Publicado

2023-07-24

Análisis transversal de especies vegetales del sureste de México, en su uso para enfermedades cardiovasculares

Cross-sectional analysis of plant species from southeastern Mexico, in their use for cardiovascular diseases

Análise transversal de espécies de plantas do sudeste do México, em seu uso para doenças cardiovasculares

DOI:

https://doi.org/10.15446/rcciquifa.v52n1.102840

Palabras clave:

enfermedades cardiovasculares, fitoquímica, farmacognosia, medicina tradicional (es)
Cardiovascular diseases, pharmacognosy, phytochemistry, traditional medicine (en)
Doenças cardiovasculares, farmacognosia, fitoquímica, Medicina tradicional (pt)

Descargas

Autores/as

Introducción: Las enfermedades cardiovasculares (ECV) son un grupo de trastornos que afectan el corazón y los vasos sanguíneos. El desarrollo de las ECV está asociado a factores de riesgo tales como edad, la herencia genética, falta de actividad física, tabaquismo, hipertensión arterial y dislipidemia. Por su alta prevalencia a nivel mundial, muchas personas recurren a las especies vegetales para tratar sus padecimientos relacionados con ECV, sin embargo, hay pocos documentos que contribuyan a relacionar los usos empíricos con investigación científica documentada. Objetivo: realizar una revisión bibliográfica que permita hacer un análisis transversal entre el uso en la medicina tradicional y la validez científica de las especies usadas empíricamente en el tratamiento de las ECV. Metodología: se realizó una revisión bibliográfica exhaustiva en bases de datos internacionales de las especies usadas en la medicina tradicional del sureste de México para el tratamiento de padecimientos relacionados con ECV; búsqueda información del contenido metabólico y descripción de actividades farmacológicas, metodológica y estadísticamente documentadas y comprobadas. Resultados: se determinó que de un total de 20 especies vegetales sus principales usos son para la disminución de lípidos, hipertensión y prevención. Además, se integraron los estudios fitoquímicos y farmacológicos que sustentan y contribuyen con la investigación de productos naturales en la búsqueda de extractos y/o moléculas bioactivas. Conclusión: las especies vegetales representan una fuente de compuestos con potencial para el tratamiento de ECV. Es necesario que se continúe aportando estudios que puedan establecer nuevos tratamientos, que permitan actualizar el sector farmacéutico y de la salud.

Introduction: the cardiovascular diseases (CD) are disorders that affect the heart and blood vessels. The development of CD is associated with risk factors such as age, genetic inheritance, lack of physical activity, smoking, arterial hypertension and dyslipidemia. Due to its high incidence worldwide, many people turn to plant species to treat their CD-related ailments, however, there are few reports that contribute to linking empirical uses with scientific research. Objective: to describe the information in databases to make a cross-sectional analysis between folk medicine and scientific studies of plant species empirically used in the treatment of CD. Methodology: an exhaustive bibliographic review was carried out in manuscripts from international databases (ScienceDirect, Google Scholar, PubMed, SciELO) of the species used in traditional medicine of southeastern Mexico for the treatment of CD-related diseases. It was using key words as “cardiovascular disease, traditional medicine, Mexico” and was including search of the metabolic profile and pharmacology activities reported, methodologically and statistically proven. Results: it was determined that out of 20 plant species, their main uses are for lipid lowering, hypertension and cardiovascular prevention. In addition, phytochemical and pharmacological studies that support and contribute to the search for extracts and/or bioactive molecules from natural products were integrated. Conclusion: plant species represent a source of compounds with potential for the treatment of CD. It is necessary to continue providing studies that can establish new treatments, which allow modernizing the pharmaceutical area and health sector.

Introdução: as doenças cardiovasculares (DC) são distúrbios que afetam o coração e os vasos sanguíneos. O desenvolvimento da DC está associado a fatores de risco como idade, herança genética, inatividade física, tabagismo, hipertensão arterial e dislipidemia. Devido à sua alta incidência em todo o mundo, muitas pessoas recorrem a espécies vegetais para tratar suas doenças relacionadas à DC, no entanto, existem poucos relatos que contribuam para vincular usos empíricos com pesquisas científicas. Objetivo: descrever as informações em bancos de dados para fazer uma análise transversal entre a medicina popular e os estudos científicos de espécies vegetais utilizadas empiricamente no tratamento da DC. Metodologia: foi realizada uma revisão bibliográfica exaustiva em manuscritos de bancos de dados internacionais (ScienceDirect, Google Scholar, PubMed, SciELO) das espécies utilizadas na medicina tradicional do sudeste do México para o tratamento de doenças relacionadas à DC. Ele estava usando palavras-chave como “doença cardiovascular, medicina tradicional, México” e estava incluindo a pesquisa do perfil metabólico e atividades farmacológicas relatadas, comprovadas metodológica e estatisticamente. Resultados: determinou-se que de 20 espécies de plantas, seus principais usos são para redução de lipídios, hipertensão e prevenção cardiovascular. Além disso, foram integrados estudos fitoquímicos e farmacológicos que subsidiam e contribuem para a busca de extratos e/ou moléculas bioativas de produtos naturais. Conclusão: As espécies vegetais representam uma fonte de compostos com potencial para o tratamento da DC. É necessário continuar a fornecer estudos que possam estabelecer novos tratamentos, que permitam modernizar a área farmacêutica e o setor da saúde.

Referencias

1. British Heart Foundation, Cardiovascular Disease (CVD) - types, causes & symptoms, URL: https://www.bhf.org.uk/informationsupport/conditions/cardiovascular-heart-disease, consultado en abril de 2022.

2. NHS, Cardiovascular disease, URL: https://www.nhs.uk/conditions/cardiovascular-disease/, consultado en abril de 2022.

3. Organización Mundial de la Salud (OMS), Enfermedades cardiovasculares, URL: https://www.who.int/es/news-zoom/fact-sheets/detail/cardiovasculardiseases-(cvds), consultado en abril de 2022.

4. Organización Panamericana de la Salud (OPS), La carga de las enfermedades cardiovasculares en la Región de las Américas, 2000-2019, URL: https://www.paho.org/es/enfermedades-no-transmisibles-salud-mental/portal-datos-enfermedades-no-transmisibles-salud-0, consultado en abril de 2022.

5. ADA, Cardiovascular disease risk factors, URL: https://ada.com/cardiovasculardisease-risk-factors/, consultado en abril de 2022.

6. Fundación Española del Corazón, Factores de riesgo, URL: https://fundaciondelcorazon.com/prevencion/riesgo-cardiovascular.html, consultado en abril de 2022.

7. Centers for Disease Control and Prevention (CDC), Know your risk for heart disease, URL: https://www.cdc.gov/heartdisease/risk_factors.htm, consultado en abril de 2022.

8. E. Olvera Lopez, B. Ballard, A. Jan, Cardiovascular Disease, StatPearls Publishing, URL: https://www.ncbi.nlm.nih.gov/books/NBK535419/, consultado en abril de 2022.

9. R. Hajar, Risk factors for coronary artery disease: Historical perspectives, Heart Views, 18(3), 109-114 (2017).

10. Texas Heart Institute, Factores de riesgo cardiovascular, URL: https://www.texasheart.org/heart-health/heart-information-center/topics/factores-de-riesgo-cardiovascular/, consultado en abril de 2022.

11. J.M. Flack, B. Adekola, Blood pressure and the new ACC/AHA hypertension guidelines, Trends in Cardiovascular Medicine, 30(3), 160-164 (2020).

12. F.D. Fuchs, P.K. Whelton, High Blood Pressure and Cardiovascular Disease, Hypertension, 75(2), 285-292 (2020).

13. S.E. Kjeldsen, Hypertension and cardiovascular risk: General aspects, Pharmacological Research, 129, 95-99 (2018).

14. E. Kandaswamy, L. Zuo, Recent advances in treatment of coronary artery disease: Role of science and technology, International Journal of Molecular Sciences, 19(2), 424 (2018).

15. A. Shaito, D.T.B. Thuan, H.T. Phu, T.H.D. Nguyen, H. Hasan, S. Halabi, et al., Herbal medicine for cardiovascular diseases: Efficacy, mechanisms, and safety, Frontiers in Pharmacology, 11, 422 (2020).

16. M.A. Magaña Alejandro, L.M. Gama Campillo, R. Mariaca Méndez, El uso de las plantas medicinales en las comunidades Maya-Chontales de Nacajuca, Tabasco, México, Polibotánica, 29, 213-262 (2010).

17. R. Gómez-Álvarez, Plantas medicinales en una aldea del estado de Tabasco, México, Revista Fitotecnia Mexicana, 35(1), 43-49 (2012).

18. M.A. Magaña Alejandro, Etnobotánica de las plantas medicinales en los huertosf amiliares de Tabasco, en: R. Marica-Méndez (editor), El huerto familiar del Sureste de México, Secretaría de Recursos Naturales y Protección Ambiental del

Estado de Tabasco, México, 2012, pp. 176-196.

19. V. Alvarez-Quiroz, L. Caso-Barrera, M. Aliphat-Fernández, A. Galmiche-Tejeda, Plantas medicinales con propiedades frías y calientes en la cultura Zoque de Ayapa, Tabasco, México, Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas, 16(04), 428-454 (2017).

20. G. Bautista García, A. Sol Sánchez, A. Velázquez Martínez, T. Llanderal Ocampo, Diversidad de flora medicinal en los huertos familiares en el Ejido La Encrucijada, Cárdenas, Tabasco, México, Congreso Internacional de Investigación de Academia Journals.com Tabasco, 2014 VillahermosaAcademiaJournals.com, 2014.

21. D. Pinto, M.d.l.L. Cádiz-Gurrea, A.M. Silva, C. Delerue-Matos, F. Rodrigues, Chapter 25-Cosmetics, en: C.M. Galanakis (editor), Food Waste Recovery, Academic Press, San Diego, 2021, pp. 503-528.

22. D. Bursać Kovačević, D. Brdar, P. Fabečić, F.J. Barba, J.M. Lorenzo, P. Putnik, Chapter 2 - Strategies to achieve a healthy and balanced diet: fruits and vegetables as a natural source of bioactive compounds, en: F.J. Barba, P. Putnik, D.B.

Kovačević (editors), Agri-Food Industry Strategies for Healthy Diets and Sustainability, Academic Press, 2020, pp. 51-88.

23. A. Jiménez-Arellanes, J. Luna-Herrera, R. Ruiz-Nicolás, J. Cornejo-Garrido, A. Tapia, L. Yépez-Mulia, Antiprotozoal and antimycobacterial activities of Persea americana seeds, BMC Complementary and Alternative Medicine, 13, 109

(2013).

24. A. Ochoa-Zarzosa, M. Báez-Magaña, J.J. Guzmán-Rodríguez, L.J. Flores-Alvarez, M. Lara-Márquez, B. Zavala-Guerrero, et al., Bioactive molecules from native Mexican avocado fruit (Persea americana var. drymifolia): A review, Plant Foods for Human Nutrition, 76(2), 133-142 (2021).

25. P. Monika, A. Geetha, The modulating effect of Persea americana fruit extract on the level of expression of fatty acid synthase complex, lipoprotein lipase, fibroblast growth factor-21 and leptin -A biochemical study in rats subjected to experimental hyperlipidemia and obesity, Phytomedicine, 22(10), 939-945 (2015).

26. J. Tabeshpour, B.M. Razavi, H. Hosseinzadeh, Effects of avocado (Persea americana) on metabolic syndrome: A comprehensive systematic review, Phytotherapy Research, 31(6), 819-837 (2017).

27. A.I. Olushola, K.O. Aderibigbe, S.O Stephen, O.S. Ayodeji, biochemical effects of aqueous extract of Persea americana (Mill) on the myocardium of left ventricle of high salt-fed adult Wistar rats, Journal of Evidence-Based Complementary and

Alternative Medicine, 22(4), 765-769 (2017).

28. C.A. Márquez-Ramírez, J.L. Hernández de la Paz, O. Ortiz-Avila, A. Raya-Farias, J.C. González-Hernández, A.R. Rodríguez-Orozco, et al., Comparative effects of avocado oil and losartan on blood pressure, renal vascular function, and mitochondrial oxidative stress in hypertensive rats, Nutrition, 54, 60-67 (2018).

29. C.T. Musabayane, K. Moodley, M.M. Gondwe, D.R. Kamadyaapa, J.A.O. Ojewole, Cardiovascular effects of Persea americana Mill (Lauraceae) (avocado) aqueous leaf extract in experimental animals: cardiovascular topic, Cardiovascular Journal of South Africa, 18(2), 69-76 (2007).

30. A. Sokpe, M.L.K. Mensah, G.A. Koffuor, K.P. Thomford, R. Arthur, Y. Jibira, et al., Hypotensive and antihypertensive properties and safety for use of Annona muricata and Persea americana and their combination products, Evidence-Based Complementary and Alternative Medicine, 2020, 8833828 (2020).

31. O. Kolawole, Methanol leaf extract of Persea americana protects rats against cholesterol-induced hyperlipidemia, British Journal of Medicine and Medical Research, 2(2), 235-242 (2012).

32. E.M. Sánchez-Domínguez, S. Rojas-Pérez, N.N. Agüero-Batista, Investigaciones actuales del empleo de Allium sativum en medicina, Revista Electrónica Dr. Zoilo E. Marinello Vidaurreta, 41(3), 1-9 (2016).

33. H. Amagase, Clarifying the real bioactive constituents of garlic, The Journal of Nutrition, 136(3), 716-725 (2006).

34. L. Recinella, A. Chiavaroli, F. Masciulli, C. Fraschetti, A. Filippi, S. Cesa, et al., Protective effects induced by a hydroalcoholic Allium sativum extract in isolated mouse heart, Nutrients, 13(7), 2332 (2021).

35. A. Hosseini, H. Hosseinzadeh, A review on the effects of Allium sativum (Garlic) in metabolic syndrome, Journal of Endocrinological Investigation, 38(11), 1147-1157 (2015).

36. I.A. Sobenin, V.A. Myasoedova, M.I. Iltchuk, D.W. Zhang, A.N. Orekhov, Therapeutic effects of garlic in cardiovascular atherosclerotic disease, Chinese Journal of Natural Medicines, 17(10), 721-728 (2019).

37. A.K. Sharma, A. Munajjam, B. Vaishnav, R. Sharma, A. Sharma, K. Kishore, et al., Involvement of adenosine and standardization of aqueous extract of garlic (Allium sativum Linn.) on cardioprotective and cardiodepressant properties in ischemic preconditioning and myocardial ischemia-reperfusion induced cardiac injury, Journal of Biomed Research, 26(1), 24-36 (2012).

38. X.J. Xiong, P.Q. Wang, S.J. Li, X.K. Li, Y.Q. Zhang, J. Wang, Garlic for hypertension: A systematic review and meta-analysis of randomized controlled trials, Phytomedicine, 22(3), 352-361 (2015).

39. H. Sakkas, Antimicrobial activity of basil, oregano, and thyme essential oils, Journal of Microbiology and Biotechnology, 27(3), 429-438 (2017).

40. A.I. Antonescu Mintas, F. Miere Groza, L. Fritea, M. Ganea, M. Zdrinca, L. Dobjanschi, et al., Perspectives on the combined effects of Ocimum basilicum and Trifolium pratense extracts in terms of phytochemical profile and pharmacological effects, Plants (Basel), 10(7), 1390 (2021).

41. F. Fathiazad, A. Matlobi, A. Khorrami, S. Hamedeyazdan, H. Soraya, M. Hammami, et al., Phytochemical screening and evaluation of cardioprotective activity of ethanolic extract of Ocimum basilicum L. (basil) against isoproterenol induced myocardial infarction in rats, DARU Journal of Pharmaceutical Sciences, 20(1), 87 (2012).

42. A. Kuerban, Y. Almulaiky, R. Sheikh, S. Alzahrani, H. Al-Talhi, M. Nasrullah, et al., In vivo antithrombotic activity of ethanolic extract from Ocimum basilicum L, Annual Research & Review in Biology, 20(5), 1-6 (2017).

43. A. Umar, G. Imam, W. Yimin, P. Kerim, I. Tohti, B. Berké, et al., Antihypertensive effects of Ocimum basilicum L. (OBL) on blood pressure in renovascular hypertensive rats, Hypertension Research, 33(7), 727-730 (2010).

44. E.A. Irondi, S.O. Agboola, G. Oboh, A.A. Boligon, Inhibitory effect of leaves extracts of Ocimum basilicum and Ocimum gratissimum on two key enzymes involved in obesity and hypertension in vitro, Journal of Intercultural Ethnopharmacology, 5(4), 396-402 (2016).

45. S. Amrani, H. Harnafi, N.E.H. Bouanani, M. Aziz, H.S. Caid, S. Manfredini, et al., Hypolipidaemic activity of aqueous Ocimum basilicum extract in acute hyperlipidaemia induced by triton WR-1339 in rats and its antioxidant property,

Phytotherapy Research, 20(12), 1040-1045 (2006).

46. F.A. Dada, S.I. Oyeleye, S.A Adefegha, G. Oboh, Extracts from Almond (Terminalia catappa) leaf and stem bark mitigate the activities of crucial enzymes and oxidative stress associated with hypertension in cyclosporine A-stressed rats, Journal of Food Biochemistry, 45(3), e13435 (2021).

47. A.G. Terças, A.d.S. Monteiro, E.B. Moffa, J.R.A. dos Santos, E.M. de Sousa, A.R.B. Pinto, et al., Phytochemical characterization of Terminalia catappa Linn, extracts and their antifungal activities against Candida spp, Frontiers in Microbiology, 8, 595 (2017).

48. P.C. Chikezie, R.C. Ekeanyanwu, A.B. Chile-Agada, Phytocomponents from Anacardium occidentale, Psidium guajava, and Terminalia catappa altered membrane osmotic stability of sickle erythrocytes, Beni-Suef University Journal of

Basic and Applied Sciences, 9(1), 9 (2020).

49. L.F.W.G. Moura, J.X. da Silva Neto, T.D.P. Lopes, S.R. Benjamin, F.C.R. Brito, F.E.A. Magalhães, et al., Ethnobotanic, phytochemical uses and ethnopharmacological profile of genus Cnidoscolus spp. (Euphorbiaceae): A comprehensive

overview, Biomedicine & Pharmacotherapy, 109, 1670-1679 (2019).

50. R.V. García-Rodríguez, G.A. Gutiérrez-Rebolledo, E. Méndez-Bolaina, A. Sánchez-Medina, O. Maldonado-Saavedra, M.Á. Domínguez-Ortiz, et al., Cnidoscolus chayamansa Mc Vaugh, an important antioxidant, anti-inflammatory and cardioprotective plant used in Mexico, Journal of Ethnopharmacology, 151(2), 937-943 (2014).

51. M.Z. Pérez-González, G.A. Gutiérrez-Rebolledo, L. Yépez-Mulia, I.S. Rojas-Tomé, J. Luna-Herrera, M.A. Jiménez-Arellanes, Antiprotozoal, antimycobacterial, and anti-inflammatory evaluation of Cnidoscolus chayamansa (Mc Vaugh) extract and the isolated compounds, Biomedicine & Pharmacotherapy, 89, 89-97 (2017).

52. L. Miranda-Velasquez, A. Oranday-Cardenas, H. Lozano-Garza, C. Rivas-Morales, G. Chamorro-Cevallos, D.E. Cruz-Vega, Hypocholesterolemic activity from the leaf extracts of Cnidoscolus chayamansa, Plant Foods for Human Nutrition, 65(4), 392-395 (2010).

53. I. Aguiñiga-Sánchez, J. Cadena-Íñiguez, E. Santiago-Osorio, G. Gómez-García, V.M. Mendoza-Núñez, J. Rosado-Pérez, et al., Chemical analyses and in vitro and in vivo toxicity of fruit methanol extract of Sechium edule var. nigrum spinosum,

Pharmaceutical Biology, 55(1), 1638-1645 (2017).

54. T. Siciliano, N. de Tommasi, I. Morelli, A. Braca, Study of flavonoids of Sechium edule ( Jacq) Swartz (Cucurbitaceae) different edible organs by liquid chromatography photodiode array mass spectrometry, Journal of Agricultural and Food Chemistry, 52(21), 6510-6515 (2004).

55. G. Lombardo-Earl, R. Roman-Ramos, A. Zamilpa, M. Herrera-Ruiz, G. Rosas-Salgado, J. Tortoriello, et al., Extracts and fractions from edible roots of Sechium edule ( Jacq.) Sw. with antihypertensive activity, Evidence-Based Complementary

and Alternative Medicine, 2014, 594326 (2014).

56. C. Ibarra-Alvarado, A. Rojas, S. Mendoza, M. Bah, D.M. Gutiérrez, L. Hernández- Sandoval, et al., Vasoactive and antioxidant activities of plants used in Mexican traditional medicine for the treatment of cardiovascular diseases, Pharmaceutical Biology, 48(7), 732-739 (2010).

57. C. Trejo-Moreno, G. Castro-Martínez, M. Méndez-Martínez, J.E. Jiménez-Ferrer, J. Pedraza-Chaverri, G. Arrellín, et al., Acetone fraction from Sechium edule ( Jacq.) S.w. edible roots exhibits anti-endothelial dysfunction activity, Journal of Ethnopharmacology, 220, 75-86 (2018).

58. J. Ma, X.D. Luo, P. Protiva, H. Yang, C. Ma, M.J. Basile, et al., Bioactive novel polyphenols from the fruit of Manilkara zapota (Sapodilla), Journal of Natural Products, 66(7), 983-986 (2003).

59. N.M. Fayek, A.R.A. Monem, M.Y. Mossa, M.R. Meselhy, A.H. Shazly, Chemical and biological study of Manilkara zapota (L.) Van Royen leaves (Sapotaceae) cultivated in Egypt, Pharmacognosy Research, 4(2), 85-91 (2012).

60. S. Chunhakant, C. Chaicharoenpong, Antityrosinase, Antioxidant, and cytotoxic activities of phytochemical constituents from Manilkara zapota L. Bark, Molecules, 24(15), 2798 (2019).

61. S.M. Barbalho, P.C. dos Santos-Bueno, D.S. Delazari, E.L. Guiguer, D.P. Coqueiro, A.C. Araújo, et al., Antidiabetic and antilipidemic effects of Manilkara zapota, Journal of Medicinal Food, 18(3), 385-391 (2014).

62. J. Gao, C. Liu, H. Zhang, Z. Sun, R. Wang, Myricitrin exhibits anti-atherosclerotic and anti-hyperlipidemic effects in diet-induced hypercholesterolemic rats, AMB Express, 9(1), 204 (2019).

63. S. Jia, M. Shen, F. Zhang, J. Xie, Recent advances in Momordica charantia: Functional Components and Biological Activities, International Journal of Molecular Sciences, 18(12), 2555 (2017).

64. S.A. Shodehinde, S.A. Adefegha, G. Oboh, S.I. Oyeleye, T.A. Olasehinde, E.E. Nwanna, et al., Phenolic composition and evaluation of methanol and aqueous extracts of bitter gourd (Momordica charantia L) leaves on angiotensin-I-converting enzyme and some pro-oxidant-induced lipid peroxidation in vitro, Journal of Evidence-Based Complementary and Alternative Medicine, 21(4), 67-76 (2016).

65. M. Fan, E.K. Kim, Y.J. Choi, Y. Tang, S.H. Moon, The role of Momordica charantia in resisting obesity, International Journal of Environmental Research and Public Health, 16(18), 3251 (2019).

66. J.A. Saliu, S.I. Oyeleye, T.A. Olasehinde, G. Oboh, Modulatory effects of stonebreaker (Phyllanthus amarus) and bitter gourd (Momordica charantia) on enzymes linked with cardiac function in heart tissue of doxorubicin-stressed rats, Drug and Chemical Toxicology, 45(1), 331-339 (2022).

67. D.Y. Saad, M.M. Soliman, A.A. Baiomy, M.H. Yassin, H.B. El-Sawy, Effects of Karela (Bitter Melon; Momordica charantia) on genes of lipids and carbohydrates metabolism in experimental hypercholesterolemia: biochemical, molecular and histopathological study, BMC Complementary and Alternative Medicine, 17(1), 319 (2017).

68. G.A. Pereira, N.M. Peixoto-Araujo, H.S. Arruda, D.d.P. Farias, G. Molina, G.M. Pastore, Phytochemicals and biological activities of mutamba (Guazuma ulmifolia Lam.): A review, Food Research International, 126, 108713 (2019).

69. J.M. dos Santos, T.M. Alfredo, K.Á. Antunes, J.d.S.M. da Cunha, E.M.A Costa, E.S. Lima, et al., Guazuma ulmifolia Lam. decreases oxidative stress in blood cells and prevents doxorubicin-induced cardiotoxicity, Oxidative Medicine and Cellular

Longevity, 2018, 2935051 (2018).

70. C. Caballero-George, P.M. Vanderheyden, T. de Bruyne, A.A. Shahat, H. van den Heuvel, P.N. Solis, et al., In vitro inhibition of [3H]-angiotensin II binding on the human AT 1 receptor by proanthocyanidins from Guazuma ulmifolia Bark, Planta Medica, 68(12), 1066-1071 (2002).

71. G.A. Magos, J.C. Mateos, E. Páez, G. Fernández, C. Lobato, C. Márquez, et al., Hypotensive and vasorelaxant effects of the procyanidin fraction from Guazuma ulmifolia bark in normotensive and hypertensive rats, Journal of Ethnopharmacology,

117(1), 58-68 (2008).

72. N.S. Dosoky, W.N. Setzer, Biological activities and safety of Citrus spp. essential oils, International Journal of Molecular Sciences, 19(7), 1966 (2018).

73. M. Makni, R. Jemai, W. Kriaa, Y. Chtourou, H. Fetoui, Citrus limon from Tunisia: Phytochemical and physicochemical properties and biological activities, Bio-Med Research International, 2018, 6251546 (2018).

74. B.M. Razavi, E. Arasteh, M. Imenshahidi, M. Iranshahi, Antihypertensive effect of auraptene, a monoterpene coumarin from the genus Citrus, upon chronic administration, Iranian Journal of Basic Medical Sciences, 18(2), 153-158 (2015).

75. A.O. Ademosun, A.A. Adebayo, G. Oboh, Modulatory effect of some citrus (Citrus limon, Citrus reticulata, Citrus maxima) peels on monoamine oxidase, phosphodiesterase-5 and angiotensin-1 converting enzyme activities in rat heart homogenate, Journal of Complementary and Integrative Medicine, 16(1), 20180067 (2019).

76. J.B.L. Tan, Y.Y. Lim, S.M. Lee, Antioxidant and antibacterial activity of Rhoeo spathacea (Swartz) Stearn leaves, Journal of Food Science and Technology, 52(4), 2394-2400 (2015).

77. J.B.L. Tan, Y.M. Kwan, The biological activities of the spiderworts (Tradescantia), Food Chemistry, 317, 126411 (2020).

78. A. Bąkowska-Barczak, Acylated anthocyanins as stable, natural food colorants -A review, Polish Journal of Food and Nutrition Sciences, 14(2), 107-115 (2005).

79. M. González-Avila, M. Arriaga-Alba, M. de la Garza, M.d.C. Hernández-Pretelín, M.A. Domínguez-Ortíz, S. Fattel-Fazenda, et al., Antigenotoxic, antimutagenic and ROS scavenging activities of a Rhoeo discolor ethanolic crude extract, Toxicology in Vitro, 17(1), 77-83 (2003).

80. A. Palumbo, L.M. Casanova, M.F.P. Corrêa, N.M. da Costa, L.E. Nasciutti, S.S. Costa, Potential therapeutic effects of underground parts of Kalanchoe gastonisbonnieri on benign prostatic hyperplasia, Evidence-Based Complementary and

Alternative Medicine, 2019, 6340757 (2019).

81. D. Xu, M.J. Hu, Y.Q. Wang, Y.L. Cui, Antioxidant activities of quercetin and its complexes for medicinal application, Molecules, 24(6), 1123 (2019).

82. M.K. Kinaci, N. Erkasap, A. Kucuk, T. Koken, M. Tosun, Effects of quercetin on apoptosis, NF-κB and NOS gene expression in renal ischemia/reperfusion injury, Experimental and Therapeutic Medicine, 3(2), 249-254 (2012).

83. L.P. Patiño-Cano, Plantas medicinales cultivadas en Chiriquí: composición química, usos y preparación, Sistema integrado de divulgación científica UNACHI, Panamá, 2017, p. 48.

84. J.B.L. Tan, W.J. Yap, S.Y. Tan, Y.Y. Lim, S.M. Lee, Antioxidant content, antioxidant activity, and antibacterial activity of five plants from the Commelinaceae family, Antioxidants (Basel), 3(4), 758-769 (2014).

85. H.N. Siti, Y. Kamisah, M.I. Nur Iliyani, S. Mohamed, K. Jaarin, Citrus leaf extract reduces blood pressure and vascular damage in repeatedly heated palm oil diet-Induced hypertensive rats, Biomedicine & Pharmacotherapy, 87, 451-460 (2017).

86. H.S. Parmar, A. Kar, Antiperoxidative, antithyroidal, antihyperglycemic and cardioprotective role of Citrus sinensis peel extract in male mice, Phytotherapy Research, 22(6), 791-795 (2008).

87. N. Mallick, R.A. Khan, Antihyperlipidemic effects of Citrus sinensis, Citrus paradisi, and their combinations, Journal of Pharmacy & Bioallied Sciences, 8(2), 112-118 (2016).

88. T. Yamada, S. Hayasaka, Y. Shibata, T. Ojima, T. Saegusa, T. Gotoh, et al., Frequency of citrus fruit intake is associated with the incidence of cardiovascular disease: The Jichi Medical School cohort study, Journal of Epidemiology, 21(3), 169-175 (2011).

89. M. Mohd Ali, N. Hashim, S. Abd Aziz, O. Lasekan, Pineapple (Ananas comosus): A comprehensive review of nutritional values, volatile compounds, health benefits, and potential food products, Food Research International, 137, 109675 (2020).

90. P. Seenak, S. Kumphune, W. Malakul, R. Chotima, N. Nernpermpisooth, Pineapple consumption reduced cardiac oxidative stress and inflammation in high cholesterol diet-fed rats, Nutrition & Metabolism, 18(1), 36 (2021).

91. C. Varilla, M. Marcone, L. Paiva, J. Baptista, Bromelain, a group of pineapple proteolytic complex enzymes (Ananas comosus) and their possible therapeutic and clinical effects: A summary, Foods, 10(10), 2249 (2021).

92. J.H. Lee, J.T. Lee, H.R. Park, J.B. Kim, The potential use of bromelain as a natural oral medicine having anticarcinogenic activities, Food Science & Nutrition, 7(5), 1656-1667 (2019).

93. M. Sánchez, E. González-Burgos, I. Iglesias, M.P. Gómez-Serranillos, Pharmacological update properties of Aloe Vera and its major active constituents, Molecules, 25(6), 1324 (2020).

94. V.K. Gupta, S. Malhotra, Pharmacological attribute of Aloe vera: Revalidation through experimental and clinical studies, Ayu, 33(2), 193-196 (2012).

95. C. Liu, Y. Cui, F. Pi, Y. Cheng, Y. Guo, H. Qian, Extraction, purification, structural characteristics, biological activities and pharmacological applications of Acemannan, a polysaccharide from Aloe vera: A review, Molecules, 24(8), 1554 (2019).

96. Y. Yang, M. Yang, F. Ai, C. Huang, Cardioprotective effect of Aloe vera biomacromolecules conjugated with selenium trace element on myocardial ischemiareperfusion injury in rats, Biological Trace Element Research, 177(2), 345-352 (2017).

97. F.A. Sumi, B. Sikder, M.M. Rahman, S.R. Lubna, A. Ulla, M.H. Hossain, et al., Phenolic content analysis of Aloe vera gel and evaluation of the effect of Aloe gel supplementation on oxidative stress and fibrosis in isoprenaline-administered cardiac damage in rats, Preventive Nutrition and Food Science, 24(3), 254-264 (2019).

98. K.M. Lim, J.H. Kwon, K. Kim, J.Y. Noh, S. Kang, J.M. Park, et al., Emodin inhibits tonic tension through suppressing PKCδ-mediated inhibition of myosin phosphatase in rat isolated thoracic aorta, British Journal of Pharmacology, 171(18), 4300-4310 (2014).

99. H. Huseini, S. Kianbakht, R. Hajiaghaee, F. Dabaghian, Anti-hyperglycemic and anti-hypercholesterolemic effects of Aloe vera leaf gel in hyperlipidemic Type 2 diabetic patients: A randomized double-blind placebo-controlled clinical trial, Planta Medica, 78(04), 311-316 (2012).

100. S. Miraj, Rafieian-Kopaei, S. Kiani, Melissa officinalis L: A review study with an antioxidant prospective, Journal of Evidence-Based Complementary & Alternative Medicine, 22(3), 385-394 (2017).

101. S. Bolkent, R. Yanardag, O. Karabulut-Bulan, B. Yesilyaprak, Protective role of Melissa officinalis L. extract on liver of hyperlipidemic rats: A morphological and biochemical study, Journal of Ethnopharmacology, 99(3), 391-398 (2005).

102. A. Shakeri, A. Sahebkar, B. Javadi, Melissa officinalis L. -A review of its traditional uses, phytochemistry and pharmacology, Journal of Ethnopharmacology, 188, 204-228 (2016).

103. Z. Akhondali, M. Dianat, M. Radan, Negative chronotropic and antidysrhythmic effects of hydroalcoholic extract of Lemon Balm (Melissa Officinalis L.) on CaCl2-induced arrhythmias in rats, Electron Physician, 7(1), 971-976 (2015).

104. N.D. Draginic, V.L. Jakovljevic, J.N. Jeremic, I.M. Srejovic, M.M. Andjic, M.R. Rankovic, et al., Melissa officinalis L. Supplementation provides cardioprotective in a rat model of experimental autoimmune myocarditis, Oxidative Medicine and Cellular Longevity, 2022, 1344946 (2022).

105. S. Joukar, Z. Zarisfi, G. Sepehri, A. Bashiri, Efficacy of Melissa officinalis in suppressing ventricular arrhythmias following ischemia-reperfusion of the heart: a comparison with amiodarone, Medical Principles and Practice, 23(4), 340-345 (2014).

106. S. Joukar, H. Asadipour, M. Sheibani, H. Najafipour, S. Dabiri, The effects of Melissa officinalis (lemon balm) pretreatment on the resistance of the heart to myocardial injury, Pharmaceutical Biology, 54(6), 1005-1013 (2016).

107. Z. Shekarriz, S.A. Shorofi, M. Nabati, B. Shabankhani, S.S. Yousefi, Effect of Melissa officinalis on systolic and diastolic blood pressures in essential hypertension: A double-blind crossover clinical trial, Phytotherapy Research, 35(12), 6883-6892 (2021).

108. A.C. Mendes Hacke, E. Miyoshi, J.A. Marques, R.P. Pereira, Anxiolytic properties of Cymbopogon citratus (DC.) stapf extract, essential oil and its constituents in zebrafish (Danio rerio), Journal of Ethnopharmacology, 260, 113036 (2020).

109. J.F.A. Bastos, Í.J.A. Moreira, T.P. Ribeiro, I.A. Medeiros, A.R. Antoniolli, D.P. de Sousa, et al., Hypotensive and vasorelaxant effects of Citronellol, a monoterpene alcohol, in rats, Basic & Clinical Pharmacology & Toxicology, 106(4), 331-337 (2010).

110. K. Gayathri, K.S. Jayachandran, H.R. Vasanthi, G.V. Rajamanickam, Cardioprotective effect of lemon grass as evidenced by biochemical and histopathological changes in experimentally induced cardiotoxicity, Human & Experimental Toxicology, 30(8), 1073-1082 (2010).

111. P.D.D. Dzeufiet, A. Mogueo, D.C. Bilanda, B.F.O. Aboubakar, L. Tédong, T. Dimo, et al., Antihypertensive potential of the aqueous extract which combine leaf of Persea americana Mill. (Lauraceae), stems and leaf of Cymbopogon citratus (D.C) Stapf. (Poaceae), fruits of Citrus medical L. (Rutaceae) as well as honey in ethanol and sucrose experimental model, BMC Complementary and Alternative Medicine, 14, 507 (2014).

