez, Solid dispersion technology as a strategy to improve the bioavailability of poorly soluble drugs, Ther. Deliv., 10(6), 363-382 (2019).
34. X. Zhang, H. Xing, Y. Zhao, Z. Ma, Pharmaceutical dispersion techniques for dissolution and bioavailability enhancement of poorly water-soluble drugs, Pharmaceutics, 10(3), 74 (2018).
35. K. Sekiguchi, N. Obi, Studies on absorption of eutectic mixture. I. A Comparison of the behavior of eutectic mixture of sulfathiazole and that of ordinary sulfathiazole in man, Chem. Pharm. Bull., 9(11), 866-872 (1961).
36. T.T.D. Tran, P.H.L. Tran, J. Lim, J.B. Park, S.K. Choi, B.J. Lee, Physicochemical principles of controlled release solid dispersion containing a poorly water-soluble drug, Ther. Deliv., 1(1), 51-62 (2010).
37. A.R. Nair, Y.D. Lakshman, V.S.K. Anand, K.S.N. Sree KSN, K. Bhat, S.J. Dengale, Overview of extensively employed polymeric carriers in solid dispersion technology, AAPS PharmSciTech, 21(8), 309 (2020).
38. M. Slámová, T. Školáková, A. Školáková, J. Patera, P. Zámostný, Preparation of solid dispersions with respect to the dissolution rate of active substance, J. Drug Deliv. Sci. Technol., 56, 101518 (2020).
39. S. Janssens, G. Van den Mooter, Review: Physical chemistry of solid dispersions, J. Pharm. Pharmacol., 61(12), 1571-1586 (2009).
40. F. Meng, U. Gala, H. Chauhan, Classification of solid dispersions: Correlation to (I) stability and solubility (II) preparation and characterization techniques, Drug Dev. Ind. Pharm., 41(9), 1401-1415 (2015).
41. N.B. Jadav, A. Paradkar, Solid dispersions: Technologies used and future outlook, en: R. Shegokar (editor), Nanopharmaceuticals: Volume 1: Expectations and Realities of Multifunctional Drug Delivery Systems, Elsevier Inc., 2020, pp. 91-120.
42. A.R. Tekade, J.N. Yadav, A review on solid dispersion and carriers used therein for solubility enhancement of poorly water soluble drugs, Adv. Pharm. Bull., 10(3), 359-369 (2020).
43. C.L.N. Vo, C. Park, B.J. Lee, Current trends and future perspectives of solid dispersions containing poorly water-soluble drugs, Eur. J. Pharm. Biopharm., 85(3 Part B), 799-813 (2013).
44. S.R.K. Vaka, M.M. Bommana, D. Desai, J. Djordjevic, W. Phuapradit, N. Shah, Excipients for Amorphous Solid Dispersions, Springer, New York (NY), 2014, pp. 123-161.
45. S. Sareen, L. Joseph, G. Mathew, Improvement in solubility of poor water-soluble drugs by solid dispersion, Int. J. Pharm. Investig., 2(1), 12 (2012).
46. A.N. Ghebremeskel, C. Vemavarapu, M. Lodaya, Use of surfactants as plasticizers in preparing solid dispersions of poorly soluble API: Stability testing of selected solid dispersions, Pharm Res., 23(8), 1928-1936 (2006).
47. D.K. Mishra, V. Dhote, A. Bhargava, D.K. Jain, P.K. Mishra, Amorphous solid dispersion technique for improved drug delivery: basics to clinical applications, Drug Deliv. Transl. Res., 5(6), 552-565 (2015).
48. P.H.L. Tran, T.T.D. Tran, J.B. Park, B.J. Lee, Controlled release systems containing solid dispersions: Strategies and mechanisms, Pharm. Res., 28(10), 2353-2378 (2011).
49. D.G. Yu, J.J. Li, G.R. Williams, M. Zhao, Electrospun amorphous solid dispersions of poorly water-soluble drugs: A review, J. Control. Release, 292, 91-110 (2018).
50. H. Sandhu, N. Shah, H. Chokshi, A.W. Malick, Overview of Amorphous Solid Dispersion Technologies, Springer, New York (NY), 2014, pp. 91-122.
51. M. Kidokoro, Y. Haramiishi, S. Sagasaki, T. Shimizu, Y. Yamamoto, Application of Fluidized Hot-Melt Granulation (FHMG) for the preparation of granules for tableting: Properties of granules and tablets prepared by FHMG, Drug Dev. Ind. Pharm., 28(1), 67-76 (2002).
52. S.H. Surasarang, R.O. Williams, Pharmaceutical cryogenic technologies, en: R.O. Williams III, A.B. Watts, D.A. Miller (editors), Formulating Poorly Water Soluble Drugs, Springer Cham, 2016, pp. 527-607.
