Publicado
Molecular insights into the binding mechanisms of human and mouse Glutamate-cysteine ligases
Información molecular sobre los mecanismos de unión de las ligasas de glutamato-cisteína humana y de ratón
Insights moleculares sobre os mecanismos de ligação de ligases de glutamato-cisteína humanas e de camundongos
Palabras clave:
GSH, GCL, homology modeling, naphthalene, molecular docking (en)GSH, GCL, modelado por homología, naftalina, acoplamiento molecular (es)
GSH, GCL, modelagem de homologia, naftaleno, docking molecular (pt)
Descargas
Background: the significant role of glutamate-cysteine ligase (GCL) towards the
synthesis of glutathione for the sequestration of reactive species as a regulatory point
is second to none. However, much still need to be known about the enzyme molecular characterization. Thus, the homology modeling of GCL was carried out using
different modeling webserver tools. The quality of the predicted crystal structures of
human and mouse GCLs with inhibition were further assessed on molecular interaction with naphthalene and its metabolites. Results: the predicted human GCL
and mouse GCL model structures have respective 89.8% and 89.6% residues in the
most favored region of the Ramachandran plot. However, the molecular docking
interaction study with the assessed ligands revealed two different binding pockets
with pi-interactions as major non-covalent bond and better binding scores than
glutathione. Conclusion: the predicted model could provide better mechanism of
GCL catalysis to preserve its essential residues for reasonable GSH synthesis.
Antecedentes: el importante papel de la glutamato-cisteína ligasa (GCL) en la síntesis
de glutatión para el secuestro de especies reactivas como punto regulador es insuperable.
Sin embargo, aún queda mucho por conocer acerca de la caracterización molecular de
enzimas. Por lo tanto, el modelado de homología de GCL se llevó a cabo utilizando
diferentes herramientas de servidor web de modelado. La calidad de las estructuras
cristalinas predichas de los GCL humanos y de ratón con inhibición se evaluó más a
fondo en la interacción molecular con el naftaleno y sus metabolitos. Resultados: las
estructuras del modelo de GCL humano y GCL de ratón predichas tienen residuos
respectivos del 89,8 % y el 89,6 % en la región más favorecida del diagrama de Ramachandran. Sin embargo, el estudio de interacción de acoplamiento molecular con los
ligandos evaluados reveló dos bolsillos de unión diferentes con interacciones pi como
enlace no covalente principal y mejores puntajes de unión que el glutatión. Conclusión: el modelo predicho podría proporcionar un mejor mecanismo de catálisis de
GCL para preservar sus residuos esenciales para una síntesis razonable de GSH.
Antecedentes: o papel significativo da glutamato-cisteína ligase (GCL) para a
síntese de glutationa para o sequestro de espécies reativas como um ponto regulador
é inigualável. No entanto, muito ainda precisa ser conhecido sobre a caracterização
molecular da enzima. Assim, a modelagem de homologia do GCL foi realizada
usando diferentes ferramentas de modelagem do servidor web. A qualidade das
estruturas cristalinas previstas de GCLs humanos e de camundongos com inibição
foi ainda avaliada na interação molecular com naftaleno e seus metabólitos. Resultados: as estruturas do modelo de GCL humano e GCL de camundongo têm resíduos respectivos de 89,8% e 89,6% na região mais favorecida do gráfico de Ramachandran. No entanto, o estudo da interação de docking molecular com os ligantes
avaliados revelou dois bolsos de ligação diferentes com interações pi como principal ligação não covalente e melhores pontuações de ligação do que a glutationa.
Conclusão: o modelo previsto pode fornecer um melhor mecanismo de catálise de
GCL para preservar seus resíduos essenciais para síntese razoável de GSH.
Referencias
C. Espinosa-Diez, V. Miguel, D. Mennerich, T. Kietzmann, P. Sanchez-Perez, S.
Cadenas, S. Lamas, Antioxidant responses and cellular adjustments to oxidative
stress, Redox Biol., 6, 183-197 (2015).
T.P. Dalton, Y. Chen, S.N. Schneider, D.W. Nebert, H.G. Shertzer, Genetically
altered mice to evaluate glutathione homeostasis in health and disease, Free
Radic. Biol. Med., 37, 1511-1526 (2004).
D. Morris, J. Ly, P.-T. Chi, J. Daliva, T. Nguyen, C. Soofer, Y.C. Chen, M. Lagman, V. Venketaraman, Glutathione synthesis is compromised in erythrocytes
from individuals with HIV, Front. Pharmacol., 5, 73 (2014).
Y. Yang, M.Z. Dieter, Y. Chen, H.G. Shertzer, D.W. Nebert, T.P. Dalton, Initial characterization of the glutamate-cysteine ligase modifier subunit Gclm(-
/-) knockout mouse. Novel model system for a severely compromised oxidative
stress response, J. Biol. Chem., 277, 49446-49452 (2002).
