Publicado

2023-03-23

A rapid and simple capillary electrophoresis procedure for quantification of vanillylmandelic acid in urine samples

Un procedimiento de electroforesis capilar rápido y simple para la cuantificación de ácido vanililmandélico en muestras de orina

Um procedimento rápido e simples de eletroforese capilar para a quantificação de ácido vanilmandélico em amostras de urina

DOI:

https://doi.org/10.15446/rcciquifa.v51n3.107382

Palabras clave:

Extraction recovery, diode-array detection, urine, vortex-assisted liquid-liquid extraction, capillary electrophoresis (en)
Extraction recovery, capillary electrophoresis, diode-array detection, urine, vortex-assisted liquid-liquid extraction (es)
Recuperação de extração, eletroforese capilar, detecção de matriz de diodos, urina, extração líquido-líquido assistida por vórtice (pt)

Descargas

Autores/as

  • Behrouz Seyfinejad Student Research Committee, Tabriz University of Medical Sciences, Tabriz.
  • Abolghasem Jouyban Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz.

Aim: To develop a one-step vortex-assisted liquid-liquid extraction (VALLE) method, without the need for evaporation and reconstitution steps, to establish a rapid and straightforward treatment procedure based on capillary electrophoresis-diode array detection (CE-DAD) for the determination of vanillylmandelic acid (VMA) in human urine. Methodology: Optimization of VALLE and CE-DAD procedures were studied in detail. The effects of various experimental parameters, such as the type of the extraction solvent, sample pH, salt addition, and extraction time were investigated. Also, CE separation conditions including background electrolyte type, concentration, and pH, injection time and separation voltage were optimized as well. Results: A successful separation of VMA was achieved in less than 6 min using a basic background electrolyte composed of 60 mmol·L-1 acetate/ACN (acetonitrile) 50% (v/v) (final apparent pH is 5.73). The linear response was obtained over the concentration range from 1.0 to 14 μg·mL-1. The limit of detection and quantification were 0.30 and 1.0 μg·mL-1, respectively. The intra- and inter-day precisions were found to be less than 4.3%. The extraction recoveries of VMA were between 95%-97%. Conclusion: The developed method is found to be a simple, rapid, and reliable method for quantitative analysis of urinary VMA.

Objetivo: desarrollar un método de extracción líquido-líquido asistido por vórtice (MELLAV) de un solo paso, sin la necesidad de pasos de evaporación y reconstitución, para establecer un procedimiento de tratamiento rápido y sencillo basado en electroforesis capilar con detección por arreglo de diodos (EC-DAD) para la determinación de ácido vanillilmandélico (AVM) en orina humana. Metodología: se estudió en detalle la optimización de los procedimientos MELLAV y EC-DAD. Se investigaron los efectos de varios parámetros experimentales, como el tipo de solvente de extracción, el pH de la muestra, la adición de sal y el tiempo de extracción. Además, también se optimizaron las condiciones de separación EC, incluyendo el tipo de electrolito de fondo, la concentración y el pH, el tiempo de inyección y el voltaje de separación. Resultados: se logró una separación exitosa de AVM en menos de 6 min utilizando un electrolito de fondo básico compuesto por 60 mmol·L-1 de acetato/ACN (acetonitrilo) al 50 % (v/v) (el pH aparente final es 5,73). La respuesta lineal se obtuvo en el rango de concentración de 1,0 a 14 μg·mL-1. El límite de detección y cuantificación fue de 0,30 a 1,0 μg·mL-1, respectivamente. Se encontró que las precisiones intra e interdiarias eran inferiores al 4,3 %. Las recuperaciones de extracción de AVM estuvieron entre 95%-97%. Conclusión: el método desarrollado resulta ser un método simple, rápido y confiable para el análisis cuantitativo de AVM en orina.

Objetivo: desenvolver um método de extração líquido-líquido assistido por vórtice (MELLAV) em uma etapa, sem a necessidade de etapas de evaporação e reconstituição, estabelecer um procedimento de tratamento rápido e simples baseado em eletroforese capilar com detecção de arranjo de diodos (EC-DAD) para a determinação de ácido vanilmandélico (VMA) na urina humana. Metodologia: a otimização dos procedimentos MELLAV e EC-DAD foi estudada em detalhes. Os efeitos de vários parâmetros experimentais, como o tipo de solvente de extração, pH da amostra, adição de sal e tempo de extração, foram investigados. Além disso, as condições de separação EC também foram otimizadas, incluindo o tipo de eletrólito de fundo, concentração e pH, tempo de injeção e tensão de separação. Resultados: uma separação AVM bem-sucedida foi obtida em menos de 6 min usando um eletrólito de fundo básico composto de 60 μg·mL-1 50% (v/v) de acetato/ACN (acetonitrila) (pH final aparente é 5,73). A resposta linear foi obtida na faixa de concentração de 1,0 a 14 μg·mL-1. O limite de detecção e quantificação foi de 0,30 a 1,0 μg·mL-1, respectivamente. As precisões intradias e interdias foram inferiores a 4,3%. As recuperações de extração de AVM ficaram entre 95%-97%. Conclusão: o método desenvolvido revela-se um método simples, rápido e confiável para a análise quantitativa de MAV em urina.

Referencias

C. Schulz, G. Eisenhofer, H. Lehnert, Principles of catecholamine biosynthesis, metabolism and release. in: Pheochromocytoma: Pathophysiology and Clinical Management, Ed. by H. Lehnert, Karger, Basel, 2004, Vol. 31, pp. 1-25.

J. Kaluzna-Czaplinska, E. Socha, J. Rynkowski, Determination of homovanillic acid and vanillylmandelic acid in urine of autistic children by gas chromatography/ mass spectrometry, Med. Sci. Monit., 16, 445-450 (2010).

S. Barco, I. Gennai, G. Reggiardo, B. Galleni, L. Barbagallo, A. Maffia, E. Viscardi, F. De Leonardis, V. Cecinati, S. Sorrentino, Urinary homovanillic and vanillylmandelic acid in the diagnosis of neuroblastoma: report from the Italian cooperative group for neuroblastoma, Clin. Biochem., 47, 848-852 (2014).

J.G. Boyle, D.F. Davidson, C.G. Perry, J.M. Connell, Comparison of diagnostic accuracy of urinary free metanephrines, vanillyl mandelic acid, and catecholamines and plasma catecholamines for diagnosis of pheochromocytoma, J. Clin. Endocrinol. Metab., 92, 4602-4608 (2007).

E. Pussard, M. Neveux, N. Guigueno, Reference intervals for urinary catecholamines and metabolites from birth to adulthood, Clin. Biochem., 42, 536-539 (2009).

F. Grossman, W.Z. Potter, Catecholamines in depression: a cumulative study of urinary norepinephrine and its major metabolites in unipolar and bipolar depressed patients versus healthy volunteers at the NIMH, Psychiatry Res., 87, 21-27 (1999).

Z.D. Clark, E.L. Frank, Urinary metanephrines by liquid chromatography tandem mass spectrometry: Using multiple quantification methods to minimize interferences in a high throughput method, J. Chromatogr. B, 879, 3673-3680 (2011).

A. Garcıa, M. Heinänen, L. Jiménez, C. Barbas, Direct measurement of homovanillic, vanillylmandelic and 5-hydroxyindoleacetic acids in urine by capillary electrophoresis, J. Chromatogr. A, 871, 341-350 (2000).

J. Mika, J. Barek, J. Zima, J.C. Moreira, H. Dejmková, Simultaneous determination of homovanillic and vanillylmandelic acid by HPLC using a coulometric detector with renewable glassy carbon microbeads based working electrode, Electroanalysis, 30, 1455-1460 (2018).

A. Makrlikova, H. Dejmkova, T. Navratil, J. Barek, V. Vyskocil, HPLC-ED/ UV for determination of vanillylmandelic acid in human urine after solid phase extraction, Proceedings of the 14th ISC modern analytical chemistry, Prague, 82-86, 2018.

P. Moleman, J. Borstrok, Determination of urinary vanillylmandelic acid by liquid chromatography with electrochemical detection, Clin. Chem., 29, 878-881 (1983).

Y. Sato, J. Hanai, T. Takasugi Ntakeda, Determination of urinary vanillylmandelic acid and homovanillic acid by high performance liquid chromatography for mass screening of neuroblastoma, Tohoku J. Exp. Med., 150, 169-174 (1986).

K. Yamada, E. Kayama, Y. Aizawa, K. Oka, S. Hara, Determination of vanillylmandelic acid in urine by pre-column dansylation using micro high-performance liquid chromatography with fluorescence detection, J. Chromatogr. B, 223, 176- 178 (1981).

A. Gironi, G. Seghieri, M. Niccolai, P. Mammini, Simultaneous liquid-chromatographic determination of urinary vanillylmandelic acid, homovanillic acid, and 5-hydroxyindoleacetic acid, Clin. Chem., 34, 2504-2506 (1988).

G.M. Anderson, F.C. Feibel, D.J. Cohen, Liquid-chromatographic determination of vanillylmandelic acid in urine, Clin. Chem., 31, 819-821 (1985).

M. Valko-Rokytovská, P. Očenáš, A. Salayová, Z. Kostecká, New developed UHPLC method for selected urine metabolites, J. Chromatogr. Sep. Tech., 9, 2-8 (2018).

X. Xiong, Y. Zhang, A new approach for urinary vanillylmandelic acid determination using eVol microextraction by packed sorbent coupled to liquid chromatography- tandem mass spectrometry, J. Anal. Sci. Technol., 11, 1-14 (2020).

Z. Xie, P. Lorkiewicz, D.W. Riggs, A. Bhatnagar, S. Srivastava, Comprehensive, robust, and sensitive UPLC-MS/MS analysis of free biogenic monoamines and their metabolites in urine, J. Chromatogr. B, 1099, 83-91 (2018).

Y. Shen, J. Lu, Q. Tang, Q. Guan, Z. Sun, H. Li, L. Cheng, Rapid, easy analysis of urinary vanillylmandelic acid for diagnostic testing of pheochromocytoma by liquid chromatography tandem mass spectrometry, J. Chromatogr. B, 1002, 92-97 (2015).

Z.D. Clark, J.M. Cutler, I.Y. Pavlov, F.G. Strathmann, E.L. Frank, Simple dilute-andshoot method for urinary vanillylmandelic acid and homovanillic acid by liquid chromatography tandem mass spectrometry, Clin. Chim. Acta, 468, 201-208 (2017).

K. Sadilkova, K. Dugaw, D. Benjamin, R.M. Jack, Analysis of vanillylmandelic acid and homovanillic acid by UPLC-MS/MS in serum for diagnostic testing for neuroblastoma, Clin. Chim. Acta, 424, 253-257 (2013).

L. Lionetto, A. M. Lostia, A. Stigliano, P. Cardelli, M. Simmaco, HPLC–mass spectrometry method for quantitative detection of neuroendocrine tumor markers: vanillylmandelic acid, homovanillic acid and 5-hydroxyindoleacetic acid, Clin. Chim. Acta, 398, 53-56 (2008).

L. Fang, Y. Lv, X. Sheng, S. Yao, Sensitive, rapid and easy analysis of three catecholamine metabolites in human urine and serum by liquid chromatography tandem mass spectrometry, J. Chromatogr. Sci., 50, 450-456 (2012).

L. Konieczna, A. Roszkowska, M. Niedźwiecki, T. Bączek, Hydrophilic interaction chromatography combined with dispersive liquid–liquid microextraction as a preconcentration tool for the simultaneous determination of the panel of underivatized neurotransmitters in human urine samples, J. Chromatogr. A, 1431, 111-121 (2016).

R. Allenbrand, U. Garg, Quantitation of homovanillic acid (HVA) and vanillylmandelic acid (VMA) in urine using gas chromatography-mass spectrometry (GC/MS). in: Clinical Applications of Mass Spectrometry: methods and protocols, Ed. by U. Garg, C. Hammett-Stabler, Humana Press, New York, 2010, pp. 261-269.

M.T.C. Tran, J. Baglin, T.T.T. Tran, K.T. Hoang, L.T. Phung, A. Read, R.F. Greaves, Development of a new biochemical test to diagnose and monitor neuroblastoma in Vietnam: Homovanillic and vanillylmandelic acid by gas chromatography– mass spectrometry, Clin. Biochem., 47, 206-215 (2014).

G. Fauler, H. Leis, E. Huber, C. Schellauf, R. Kerbl, C. Urban, H. Gleispach, Determination of homovanillic acid and vanillylmandelic acid in neuroblastoma screening by stable isotope dilution GC-MS, J. Mass Spectrom., 32, 507-514, (1997).

M. Tuchman, P. Crippin, W. Krivit, Capillary gas-chromatographic determination of urinary homovanillic acid and vanillylmandelic acid, Clin. Chem., 29, 828-831 (1983).

W.H. de Jong, E.G. de Vries, I.P. Kema, Current status and future developments of LC-MS/MS in clinical chemistry for quantification of biogenic amines, Clin. Biochem., 44, 95-103 (2011).

F. Taran, H. Bernard, A. Valleix, C. Créminon, J. Grassi, D. Olichon, J.-R. Deverre, P. Pradelles, Competitive enzyme immunoassay for urinary vanillylmandelic acid, Clin. Chim. Acta, 264, 177-192 (1997).

M. Tsunoda, Recent advances in methods for the analysis of catecholamines and their metabolites, Anal. Bioanal. Chem., 386, 506-514 (2006).

S. Baluchová, J. Barek, L.I. Tomé, C.M. Brett, K. Schwarzová-Pecková, Vanillylmandelic and homovanillic acid: Electroanalysis at non-modified and polymermodified carbon-based electrodes, J. Electroanal. Chem. 821, 22-32 (2018).

B. Fu, H. Chen, Z. Yan, Z. Zhang, J. Chen, T. Liu, K. Li, A simple ultrasensitive electrochemical sensor for simultaneous determination of homovanillic acid and vanillylmandelic acid in human urine based on MWCNTs-Pt nanoparticles as peroxidase mimics, J. Electroanal. Chem., 866, 114165 (2020).

M. Libansky, J. Zima, J. Barek, H. Dejmkova, Voltammetric determination of homovanillic acid and vanillylmandelic acid on a disposable electrochemical measuring cell system with integrated carbon composite film electrodes, Monatsh. Chem., 147, 89-96 (2016).

J.S. Toraño, R. Ramautar, G. de Jong, Advances in capillary electrophoresis for the life sciences, J. Chromatogr. B, 1118, 116-136 (2019).

H. Sirén, U. Karjalainen, Study of catecholamines in patient urine samples by capillary electrophoresis, J. Chromatogr. A, 853, 527-533 (1999).

N. Miękus, I. Olędzka, A. Plenis, P. Kowalski, E. Bień, A. Miękus, M.A. Krawczyk, E. Adamkiewicz-Drożyńska, T. Bączek, Determination of urinary biogenic amines’ biomarker profile in neuroblastoma and pheochromocytoma patients by MEKC method with preceding dispersive liquid–liquid microextraction, J. Chromatogr. B, 1036, 114-123 (2016).

X. Li, W. Jin, Q. Weng, Separation and determination of homovanillic acid and vanillylmandelic acid by capillary electrophoresis with electrochemical detection, Anal. Chim. Acta, 461, 123-130 (2002).

M.-M. Hsieh, E.-P. Lin, S.-W. Huang, On-line concentration and separation of cationic and anionic neurochemicals by capillary electrophoresis with UV absorption detection, Talanta, 88, 638-645 (2012).

