Publicado
Descripción teórica de la detección electroquímica del fármaco pilocarpina, asistida por el compuesto de colorante escuárico con el oxihidróxido de vanadio (III)
Theoretical description of the electrochemical detection of the drug pilocarpine, assisted by the dye compound squaric with vanadium (III) oxyhydroxide
Descrição teórica da detecção eletroquímica da droga pilocarpina, auxiliada pelo corante composto squaric com oxihidróxido de vanádio (III)
DOI:
https://doi.org/10.15446/rcciquifa.v52n1.109398Palabras clave:
Pilocarpina, oxihidróxido de vanadio, colorantes escuáricos, sensores electroquímicos, estado estacionario estable (es)Pilocarpine, vanadium oxyhydroxide, squaric dyes, electrochemical sensors, steady state (en)
Pilocarpina, oxihidróxido de vanádio, corantes quadrados, sensores eletroquímicos, estado estacionário (pt)
Descargas
Introducción: la pilocarpina es un fármaco de origen natural, un agonista no selectivo
de los receptores muscarínicos, usado en el tratamiento de una amplia variedad
de estados patológicos oftálmicos. Sin embargo, su acción depende fuertemente de
la dosis, por lo que se hace necesario desarrollar un método rápido y exacto para su
detección. Metodología: se desarrolla y analiza un modelo matemático, que describe
el desempeño del cátodo, modificado por el oxihidróxido de vanadio, inmovilizado sobre un colorante escuárico, en la detección de la pilocarpina. Resultados: se describe
un proceso catódico, en el que se reduce la policarpina, con la interrupción del anillo
lactónico, seguida por la formación del diol correspondiente al ácido 2-etilo-3-((Nmetilo)
imidazolilmetilo)-4-hidroxibutírico. El análisis del modelo ha confirmado su
eficiencia en los procesos electroanalíticos. Por otro lado, el comportamiento oscilatorio
en corriente eléctrica también puede ocurrir, aunque se presente más allá del
límite de detección. Conclusiones: el oxihidróxido de vanadio puede servir de modificador
eficaz para la detección electroanalítica de pilocarpina por vía catódica.
Introduction: pilocarpine is a drug of natural origin, a non-selective agonist of
muscarinic receptors, used in the treatment of a wide variety of ophthalmic pathological
states. However, its action strongly depends on the dose, which is why it is
necessary to develop a fast and accurate method for its detection. Methodology: A
mathematical model is developed and analyzed, which describes the performance of
the cathode, modified by vanadium oxyhydroxide, immobilized on a squaric dye, in the
detection of pilocarpine. Results: a cathodic process is described, in which polycarpine
is reduced, with the interruption of the lactone ring, followed by the formation of
the diol corresponding to 2-ethyl-3-((N-methyl)imidazolylmethyl)-4-hydroxybutyric
acid. . Analysis of the model has confirmed its efficiency in electroanalytical processes.
On the other hand, oscillatory behavior in electric current can also occur, even if it
occurs beyond the detection limit. Conclusions: vanadium oxyhydroxide can serve as
an effective modifier for the cathodic electroanalytical detection of pilocarpine.
Introdução: a pilocarpina é um fármaco de origem natural, agonista não seletivo dos
receptores muscarínicos, utilizado no tratamento de uma ampla variedade de estados
patológicos oftálmicos. No entanto, sua ação depende fortemente da dose, por isso é
necessário desenvolver um método rápido e preciso para sua detecção. Metodologia:
é desenvolvido e analisado um modelo matemático que descreve o desempenho do
cátodo, modificado por oxihidróxido de vanádio, imobilizado sobre um corante
quadrado, na detecção de pilocarpina. Resultados: é descrito um processo catódico,
no qual a policarpina é reduzida, com a interrupção do anel lactona, seguida da
formação do diol correspondente ao ácido 2-etil-3-((N-metil)imidazolilmetil)-4-hidroxibutírico
. A análise do modelo confirmou sua eficiência em processos eletroanalíticos.
Por outro lado, também pode ocorrer comportamento oscilatório na corrente
elétrica, mesmo que ocorra além do limite de detecção. Conclusões: oxihidróxido
de vanádio pode servir como um modificador eficaz para a detecção eletroanalítica
catódica de pilocarpina.
Referencias
T. Mansoori, Pilocarpime 1.25 % for the treatment of presbyopia, Indian J.
Ophthalmol., 71, 308-309 (2023). DOI: https://doi.org/10.1007/s15011-023-5811-y
L.R. Wiseman, D. Faulds, Oral pilocarpine: A review of its pharmacological properties,
Drugs, 49, 143-155 (2012). DOI: https://doi.org/10.2478/v10120-012-0016-1
N. Jain, A. Verma, N. Jain, Formulation and investigation of pilocarpine hydrochloride
niosomal gerls for the treatment of glaucoma: Intraocular pressure measurement
in white albino rabbits, Drug Deliv., 27, 888-899 (2020). DOI: https://doi.org/10.1080/10717544.2020.1775726
A. Kapourani, K.N. Kontogiannopoulos, P. Barmpalexis, A review of the role of
pilocarpine on the management of xerostomia and the importance of the topical
administration systems development, Pharmaceuticals, 15, 762 (2022). DOI: https://doi.org/10.3390/ph15060762
N. Tsifetaki, G. Kitsos, C. Paschides, et al., Oral pilocarpine for the treatment of
ocular symptoms in patients with Sjogren´s Syndrome. A randomised 12-week
controlled study, Ann. Rheum. Dis., 62, 1204-1207 (2003). DOI: https://doi.org/10.1136/ard.2002.003889
K. Senba, T. Miyamoto, H. Eguchi, Y. Mitamura, The efficacy of oral pilocarpine
for the treatment of dry eye symptoms in patients with aqueous tear deficiency
and evaporative dry eye, Inv. Ophthalmol. Visual Sci., 52, 3837 (2011).