C.C. Franklin, D.S. Backos, I. Mohar, C.C. White, H.J. Forman, T.J. Kavanagh,
Structure, function, and post-translational regulation of the catalytic and modifier subunits of glutamate cysteine ligase, Mol. Aspects Med., 30, 86-98 (2009).
N. Fu, D. Li, W. Li, W. Zhao, S. Zhang, L. Liu, S. Zhao, J. Du, L. Kong, R. Wang,
Y. Zhang, Y. Nan, Glutamate-cysteine ligase catalytic subunit attenuated hepatitis C virus-related liver fibrosis and suppressed endoplasmic reticulum stress,
Front. Mol. Biosci., 7, 199 (2020).
Y. Xiong, Y. Xiong, Y. Wang, Z. Wang, A. Zhang, N. Zhao, D. Zhao, Z. Yu, Z.
Wang, J. Yi, X. Luan, Inhibition of glutathione synthesis via decreased glucose
metabolism in stored RBCs, Cell. Physiol. Biochem., 51, 2172-2184 (2018).
Y. Kumagai, Y. Abiko, Environmental electrophiles: Protein adducts, modulation of redox signaling, and interaction with persulfides/polysulfides, Chem. Res.
Toxicol., 30, 203-219 (2017).
R.M. Baldwin, W.T. Jewell, M.V. Fanucchi, C.G. Plopper, A.R. Buckpitt, Comparison of pulmonary/nasal CYP2F expression levels in rodents and rhesus
macaque, J. Pharmacol. Exp. Therapy, 309, 127-136 (2004).
The UniProt Consortium, UniProt: the universal protein knowledgebase in
, Nucleic Acids Research 49 (D1) (2021) D480-D489. URL: https://doi.
org/10.1093/nar/gkaa1100
C. Combet, C. Blanchet, C. Geourjon, G. Deléage NPS@: Network protein
sequence analysis, Trends Biochem. Sci., 25(3), 147-150 (2000).
A. Waterhouse, M. Bertoni, S. Bienert, G. Studer, G. Tauriello, R. Gumienny,
FT. Heer, TAP. de Beer, C. Rempfer, L. Bordoli, R. Lepore, T. Schwede, SWISSMODEL: homology modelling of protein structures and complexes, Nucleic
Acids Res., 46(W1), W296-W303 (2018).
D. Bhattacharya, J. Cheng, 3Drefine: Consistent protein structure refinement by
optimizing hydrogen bonding network and atomic level energy minimization,
Proteins: Structure, Function, and Bioinformatics, 81(1), 119-131 (2012).
D. Bhattacharya, J. Cheng, i3Drefine software for protein 3D structure refinement and its assessment in CASP10, PLoS One, 8(7), e69648 (2013).
D. Bhattacharya, J. Nowotny, R. Cao, J. Cheng, 3Drefine: an interactive web
server for efficient protein structure refinement, Nucleic Acids Res., 44(W1),
W406-W409 (2016). doi: 10.1093/nar/gkw336
R.A. Laskowski, M.W. MacArthur, D.S. Moss, J.M. Thornton, PROCHECK: a
program to check the stereochemical quality of protein structures, J. Appl. Crystal., 26(2), 283-291 (1993).
R.A. Laskowski, J.A. Rullmannn, M.W. MacArthur, R. Kaptein, J.M. Thornton,
AQUA and PROCHECK-NMR: programs for checking the quality of protein
structures solved by NMR, J. Biomol. NMR, 8(4), 477-486 (1996).
P. Benkert, M. Biasini, T. Schwede, Toward the estimation of the absolute quality
of individual protein structure models, Bioinformatics, 27(3), 343-350 (2011)
-350.
A. Roy, J. Yang, Y. Zhang, COFACTOR: an accurate comparative algorithm
for structure-based protein function annotation, Nucleic Acids Res., 40(W1),
W471-W477 (2012).
S. Kim, J. Chen, T. Cheng, A. Gindulyte, J. He, S. He, Q. Li, B.A. Shoemaker,
P.A. Thiessen, B. Yu, L. Zaslavsky, J. Zhang, E.E. Bolton, PubChem 2019 update:
improved access to chemical data, Nucleic Acids Res., 47(D1), D1102–D1109
(2019).
N.M. O’Boyle, M. Banck, C.A. James, C. Morley, T. Vandermeersch, GR.
Hutchison, Open Babel: An Open chemical toolbox, J. Cheminformatics, 3(10),
(2011).
O. Trott, AJ. Olson, AutoDock Vina: Improving the speed and accuracy of
docking with a new scoring function, efficient optimization and multithreading,
J. Comput. Chem., 31(2), 455-461 (2010).
A. Meister, Glutathione metabolism and its selective modification, J. Biol. Chem.,
(33), 17205-17208 (1988).
G.F. Seelig, R.P. Simondsen, A. Meister, Reversible dissociation of gamma-glutamylcysteine synthetase into two subunits, J. Biol. Chem., 259, 9345-9347
(1984).
Y. Chen, H.G. Shertzer, S.N. Schneider, D.W. Nebert, T.P. Dalton, Glutamate
cysteine ligase catalysis: Dependence on ATP and modifier subunit for regulation of tissue glutathione levels, J. Biol. Chem., 280 33766-33774 (2005).
CS. Huang, ME. Anderson, A. Meister, Amino acid sequence and function
of the light subunit of rat kidney gamma-glutamylcysteine synthetase, J. Biol.
Chem., 268, 20578-20583 (1993).
JM. Mason and KM. Arndt, Coiled coil domains: stability, specificity and biological implications, ChemBioChem, 5(2), 170-176 (2004).
C. Geourjon, G. Deléage, SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments,
Bioinformatics, 11(6), 681-684 (1995).
JM. Cardoso, L. Fonseca, C. Egas, I. Abrantes, Cysteine proteases secreted by
the pinewood nematode, Bursaphelenchus xylophilus: in silico analysis, Comput.
Biol. Chem., 77, 291-296 (2018).
B. Patel, V. Singh, D. Patel, Structural bioinformatics, in: N.A. Shaik, K.R.
Hakeem, B. Banaganapalli, R. Elango (editors), Essentials of Bioinformatics, vol.
I., Springer, Cham, Switzerland, 2019, pp. 169-199.
O.G. Oduselu, O.O. Ajani, U.Y. Ajamma1, B. Brors, E. Adebiyi, Homology
modelling and molecular docking studies of selected substituted benzo[d]imidazol-1-yl)methyl) benzimidamide scaffolds on Plasmodium falciparum adenylosuccinate lyase receptor, Bioinform. Biol. Insights, 13, 1177932219865533
(2019).
A.O. Roland, A.E. Morayo, O. Joan, F.I. Gbadamosi, E. Kayode, M. Adelabu,
Modelling profile of onchocerca volvulus glutamate-cysteine ligase (ONCVOGCL), J. Anal. Pharm. Res., 10(3), 118-122 (2021).
H. Yamaguchi, T. Akitaya, Y. Kidachi, K. Kamiie and H. Umetsu, Homology
modeling and structural analysis of human γ-glutamylcysteine ligase catalytic
subunit for antitumor drug development, J. Biophys. Chem., 3(3), 238-248
(2012)
A.L. Morris, M.W. MacArthur, E.G. Hutchinson, J.M. Thornton, Stereochemical quality of protein structure coordinates, Proteins, 12, 345-364 (1992).
RA. Laskowski, MW. MacArthur, JM. Thornton, PROCHECK: validation of
protein structure coordinates, in: M.G. Rossmann, E. Arnold (editors), International Tables of Crystallography, Volume F. Crystallography of Biological Macromolecules, Kluwer Academic Publishers, The Netherlands, 2001, pp. 722-725.
R. Lüthy, J.U. Bowie, D. Eisenberg, A method to identify protein sequences that
fold into a known three-dimensional structure, Science, 253(5016), 164-170
(1991).
R. Lüthy, J.U. Bowie, D. Eisenberg, Assessment of protein models with three-dimensional profiles, Nature 356(6364), 83-85 (1992).
C. Zhang, P.L. Freddolino, Y. Zhang, COFACTOR: improved protein function
prediction by combining structure, sequence and protein–protein interaction
information, Nucleic Acids Res., 45 (Web Server issue) W291-W299 (2017).
K.M. Elokely, R.J. Doerkse, Docking challenge: protein sampling and molecular
docking performance, J. Chem. Inform. Model., 53(8), 1934-1945 (2013).
M.J.A. Bernaldez, J.B. Billones, A. Magpantay, In silico analysis of binding interactions between GSK983 and Human DHODH through docking and molecular dynamics, AIP Conference Proceedings, 2045, 020073 (2018).
I. Olaoye, B. Oso, A. Aberuagba, Molecular mechanisms of anti-inflammatory
activities of the extracts of Ocimum gratissimum and Thymus vulgaris, Avicenna
Journal of Medical Biotechnology, 13(4), 207-216 (2021).
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Visitas a la página del resumen del artículo
Descargas
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
El Departamento de Farmacia de la Facultad de Ciencias de la Universidad Nacional de Colombia autoriza la fotocopia de artículos y textos para fines de uso académico o interno de las instituciones citando la fuente. Las ideas emitidas por los autores son responsabilidad expresa de estos y no de la revista.
Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons de Atribución 4.0 aprobada en Colombia. Consulte la normativa en: http://co.creativecommons.org/?page_id=13