112. Y.J. Zhang, R.Y. Gan, S. Li, Y. Zhou, A.N. Li, D.P. Xu, et al., Antioxidant phytochemicals for the prevention and treatment of chronic diseases, Molecules, 20(12), 21138-21156 (2015).

113. D. Aune, Plant foods, antioxidant biomarkers, and the risk of cardiovascular disease, cancer, and mortality: A review of the evidence, Advances in Nutrition, 10(4), 404-421 (2019).

114. A. Ullah, S. Munir, S.L. Badshah, N. Khan, L. Ghani, B.G. Poulson, et al., Important flavonoids and their role as a therapeutic agent, Molecules, 25(22), 5243 (2020).

115. B.S. Heran, M.M.Y. Wong, I.K. Heran, J.M. Wright, Blood pressure lowering efficacy of angiotensin converting enzyme (ACE) inhibitors for primary hypertension, Cochrane Database of Systematic Reviews, 2008(4), CD003823 (2008).

116. F.H. Messerli, S. Bangalore, C. Bavishi, S.F. Rimoldi, Angiotensin-converting enzyme inhibitors in hypertension: To use or not to use? Journal of the American College of Cardiology, 71(13), 1474-1482 (2018).

117. R. Chen, M.A. Suchard, H.M. Krumholz, M.J. Schuemie, Shea S, Duke J, et al., Comparative first-line effectiveness and safety of ACE (Angiotensin-Converting Enzyme) inhibitors and Angiotensin Receptor Blockers: A multinational cohort study, Hypertension, 78(3), 591-603 (2021).

Cómo citar

APA

Narez Mendoza, F. C. y Hernández Abreu, O. (2023). Análisis transversal de especies vegetales del sureste de México, en su uso para enfermedades cardiovasculares. Revista Colombiana de Ciencias Químico-Farmacéuticas, 52(1), 155–187. https://doi.org/10.15446/rcciquifa.v52n1.102840

ACM

[1]
Narez Mendoza, F.C. y Hernández Abreu, O. 2023. Análisis transversal de especies vegetales del sureste de México, en su uso para enfermedades cardiovasculares. Revista Colombiana de Ciencias Químico-Farmacéuticas. 52, 1 (jul. 2023), 155–187. DOI:https://doi.org/10.15446/rcciquifa.v52n1.102840.

ACS

(1)
Narez Mendoza, F. C.; Hernández Abreu, O. Análisis transversal de especies vegetales del sureste de México, en su uso para enfermedades cardiovasculares. Rev. Colomb. Cienc. Quím. Farm. 2023, 52, 155-187.

ABNT

NAREZ MENDOZA, F. C.; HERNÁNDEZ ABREU, O. Análisis transversal de especies vegetales del sureste de México, en su uso para enfermedades cardiovasculares. Revista Colombiana de Ciencias Químico-Farmacéuticas, [S. l.], v. 52, n. 1, p. 155–187, 2023. DOI: 10.15446/rcciquifa.v52n1.102840. Disponível em: https://revistas.unal.edu.co/index.php/rccquifa/article/view/102840. Acesso em: 26 abr. 2025.

Chicago

Narez Mendoza, Fimy Cristhel, y Oswaldo Hernández Abreu. 2023. «Análisis transversal de especies vegetales del sureste de México, en su uso para enfermedades cardiovasculares». Revista Colombiana De Ciencias Químico-Farmacéuticas 52 (1):155-87. https://doi.org/10.15446/rcciquifa.v52n1.102840.

Harvard

Narez Mendoza, F. C. y Hernández Abreu, O. (2023) «Análisis transversal de especies vegetales del sureste de México, en su uso para enfermedades cardiovasculares», Revista Colombiana de Ciencias Químico-Farmacéuticas, 52(1), pp. 155–187. doi: 10.15446/rcciquifa.v52n1.102840.

IEEE

[1]
F. C. Narez Mendoza y O. Hernández Abreu, «Análisis transversal de especies vegetales del sureste de México, en su uso para enfermedades cardiovasculares», Rev. Colomb. Cienc. Quím. Farm., vol. 52, n.º 1, pp. 155–187, jul. 2023.

MLA

Narez Mendoza, F. C., y O. Hernández Abreu. «Análisis transversal de especies vegetales del sureste de México, en su uso para enfermedades cardiovasculares». Revista Colombiana de Ciencias Químico-Farmacéuticas, vol. 52, n.º 1, julio de 2023, pp. 155-87, doi:10.15446/rcciquifa.v52n1.102840.

Turabian

Narez Mendoza, Fimy Cristhel, y Oswaldo Hernández Abreu. «Análisis transversal de especies vegetales del sureste de México, en su uso para enfermedades cardiovasculares». Revista Colombiana de Ciencias Químico-Farmacéuticas 52, no. 1 (julio 24, 2023): 155–187. Accedido abril 26, 2025. https://revistas.unal.edu.co/index.php/rccquifa/article/view/102840.

Vancouver

1.
Narez Mendoza FC, Hernández Abreu O. Análisis transversal de especies vegetales del sureste de México, en su uso para enfermedades cardiovasculares. Rev. Colomb. Cienc. Quím. Farm. [Internet]. 24 de julio de 2023 [citado 26 de abril de 2025];52(1):155-87. Disponible en: https://revistas.unal.edu.co/index.php/rccquifa/article/view/102840

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

383

Descargas

Los datos de descargas todavía no están disponibles.