X. Tan, Y. Zeng, Z. Tu, et al., TRPV1 contributes to the neuroprotective effect
of dexmedetomidine in pilocarpine-induced status epilepticus juvenile rats, Bio-
Med Res. Int., 2020, 7623635 (2020).
Y. N. Paudel, Y. Kumari, S. Z. Anidin, et al., Pilocarpine induced behavioral and
biochemical alterations in chronic seizure-like conditions in adult zebrafish, Int.
J. Mol. Sci., 21, 2492 (2020).
M. Cifuentes, P. Del Barrio-Díaz, C. Vera-Kellet, Pilocarpine and artificial saliva
for the treatment of xerostomia and xerophthalmia in Sjogren Syndrome: A double-
blind randomized controlled trial, Br. J. Dermatol., 179(5), 1056-1061 (2018). DOI: https://doi.org/10.1111/bjd.16442
M. Watanabe, Ch. Yamada, Y. Komagata, et al., New low-dose liquid pilocarpine
formulation for treating dry mouth in Sjogren Syndrome: Clinical efficacy,
symptom relief and improvement in quality of life, J. Pharm. Health Care Sci.,
, 4 (2018).
C. Y. Hsu, K.-Ch. Hung, M. Lin, et al., The effect of pilocarpine on dental caries
in patients with primary Sjogren´s Syndrome: a database prospective cohort
study, Arthritis Res. Ther., 21, 251 (2019). DOI: https://doi.org/10.1186/s13075-019-2031-7
C-Q. Cheng, H., Xu, L. Liu, et al., Efficacy and safety of pilocarpine for radiation-
induced xerostomia in patients with head and neck cancer: A systematic
review and meta-analysis, J. Amer. Dent. Assoc., 147(4), 236-246 (2016).
A.M. Farag, C. Holliday, J. Cimmino, et al., Comparing the effectiveness and
adverse effects of pilocarpine and cevimeline in patients with hyposalivation,
Oral Dis., 25, 1937-1944 (2019). DOI: https://doi.org/10.1111/odi.13192
N. Nakamura, N. Sasano, H. Yamashita, et al., Oral pilocarpine (5 mg t.i.d.) used for
xerostomia causes adverse effects in Japanese, Auris Nasus Larinx, 36, 310-313 (2009). DOI: https://doi.org/10.1016/j.anl.2008.04.008
B. Motamed, A. Alaee, A. Azizi, et al., Comparison of the 1% and 2% pilocarpine
mouthwash in a xerostomic population: A randomized clinical trial, BMC
Oral Health, 22, 548 (2022).
E.B. Silberstein, Reducing the incidence of 131I-induced sialadenitis: The role of
pilocarpine, J. Nucl. Med., 49, 546-549 (2008). DOI: https://doi.org/10.2967/jnumed.107.049411
P.L. Dodi, Immune-mediated keratoconjunctivitis sicca in dogs: Current perspectives
on management, Vet. Med. Res. Rep., 6, 341 (2015).
S. Felberg, P.E. Correa-Dantas, E.H. Sato, Oral pilocarpine for the treatment of
dry eye in patients with Sjogren´s Syndrome, Arq. Bras. Oftalmol., 85, 269-276
(2022).
P.Y. Yu, G. Tang, H. Cheng, et al., Determination of pilocarpine in human plasma
by LC–APCI–MS–MS and application to a pharmacokinetic study, Chromatography,
, 921-929 (2011).
R. Mendes de Freitas, F. de Oliveira-Silva, M. Goretti de Vasconcelos-Silva, D.
Feng, Antioxidant mechanisms of iso-6-cassine in suppressing seizures induced
by pilocarpine, Rev. Bras. Farmacogn., 21, 437-443 (2011). DOI: https://doi.org/10.1590/S0102-695X2011005000043
A.M. Abbass, Preparation of pilocarpine hydrochloride selective electrodes, J.
Al-Nahrain Univ., 20, 13-19 (2017). DOI: https://doi.org/10.22401/JNUS.20.4.03
S. McGee, G.O. Waring, Pilocarpine hydrochloride ophthalmic solution 1,25%:
An innovative prescription eye drop for the treatment of presbyopia, TouchReviews
in Ophthalmology, 16, 54-62 (2022). DOI: https://doi.org/10.2307/j.ctv2t5xh0f.7
M.A. Jackson, J. Giyanani, Y. Shabaik, et al., In vitro and in-eye comparison of
commercial pilocarpine ophthalmic solution and an optimized, reformulated
pilocarpine for presbyopia treatment, