Publicado

2024-03-04

Antidote effect of Honey against arsenic induced toxicity in Charles Foster rats

Efecto antídoto de la miel contra la toxicidad inducida por arsénico en ratas Charles Foster

Efeito antídoto do mel contra a toxicidade induzida por arsênico em ratos Charles Foster

Palabras clave:

sodium arsenite, honey, antidote effect, Charles Foster rats (en)
arsenito de sodio , miel , efecto antídoto, ratas Charles Foster (es)
Arsenito de sódio , mel , efeito antídoto , ratos Charles Foster (pt)

Autores/as

Introduction: Arsenic poisoning in the groundwater in recent times has become a major problem in the entire world. The exposed subjects exhibit typical symptoms of arsenicosis such as skin manifestations, gastrointestinal disorders, neurological disorders, hormonal disorders etc. Objective: The present study is focused to combat the deleterious effect of arsenic toxicity in animal models using honey. Materials and Methods: The animals (Charles Foster rats) were treated with Sodium arsenite at the dose of 8 mg per Kg body weight for 90 days to make arsenic model and upon these arsenic pre-treated rats honey at the dose of 200 mg per Kg body weight (1:1) was administered for 60 days to study the antidote effects. After the entire treatment, rats were sacrificed and their blood samples were obtained and analysed for haematological and biochemical and histopathological study. Results: The study shows that arsenic induced toxicity caused severe damage to the rats at the haematological level such as decrease in the RBC counts, WBC counts, haemoglobin percentage, and biochemical level such as increase in the levels of SGPT, SGOT, ALP, bilirubin, urea, uric acid, creatinine, and lipid peroxidation. There was also high magnitude of degeneration observed at the histopathological level in the liver and kidney tissues. But, there was significant normalization in the honey on arsenic pretreated group of rats at all the respective studied parameters. Conclusion: The studied parameters denote that honey possesses antidote properties against arsenic induced toxicity and can be used for human purpose after dose titration as antidote.

 

Introducción: El envenenamiento por arsénico en las aguas subterráneas en los últimos tiempos se ha convertido en un problema importante en todo el mundo. Los sujetos expuestos presentan síntomas típicos de arsenicosis, como manifestaciones cutáneas, trastornos gastrointestinales, trastornos neurológicos, trastornos hormonales, etc. Objetivo: El presente estudio se centra en combatir el efecto nocivo de la toxicidad del arsénico en modelos animales que utilizan extracto de plantas medicinales. Materiales y métodos: Los animales (ratas Charles Foster) fueron tratados con arsenito de sodio a una dosis de 8 mg por Kg de peso corporal durante 90 días para hacer un modelo de arsénico y, sobre estas ratas pretratadas con arsénico, miel a una dosis de 200 mg por Kg. Se administró peso corporal (1:1) durante 60 días para estudiar los efectos del antídoto. Después de todo el tratamiento, las ratas fueron sacrificadas y se obtuvieron y analizaron muestras de sangre para su estudio hematológico, bioquímico e histopatológico. Resultados: El estudio muestra que la toxicidad inducida por arsénico causó daños graves a las ratas a nivel hematológico, como disminución en los recuentos de glóbulos rojos, recuentos de glóbulos blancos, porcentaje de hemoglobina y nivel bioquímico, como aumento en los niveles de SGPT, SGOT, ALP, bilirrubina. , urea, ácido úrico, creatinina y peroxidación lipídica. También se observó una alta magnitud de degeneración a nivel histopatológico en los tejidos del hígado y el riñón. Pero hubo una normalización significativa en el grupo de ratas pretratadas con miel y arsénico en todos los parámetros estudiados respectivos. Conclusión: Los parámetros estudiados denotan que la miel posee propiedades antídoto contra la toxicidad inducida por arsénico y puede ser utilizada para fines humanos después de la titulación de dosis como antídoto.

Introdução: O envenenamento por arsênico nas águas subterrâneas tornou-se nos últimos tempos um grande problema em todo o mundo. Os sujeitos expostos apresentam sintomas típicos de arsenicose, como manifestações cutâneas, distúrbios gastrointestinais, distúrbios neurológicos, distúrbios hormonais, etc. Objetivo: O presente estudo tem como objetivo combater o efeito deletério da toxicidade do arsênico em modelos animais utilizando extrato de planta medicinal. Materiais e Métodos: Os animais (ratos Charles Foster) foram tratados com arsenito de sódio na dose de 8 mg por Kg de peso corporal durante 90 dias para fazer modelo de arsênico e sobre estes ratos pré-tratados com arsênico mel na dose de 200 mg por Kg peso corporal (1:1) foi administrado por 60 dias para estudar os efeitos do antídoto. Após todo o tratamento, os ratos foram sacrificados e suas amostras de sangue foram obtidas e analisadas para estudo hematológico, bioquímico e histopatológico. Resultados: O estudo mostra que a toxicidade induzida pelo arsênico causou danos graves aos ratos no nível hematológico, como diminuição na contagem de glóbulos vermelhos, contagem de leucócitos, porcentagem de hemoglobina e nível bioquímico, como aumento nos níveis de SGPT, SGOT, ALP, bilirrubina, uréia, ácido úrico, creatinina e peroxidação lipídica. Houve também alta magnitude de degeneração observada em nível histopatológico nos tecidos do fígado e dos rins. Mas houve uma normalização significativa no mel do grupo de ratos pré-tratados com arsênico em todos os respectivos parâmetros estudados. Conclusão: Os parâmetros estudados indicam que o mel possui propriedades antídoto contra a toxicidade induzida pelo arsênico e pode ser utilizado para fins humanos após titulação da dose como antídoto.

Referencias

E. Shaji, M. Santosh, K.V. Sarath, P. Prakash, V. Deepchand, B.V. Divya, Arsenic contamination of groundwater: A global synopsis with focus on the Indian Peninsula, Geoscience Frontiers, 12(3), 101079 (2021).

M. Hassan, Arsenic in groundwater, CRC Press, Boca Raton, FL, 2018.

A. Kumar, M.S. Rahman, M. Ali, P. Salaun, A. Gourain, S. Kumar, et al., Assessment of disease burden in the arsenic exposed population of Chapar village of Samastipur District, Bihar, India, and related mitigation initiative, Environmental Science and Pollution Research International, 29(18), 27443–27459 (2022). https://doi.org/10.1007/s11356-021-18207-6.

L.A. Richards, B.G. Fox, M.J. Bowes, K. Khamis, A. Kumar, R. Kumari, et al., A systematic approach to understand hydrogeochemical dynamics in large river systems: Development and application to the River Ganges (Ganga) in India, Water Research, 211, 118054 (2022). https://doi.org/10.1016/j.watres.2022.118054.

L.A. Richards, A. Kumar, P. Shankar, A. Gaurav, A. Ghosh, D.A. Polya, Distribution and geochemical controls of arsenic and uranium in groundwater-derived drinking water in Bihar, India, International Journal of Environmental Research and Public Health, 17(7), 2500 (2020). https://doi.org/10.3390/ijerph17072500.

L.A. Richards, R. Kumari, D. White, N. Parashar, A. Kumar, A. Ghosh, et al., Emerging organic contaminants in groundwater under a rapidly developing city (Patna) in northern India dominated by high concentrations of lifestyle chemicals, Environmental Pollution, 268(Pt A), 115765 (2021). https://doi.org/10.1016/j.envpol.2020.115765.

D. Chakraborti, S.C. Mukherjee, S. Pati, M.K. Sengupta, M.M. Rahman, U.K. Chowdhury, et al., Arsenic groundwater contamination in Middle Ganga Plain, Bihar, India: a future danger?, Environmental Health Perspectives, 111(9), 1194– 1201 (2003). https://doi.org/10.1289/ehp.5966.

D. Chakraborti, M.M. Rahman, S. Ahamed, R.N. Dutta, S. Pati, S.C. Mukherjee, Arsenic contamination of groundwater and its induced health effects in Shahpur block, Bhojpur district, Bihar state, India: Risk evaluation, Environmental Science and Pollution Research International, 23(10), 9492–9504 (2016). https://doi.org/10.1007/s11356-016-6149-8.

A. Kumar, M. Ali, V. Raj, A. Kumari, M. Rachamalla, S. Niyogi, et al., Arsenic causing gallbladder cancer disease in Bihar, Scientific Reports, 13(1), 4259 (2023). https://doi.org/10.1038/s41598-023-30898-0.

A. Kumar, R. Kumar, M.S. Rahman, M. Ali, R. Kumar, N. Nupur, et al., Assessment of arsenic exposure in the population of Sabalpur village of Saran District of Bihar with mitigation approach, Environmental Science and Pollution Research International, 28, 43923–43934 (2021). https://doi.org/10.1007/s11356-021- 13521-5.

A. Kumar, M. Ali, R. Kumar, M. Kumar, P. Sagar, R.K. Pandey, et al., Arsenic exposure in Indo Gangetic plains of Bihar causing increased cancer risk, Scientific Reports, 11(1), 2376 (2021). https://doi.org/10.1038/s41598-021-81579-9.

A. Kumar, M.S. Rahman, M. Ali, R. Kumar, P.K. Niraj, V. Akhouri, et al., Assessment of arsenic exposure and its mitigation intervention in severely exposed population of Buxar district of Bihar, India, Toxicology and Environmental Health Sciences, 13, 287–297 (2021). https://doi.org/10.1007/s13530-021-00086-6.

A. Kumar, A.K. Ghosh, Assessment of arsenic contamination in groundwater and affected population of Bihar, in: N. Kumar (editor), Arsenic Toxicity: Challenges and Solutions, Springer, Singapore, 2021. https://doi.org/10.1007/978- 981-33-6068-6_7.

A. Kumar, M.S. Rahman, R. Kumar, M. Ali, P.K. Niraj, A. Srivastava, et al., Arsenic contamination in groundwater causing impaired memory and intelligence in school children of Simri village of Buxar District of Bihar, Journal of Mental Health and Human Behavior, 24, 132–138 (2019). https://doi.org/10.4103/jmhhb.jmhhb_31_18.

A. Kumar, A.K. Ghosh, Arsenic and cancer, in: P. Papadopoulou, C. Marouli, A. Misseyanni (editors), Environmental Exposures and Human Health Challenges, IGI Global, 2019, pp. 106–132. https://doi.org/10.4018/978-1-5225-7635-8. ch005.

A. Kumar, C. Ravi, S. Dhingra, M.A. Krishna-Murti, A.K. Ghosh, Arsenic causing gallbladder cancer disease near the Himalayan bound Rivers in Bihar: A case study of gallbladder cancer, Journal of Cancer Science and Clinical Therapeutics, 6, 388–391 (2022). https://doi.org/10.26502/jcsct.5079178.

A. Kumar, V. Raj, A. Srivastava, M. Ali, A.K. Ghosh, M. Rachamalla, D. Kumar, Autophagy in arsenic exposed population and cancer patients, in: D. Kumar, S. Asthana (editors), Autophagy and Metabolism: Potential Target for Cancer Therapy, Academic Press, 2022, pp. 141–161. https://doi.org/10.1016/B978-0-323- 99879-6.00010-9.

A. Kumar, M. Ali, R. Kumar, M.S. Rahman, A. Srivastava, N.K. Chayal, et al., High arsenic concentration in blood samples of people of Village Gyaspur Mahaji, Patna, Bihar drinking arsenic‑contaminated water, Exposure and Health, 12, 131–140 (2020). https://doi.org/10.1007/s12403-018-00294-5.

A. Kumar, R. Kumar, M.S. Rahman, M. Iqubal, M. Ali, P.K. Niraj, et al., Ground water arsenic contamination: A local survey in India, International Journal of Preventive Medicine, 7, 100 (2016). URL: https://journals.lww.com/ijom/fulltext/2016/07000/ground_water_arsenic_contamination__a_local_survey.99.aspx

A. Kumar, Md. Ali, S.Md. Rahman, A.Md. Iqubal, G. Anand, P.K. Niraj, P. Shankar, R. Kumar, Ground water arsenic poisoning in “Tilak Rai Ka Hatta” Village of Buxar District, Bihar, India causing severe health hazards and hormonal imbalance, Journal of Environmental and Analytical Toxicology, 5, 290 (2015). https://doi.org/10.4172/2161-0525.1000290.

M.S. Rahman, A. Kumar, R. Kumar, M. Ali, A.K. Ghosh, S.K. Singh, Comparative quantification study of arsenic in the groundwater and biological samples of Simri village of Buxar District, Bihar, India, Indian Journal of Occupational and Environmental Medicine, 23, 126–132 (2019).

A. Kumar, K. Kumar, M. Ali, V. Raj, A. Srivastava, M. Kumar, et al., Severe disease burden and the mitigation strategy in the arsenic-exposed population of Kaliprasad Village in Bhagalpur District of Bihar, India, Biological Trace Element Research, (2023), in press. https://doi.org/10.1007/s12011-023-03822-w.

M.S. Rahman, A. Kumar, R. Kumar, M. Ali, A.K. Ghosh, A.K. Singh, Comparative quantification study of arsenic in the groundwater and biological samples of Simri Village of Buxar District, Bihar, India, Indian Journal of Occupational and Environmental Medicine, 23(3), 126–132 (2019). https://doi.org/10.4103/ijoem.IJOEM_240_18.

A. Kumar, V. Kumar, V. Akhouri, R. Kumar, M. Ali, T. Rashmi, et al., Protective efficacy of Coriandrum sativum seeds against arsenic induced toxicity in Swiss albino mice, Toxicology Research, 38(4), 437–447 (2022). https://doi.org/10.1007/s43188-022-00123-7.

V. Kumar, V. Akhouri, S.K. Singh, A. Kumar, Phytoremedial effect of Tinospora cordifolia against arsenic induced toxicity in Charles Foster rats, Biometals: An International Journal on the Role of Metal Ions in Biology, Biochemistry, and Medicine, 33(6), 379–396 (2020). https://doi.org/10.1007/s10534-020-00256-y.

A. Kumar, R. Kumar, M.S. Rahman, A. Iqubal, G. Anand, P.K. Niraj, M. Ali, Phytoremedial effect of Withania somnifera against arsenic-induced testicular toxicity in Charles Foster Rats, Avicenna Journal of Phytomedicine, 5(4), 355– 364 (2015).

M. Kassim, K.M. Yusoff, G. Ong, S. Sekaran, M.Y. Yusof, M. Mansor, Gelam honey inhibits lipopolysaccharide-induced endotoxemia in rats through the induction of heme oxygenase-1 and the inhibition of cytokines, nitric oxide, and high-mobility group protein B1, Fitoterapia, 83(6), 1054–1059 (2012). https://doi.org/10.1016/j.fitote.2012.05.008.

S. Zhang, Y. Liu, Y. Ye, X.R. Wang, L.T. Lin, L.Y. Xiao, et al., Bee venom therapy: Potential mechanisms and therapeutic applications, Toxicon: Official Journal of the International Society on Toxicology, 148, 64–73 (2018). https://doi.org/10.1016/j.toxicon.2018.04.012.

B. Olas, Bee products as interesting natural agents for the prevention and treatment of common cardiovascular diseases, Nutrients, 14(11), 2267 (2022). https://doi.org/10.3390/nu14112267.

Z. Li, S. Chu, W. He, Z. Zhang, J. Liu, L. Cui, et al., A20 as a novel target for the anti-neuroinflammatory effect of chrysin via inhibition of NF-κB signaling pathway, Brain, Behavior, and Immunity, 79, 228–235 (2019). https://doi.org/10.1016/j.bbi.2019.02.005.

R. Mittal, S. Patel, A. Galor, Alternative therapies for dry eye disease, Current Opinion in Ophthalmology, 32(4), 348–361 (2021). https://doi.org/10.1097/ICU.0000000000000768.

A. Weissenstein, E. Luchter, S. Bittmann, Medical honey and its role in paediatric patients, British Journal of Nursing, 23(6), S30–S34 (2014). https://doi.org/10.12968/bjon.2014.23.Sup6.S30.

M.D. Mandal, S. Mandal, Honey: Its medicinal property and antibacterial activity, Asian Pacific Journal of Tropical Biomedicine, 1(2), 154–160 (2011). https://doi.org/10.1016/S2221-1691(11)60016-6.

J. Boateng, K.N. Diunase, Comparing the antibacterial and functional properties of Cameroonian and Manuka Honeys for potential wound healing-have we come full cycle in dealing with antibiotic resistance?, Molecules (Basel), 20(9), 16068–16084 (2015). https://doi.org/10.3390/molecules200916068.

A. Kurek-Górecka, M. Górecki, A. Rzepecka-Stojko, R. Balwierz, J. Stojko, Bee Products in dermatology and skin care, Molecules (Basel), 25(3), 556 (2020). https://doi.org/10.3390/molecules25030556.

S. Martinotti, M. Bucekova, J. Majtan, E. Ranzato, Honey: An effective regenerative medicine product in wound management, Current Medicinal Chemistry, 26(27), 5230–5240 (2019). https://doi.org/10.2174/0929867325666180510 141824.

H. Horn, Honig in der medizin [Honey in medicine], Deutsche Medizinische Wochenschrift, 138(51-52), 2647–2652 (2013). https://doi.org/10.1055/s-0033-1359950.

P.C. Molan, The evidence supporting the use of honey as a wound dressing, The International Journal of Lower Extremity Wounds, 5(1), 40–54 (2006). https://doi.org/10.1177/1534734605286014.

T. Kontogiannis, T.G. Dimitriou, N.A. Didaras, D. Mossialos, Antiviral activity of bee products, Current Pharmaceutical Design, 28(35), 2867–2878 (2022). https://doi.org/10.2174/1381612828666220928110103.

G. Chamani, M.R. Zarei, M. Mehrabani, A. Mehdavinezhad, M. Vahabian, F. Ahmadi-Motamayel, Evaluation of honey as a topical therapy for intraoral wound healing in rats, Wounds: A Compendium of Clinical Research and Practice, 29(3), 80–86 (2017).

C. Fox, Honey as a dressing for chronic wounds in adults, British Journal of Community Nursing, 7(10), 530–534 (2002). https://doi.org/10.12968/bjcn.2002.7.10.10667.

R. Zubair, N. Aziz, As smooth as honey--The historical use of honey as topical medication, JAMA Dermatology, 151(10), 1102 (2015). https://doi.org/10.1001/jamadermatol.2015.1764.

S. Nikhat, M. Fazil, History, phytochemistry, experimental pharmacology and clinical uses of honey: A comprehensive review with special reference to Unani medicine, Journal of Ethnopharmacology, 282, 114614 (2022). https://doi.org/10.1016/j.jep.2021.114614.

S. Reitman, S. Frankel, A colorimetric method for determination of serum glutamate oxalacetic and glutamic pyruvate transaminases, American Journal of Clinical Pathology, 28(1), 56–63 (1957).

P.R.H. Kind, E.J. King, Determination of alkaline phosphatase activity in serum, Journal of Clinical Pathology, 7, 322 (1954).

G.F. Jendrassik, P. Grof, Vereinfachte photometrische Methoden zur Bestimmung des Blutbilirubins [Simplified photometric methods for determining blood bilirubin], Biochemische Zeitschrift, 297, 81–89 (1938).

J.K. Fawcett, J.E. Scott, A rapid and precise method for the determination of urea, Journal of Chemical Pathology, 13, 156 (1960).

G. Toro, P.G. Ackermann, Practical Clinical Chemistry, Little Brown & Co, Boston, MA, 1975, p. 154.

R.W. Bones, H.H. Tausky, Colorimetric determination of creatinine by the Jaffe reaction, Journal of Biological Chemistry, 158, 581–591 (1945). URL: https://www.jbc.org/article/S0021-9258(19)51334-5/pdf

M.P.E. Berthelot, Berthelot’s reaction mechanism, Report de Chimie Applique, 1, 284 (1859).

R.D. Cardiff, C.H. Miller, R.J. Munn, Manual hematoxylin and eosin staining of mouse tissue sections, Cold Spring Harbor Protocols, 2014(6), 655–658 (2014). https://doi.org/10.1101/pdb.prot073411.

H.H. Draper, M. Hadley, Malondialdehyde determination as index of lipid peroxidation, Methods in Enzymology, 186, 421–431 (1992). https://doi.org/10.1016/0076-6879(90)86135-i.

O.O. Erejuwa, S.A. Sulaiman, M.S. Ab Wahab, Honey: A novel antioxidant, Molecules (Basel), 17(4), 4400–4423 (2012). https://doi.org/10.3390/molecules17044400.

A. Iftikhar, R. Nausheen, H. Muzaffar, M.A. Naeem, M. Farooq, M. Khurshid, et al., Potential therapeutic benefits of honey in neurological disorders: The role of polyphenols, Molecules (Basel), 27(10), 3297 (2022). https://doi.org/10.3390/molecules27103297.

C.C.F. Pleeging, F.A.D.T.G. Wagener, H. de Rooster, N.A.J. Cremers, Revolutionizing non-conventional wound healing using honey by simultaneously targeting multiple molecular mechanisms, Drug Resistance Updates: Reviews and Commentaries in Antimicrobial and Anticancer Chemotherapy, 62, 100834 (2022). https://doi.org/10.1016/j.drup.2022.100834.

K.N. Hashim, K.Y. Chin, F. Ahmad, The mechanism of honey in reversing metabolic syndrome, Molecules (Basel), 26(4), 808 (2021). https://doi.org/10.3390/molecules26040808.

H. An, J.S. Heo, P. Kim, Z. Lian, S. Lee, J. Park, et al., Tetraarsenic hexoxide enhances generation of mitochondrial ROS to promote pyroptosis by inducing the activation of caspase-3/GSDME in triple-negative breast cancer cells, Cell Death & Disease, 12(2), 159 (2021). https://doi.org/10.1038/s41419-021- 03454-9.

C.R. Majhi, S. Khan, M.D. Leo, S. Prawez, A. Kumar, P. Sankar, et al., Acetaminophen increases the risk of arsenic-mediated development of hepatic damage in rats by enhancing redox-signaling mechanism, Environmental Toxicology, 29(2), 187–198 (2014). https://doi.org/10.1002/tox.20785.

B.S. Yousefsani, J. Pourahmad, H. Hosseinzadeh, The mechanism of protective effect of crocin against liver mitochondrial toxicity caused by arsenic III, Toxicology Mechanisms and Methods, 28(2), 105–114 (2018). https://doi.org/10.1080 /15376516.2017.1368054.

X. Duan, J. Li, W. Li, X. Xing, Y. Zhang, W. Li, et al., Antioxidant tert-butylhydroquinone ameliorates arsenic-induced intracellular damages and apoptosis through induction of Nrf2-dependent antioxidant responses as well as stabilization of anti-apoptotic factor Bcl-2 in human keratinocytes, Free Radical Biology & Medicine, 94, 74–87 (2016). https://doi.org/10.1016/j.freeradbiomed.2016.02.009.

S. Afrin, S.M. Haneefa, M.J. Fernandez-Cabezudo, F. Giampieri, B.K. Al- Ramadi, M. Battino, Therapeutic and preventive properties of honey and its bioactive compounds in cancer: an evidence-based review, Nutrition Research Reviews, 33(1), 50–76 (2020). https://doi.org/10.1017/S0954422419000192

R.U. Khan, S. Naz, A.M. Abudabos, Towards a better understanding of the therapeutic applications and corresponding mechanisms of action of honey, Environmental Science and Pollution Research International, 24(36), 27755–27766 (2017). https://doi.org/10.1007/s11356-017-0567-0.

S.G. Bell, The therapeutic use of honey, Neonatal Network, 26(4), 247–251 (2007). https://doi.org/10.1891/0730-0832.26.4.247.

M.A.I. Al-Hatamleh, J.C. Boer, K.L. Wilson, M. Plebanski, R. Mohamud, M.Z. Mustafa, Antioxidant-based medicinal properties of stingless bee products: Recent progress and future directions, Biomolecules, 10(6), 923 (2020). https://doi.org/10.3390/biom10060923.

Cómo citar

APA

Kiran, M., Shrivastava, S. y Kumar, A. (2024). Antidote effect of Honey against arsenic induced toxicity in Charles Foster rats. Revista Colombiana de Ciencias Químico-Farmacéuticas, 52(3). https://revistas.unal.edu.co/index.php/rccquifa/article/view/108479

ACM

[1]
Kiran, M., Shrivastava, S. y Kumar, A. 2024. Antidote effect of Honey against arsenic induced toxicity in Charles Foster rats. Revista Colombiana de Ciencias Químico-Farmacéuticas. 52, 3 (mar. 2024).

ACS

(1)
Kiran, M.; Shrivastava, S.; Kumar, A. Antidote effect of Honey against arsenic induced toxicity in Charles Foster rats. Rev. Colomb. Cienc. Quím. Farm. 2024, 52.

ABNT

KIRAN, M.; SHRIVASTAVA, S.; KUMAR, A. Antidote effect of Honey against arsenic induced toxicity in Charles Foster rats. Revista Colombiana de Ciencias Químico-Farmacéuticas, [S. l.], v. 52, n. 3, 2024. Disponível em: https://revistas.unal.edu.co/index.php/rccquifa/article/view/108479. Acesso em: 12 oct. 2024.

Chicago

Kiran, Manisha, Shobha Shrivastava, y Arun Kumar. 2024. «Antidote effect of Honey against arsenic induced toxicity in Charles Foster rats». Revista Colombiana De Ciencias Químico-Farmacéuticas 52 (3). https://revistas.unal.edu.co/index.php/rccquifa/article/view/108479.

Harvard

Kiran, M., Shrivastava, S. y Kumar, A. (2024) «Antidote effect of Honey against arsenic induced toxicity in Charles Foster rats», Revista Colombiana de Ciencias Químico-Farmacéuticas, 52(3). Disponible en: https://revistas.unal.edu.co/index.php/rccquifa/article/view/108479 (Accedido: 12 octubre 2024).

IEEE

[1]
M. Kiran, S. Shrivastava, y A. Kumar, «Antidote effect of Honey against arsenic induced toxicity in Charles Foster rats», Rev. Colomb. Cienc. Quím. Farm., vol. 52, n.º 3, mar. 2024.

MLA

Kiran, M., S. Shrivastava, y A. Kumar. «Antidote effect of Honey against arsenic induced toxicity in Charles Foster rats». Revista Colombiana de Ciencias Químico-Farmacéuticas, vol. 52, n.º 3, marzo de 2024, https://revistas.unal.edu.co/index.php/rccquifa/article/view/108479.

Turabian

Kiran, Manisha, Shobha Shrivastava, y Arun Kumar. «Antidote effect of Honey against arsenic induced toxicity in Charles Foster rats». Revista Colombiana de Ciencias Químico-Farmacéuticas 52, no. 3 (marzo 4, 2024). Accedido octubre 12, 2024. https://revistas.unal.edu.co/index.php/rccquifa/article/view/108479.

Vancouver

1.
Kiran M, Shrivastava S, Kumar A. Antidote effect of Honey against arsenic induced toxicity in Charles Foster rats. Rev. Colomb. Cienc. Quím. Farm. [Internet]. 4 de marzo de 2024 [citado 12 de octubre de 2024];52(3). Disponible en: https://revistas.unal.edu.co/index.php/rccquifa/article/view/108479

Descargar cita

Visitas a la página del resumen del artículo

47

Descargas

Los datos de descargas todavía no están disponibles.