Z H.-t. Zhang, Z. Li, J.-b. Zhang, Y. Zhang, J.-n. Ye, Q.-c. Chu, M.-j. Zhang, Simultaneous determination of catecholamines and related metabolites by capillary electrophoresis with amperometric detection, Chem. Res. Chin. Univ., 29, 850-853 (2013).

N. Miękus, P. Kowalski, I. Olędzka, A. Plenis, E. Bień, A. Miękus, M. Krawczyk, E. Adamkiewicz-Drożyńska, T. Bączek, Cyclodextrin-modified MEKC method for quantification of selected acidic metabolites of catecholamines in the presence of various biogenic amines. Application to diagnosis of neuroblastoma, J. Chromatogr. B, 1003, 27-34 (2015).

M. Moriarty, A. Lee, B. O’Connell, A. Kelleher, H. Keeley, A. Furey, Development of an LC-MS/MS method for the analysis of serotonin and related compounds in urine and the identification of a potential biomarker for attention deficit hyperactivity/hyperkinetic disorder, Anal. Bioanal. Chem., 401, 2481- 2493 (2011).

A. Naccarato, E. Gionfriddo, G. Sindona, A. Tagarelli, Development of a simple and rapid solid phase microextraction-gas chromatography–triple quadrupole mass spectrometry method for the analysis of dopamine, serotonin and norepinephrine in human urine, Anal. Chim. Acta, 810, 17-24 (2014).

N. Gan, T. Li, L. Wang, Q. Jiang, Determination of seven biogenic amines in fish using micellar electrokinetic capillary chromatography, Chinese J. Anal. Chem., 25, 934-938 (2007).

J. Płonka, Methods of biological fluids sample preparation–biogenic amines, methylxanthines, water-soluble vitamins, Biomed. Chromatogr., 29, 1-20 (2015).

N.-H. Park, J.Y. Hong, H.J. Shin, J. Hong, Comprehensive profiling analysis of bioamines and their acidic metabolites in human urine by gas chromatography/ mass spectrometry combined with selective derivatization, J. Chromatogr. A, 1305, 234-243 (2013).

L. Geiser, J.L. Veuthey, Non-aqueous capillary electrophoresis 2005–2008, Electrophoresis, 30, 36-49, (2009).

A. Plenis, I. Olędzka, P. Kowalski, N. Miękus, T. Bączek, Recent trends in the quantification of biogenic amines in biofluids as biomarkers of various disorders: a review, J. Clin. Med., 8, 640 (2019).

S. Pedersen-Bjergaard, K.E. Rasmussen, Liquid-phase microextraction and capillary electrophoresis of acidic drugs, Electrophoresis, 21, 579-585 (2000).

A. Šlampová, P. Kubáň, Two-phase micro-electromembrane extraction across free liquid membrane for determination of acidic drugs in complex samples, Anal. Chim. Acta, 1048, 58-65 (2019).

M. Villar Navarro, M. Ramos Payán, R. Fernández-Torres, M.A. Bello-López, M. Callejón Mochón, A. Guiráum Pérez, Capillary electrophoresis determination of nonsteroidal anti-inflammatory drugs in wastewater using hollow fiber liquid-phase microextraction, Electrophoresis, 32, 2107-2113 (2011).

F.T. Peters, O.H. Drummer, F. Musshoff, Validation of new methods, Forensic Sci. Int., 165, 216-224 (2007).

M.J. Magera, A.L. Thompson, D. Matern, P. Rinaldo, Liquid chromatographytandem mass spectrometry method for the determination of vanillylmandelic acid in urine, Clin. Chem., 49, 825-827 (2003).

M.J. Magera, A.L. Stoor, J.K. Helgeson, D. Matern, P. Rinaldo, Determination of homovanillic acid in urine by stable isotope dilution and electrospray tandem mass spectrometry, Clin. Chim. Acta, 306, 35-41 (2001).

B. Crow, M. Bishop, E. Paliakov, D. Norton, J. George, J. A. Bralley, Analysis of urinary aromatic acids by liquid chromatography tandem mass spectrometry, Biomed. Chromatogr., 22, 1346-1353 (2008).