53. S. Sarabu, S. Bandari, V.R. Kallakunta, R. Tiwari, H. Patil, M.A. Repka, An update on the contribution of hot-melt extrusion technology to novel drug delivery in the twenty-first century: Part II, Expert Opin. Drug Deliv., 16(6), 567-582 (2019).
54. D.J. Ellenberger, D.A. Miller, R.O. Williams, Expanding the application and formulation space of amorphous solid dispersions with KinetiSol®: A review, AAPS PharmSciTech, 19(5), 1933-1956 (2018).
55. F. Bossler, E. Koos, Structure of particle networks in capillary suspensions with wetting and nonwetting fluids, Langmuir, 32(6), 1489-1501 (2016).
56. T. Schæfer, B. Taagegaard, L.J. Thomsen, H. Gjelstrup-Kristensen, Melt pelletization in a high shear mixer. IV. Effects of process variables in a laboratory scale mixer, Eur. J. Pharm. Sci., 1(3), 125-131 (1993).
57. T. Schaefer, P. Holm, H.G. Kristensen, Melt granulation in a laboratory scale high shear mixer, Drug Dev. Ind. Pharm., 16(8), 1249-1277 (1990).
58. R. Gokhale, Y. Sun, A.J. Shukla, Handbook of Pharmaceutical Granulation Technology, 2nd ed., CRC Press, Boca Raton (FL), 2005, pp. 191-228.
59. S. Shanmugam, Granulation techniques and technologies: Recent progresses, BioImpacts, 5(1), 55-63 (2015).
60. F. Zhou, C. Vervaet, J.P. Remon, Influence of processing on the characteristics of matrix pellets based on microcrystalline waxes and starch derivatives, Int. J. Pharm., 147(1), 23-30 (1997).
61. T. Vilhelmsen, H. Eliasen, T. Schæfer, Effect of a melt agglomeration process on agglomerates containing solid dispersions, Int. J. Pharm., 303(1–2), 132-142 (2005).
62. P.C. Knight, T. Instone, J.M.K. Pearson, M.J. Hounslow, An investigation into the kinetics of liquid distribution and growth in high shear mixer agglomeration, Powder Technol., 97(3), 246-257 (1998).
63. L.X. Yu, G. Amidon, M.A. Khan, S.W. Hoag, J. Polli, G.K. Raju, J. Woodcock, Understanding pharmaceutical quality by design, AAPS J., 16(4), 771-783 (2014).
64. L. Rodriguez, C. Cavallari, N. Passerini, B. Albertini, M.L. González-Rodríguez, A. Fini, Preparation and characterization by morphological analysis of diclofenac/PEG 4000 granules obtained using three different techniques, Int. J. Pharm., 242(1–2), 285-289 (2002).
65. P. Flanders, G.A. Dyer, D. Jordan, The control of drug release from conventional melt granulation matrices, Drug Dev. Ind. Pharm., 13(6), 1001-1022 (1987).
66. Malvern Panalytical, Morphologi G3 basic guide (English). URL: https://www.malvernpanalytical.com/en/learn/knowledge-center/user-manuals/MAN0493EN
67. Mettler Toledo, Thermal Analysis Excellence, DSC, Differential scanning calorimetry for unmatched performance, 2015; URL: https://www.mt.com/dam/Analytical/ThermalAnalysi/TA-PDF/DSC3_Brochure_en_30247073A_V05.15_Original_38549.pdf
68. N. Passerini, B. Albertini, M.L. González-Rodríguez, C. Cavallari, L. Rodriguez, Preparation and characterisation of ibuprofen-poloxamer 188 granules obtained by melt granulation, Eur. J. Pharm. Sci., 15(1), 71-78 (2002).
69. P. Papneja, M.K. Kataria, A. Bilandi, Formulation and evaluation of solid dispersion for dissolution enhancement of ketoconazole, Eur. J. Pharm. Med. Res., 2(5), 990-1014 (2015). URL: https://storage.googleapis.com/journal-uploads/ejpmr/article_issue/1441965998.pdf
70. Surface Measurement Systems, iGC-SEA, Inverse Gas Chromatography Surface Energy Analyzer, Product Brochure. URL: https://www.surfacemeasurementsystems.com/wp-content/uploads/2014/05/iGC-SEA-brochure-v1.4.pdf.
71. Surface Measurement Systems, DVS ADVENTURE, Dynamic Gravimetric Water Vapor Sorption Analysis, Product Brochure. URL: https://www.surfacemeasurementsystems.com/wp-content/uploads/2020/09/DVS_
Adventure_E_Brochure.pdf
72. Centro Conjunto de Investigación en Química Sustentable (CCIQS), UAEM-UNAM, Difracción de Rayos X. URL: http://cciqs.unam.mx/index.php?option=com_content&view=article&id=105&Itemid=76, consultado el 22 de abril de 2022.
73. S.D. Clas, C.R. Dalton, B.C. Hancock, Differential scanning calorimetry: Applications in drug development, Pharm. Sci. Technol. Today, 2(8), 311-320 (1999).
74. F. Qian, J. Huang, Q. Zhu, R. Haddadin, J. Gawel, R. Garmise, R, M. Hussain, Is a distinctive single Tg a reliable indicator for the homogeneity of amorphous solid dispersion? Int. J. Pharm., 395(1–2), 232-235 (2010).
75. D. Medarević, J. Djuriš, P. Barmpalexis, K. Kachrimanis, S. Ibrić, Analytical and computational methods for the estimation of drug-polymer solubility and miscibility in solid dispersions development, Pharmaceutics, 11(8), 372 (2019).
76. J. Djuris, I. Nikolakakis, S. Ibric, Z. Djuric, K. Kachrimanis, Preparation of carbamazepine-Soluplus® solid dispersions by hot-melt extrusion, and prediction of drug-polymer miscibility by thermodynamic model fitting, Eur. J. Pharm. Biopharm., 84(1), 228-237 (2013).
77. A.A. Bunaciu, E.G. Udriştioiu, H.Y. Aboul-Enein, X-Ray Diffraction: Instrumentation and Applications, Crit. Rev. Anal. Chem., 45(4), 289-299 (2015).
78. A. Newman, D. Engers, S. Bates, I. Ivanisevic, R.C. Kelly, G. Zografi, Characterization of amorphous API:Polymer mixtures using X-Ray powder diffraction, J. Pharm. Sci., 99(5), 2386-2398 (2010).
79. J. Lu, K. Cuellar, N.I. Hammer, S. Jo, A. Gryczke, K. Kolter, N. Langley, M.A. Repka, Solid-state characterization of Felodipine-Soluplus amorphous solid dispersions, Drug Dev. Ind. Pharm., 42(3), 485-496 (2016).
80. A. Almeida, S. Possemiers, M.N. Boone, T. De Beer, T. Quinten, L. Van Hoorebeke, J.P. Remon, C. Vervaet, Ethylene vinyl acetate as matrix for oral sustained release dosage forms produced via hot-melt extrusion, Eur. J. Pharm. Biopharm., 77(2), 297-305 (2011).
81. Farmacopea de los Estados Unidos Mexicanos (FEUM), 12 ed., México, 2018.
82. S. Mohammadi-Jam, K.E. Waters, Inverse gas chromatography applications: A review, Adv. Colloid Interface Sci., 212, 21-44 (2014).
83. A. Pal, A. Kondor, S. Mitra, K. Thu, S. Harish, B.B. Saha, On surface energy and acid-base properties of highly porous parent and surface treated activated carbons using inverse gas chromatography, J. Ind. Eng. Chem., 69, 432-443 (2019).
84. C. Driemeier, F.M. Mendes, M.M. Oliveira, Dynamic vapor sorption and thermoporometry to probe water in celluloses, Cellulose, 19(4), 1051-1063 (2012).
85. D. Voinovich, M. Moneghini, B. Perissutti, J. Filipovic-Grcic, I. Grabnar, Preparation in high-shear mixer of sustained-release pellets by melt pelletisation, Int. J. Pharm., 203(1-2), 235-244 (2000).
86. K.J. Crowley, R.T. Forbes, P. York, H. Nyqvist, O. Camber, Drug-fatty acid salt with wax-like properties employed as binder in melt granulation, Int. J. Pharm., 211(1-2), 9-17 (2000).
87. J. Hamdani, A.J. Moës, K. Amighi, Development and evaluation of prolonged release pellets obtained by the melt pelletization process, Int. J. Pharm., 245(1-2), 167-177 (2002).
88. A. Seo, P. Holm, H.G. Kristensen, T. Schæfer, The preparation of agglomerates containing solid dispersions of diazepam by melt agglomeration in a high shear mixer, Int. J. Pharm., 259(1-2), 161-171 (2003).
89. B. Perissutti, F. Rubessa, M. Moneghini, D. Voinovich, Formulation design of carbamazepine fast-release tablets prepared by melt granulation technique, Int. J. Pharm., 256(1-2), 53-63 (2003).
90. G. Ye, S. Wang, P. Wan, S. Heng, L. Chen, C. Wang, Development and optimization of solid dispersion containing pellets of itraconazole prepared by high shear palletization, Int. J. Pharm., 337(1-2), 80-87 (2007).
91. P.J. Sirois, G.D. Craig, Scale-Up of a high-shear granulation process using a normalized impeller work parameter, Pharm. Dev. Technol., 5(3), 365-374 (2000).
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2023 Revista Colombiana de Ciencias Químico-Farmacéuticas

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
El Departamento de Farmacia de la Facultad de Ciencias de la Universidad Nacional de Colombia autoriza la fotocopia de artículos y textos para fines de uso académico o interno de las instituciones citando la fuente. Las ideas emitidas por los autores son responsabilidad expresa de estos y no de la revista.
Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons de Atribución 4.0 aprobada en Colombia. Consulte la normativa en: http://co.creativecommons.org/?page_id=13