W-Y. Hsu, C-M. Chen, F-J. Tsai, C-C. Lai, Simultaneous detection of diagnostic biomarkers of alkaptonuria, ornithine carbamoyltransferase deficiency, and neuroblastoma disease by high-performance liquid chromatography/tandem mass spectrometry, Clin. Chim. Acta, 420, 140-145 (2013).

Cómo citar

APA

Seyfinejad, B. y Jouyban, A. (2023). A rapid and simple capillary electrophoresis procedure for quantification of vanillylmandelic acid in urine samples. Revista Colombiana de Ciencias Químico-Farmacéuticas, 51(3). https://doi.org/10.15446/rcciquifa.v51n3.107382

ACM

[1]
Seyfinejad, B. y Jouyban, A. 2023. A rapid and simple capillary electrophoresis procedure for quantification of vanillylmandelic acid in urine samples. Revista Colombiana de Ciencias Químico-Farmacéuticas. 51, 3 (mar. 2023). DOI:https://doi.org/10.15446/rcciquifa.v51n3.107382.

ACS

(1)
Seyfinejad, B.; Jouyban, A. A rapid and simple capillary electrophoresis procedure for quantification of vanillylmandelic acid in urine samples. Rev. Colomb. Cienc. Quím. Farm. 2023, 51.

ABNT

SEYFINEJAD, B.; JOUYBAN, A. A rapid and simple capillary electrophoresis procedure for quantification of vanillylmandelic acid in urine samples. Revista Colombiana de Ciencias Químico-Farmacéuticas, [S. l.], v. 51, n. 3, 2023. DOI: 10.15446/rcciquifa.v51n3.107382. Disponível em: https://revistas.unal.edu.co/index.php/rccquifa/article/view/107382. Acesso em: 19 jul. 2024.

Chicago

Seyfinejad, Behrouz, y Abolghasem Jouyban. 2023. «A rapid and simple capillary electrophoresis procedure for quantification of vanillylmandelic acid in urine samples». Revista Colombiana De Ciencias Químico-Farmacéuticas 51 (3). https://doi.org/10.15446/rcciquifa.v51n3.107382.

Harvard

Seyfinejad, B. y Jouyban, A. (2023) «A rapid and simple capillary electrophoresis procedure for quantification of vanillylmandelic acid in urine samples», Revista Colombiana de Ciencias Químico-Farmacéuticas, 51(3). doi: 10.15446/rcciquifa.v51n3.107382.

IEEE

[1]
B. Seyfinejad y A. Jouyban, «A rapid and simple capillary electrophoresis procedure for quantification of vanillylmandelic acid in urine samples», Rev. Colomb. Cienc. Quím. Farm., vol. 51, n.º 3, mar. 2023.

MLA

Seyfinejad, B., y A. Jouyban. «A rapid and simple capillary electrophoresis procedure for quantification of vanillylmandelic acid in urine samples». Revista Colombiana de Ciencias Químico-Farmacéuticas, vol. 51, n.º 3, marzo de 2023, doi:10.15446/rcciquifa.v51n3.107382.

Turabian

Seyfinejad, Behrouz, y Abolghasem Jouyban. «A rapid and simple capillary electrophoresis procedure for quantification of vanillylmandelic acid in urine samples». Revista Colombiana de Ciencias Químico-Farmacéuticas 51, no. 3 (marzo 23, 2023). Accedido julio 19, 2024. https://revistas.unal.edu.co/index.php/rccquifa/article/view/107382.

Vancouver

1.
Seyfinejad B, Jouyban A. A rapid and simple capillary electrophoresis procedure for quantification of vanillylmandelic acid in urine samples. Rev. Colomb. Cienc. Quím. Farm. [Internet]. 23 de marzo de 2023 [citado 19 de julio de 2024];51(3). Disponible en: https://revistas.unal.edu.co/index.php/rccquifa/article/view/107382

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

233

Descargas

Los datos de descargas todavía no están disponibles.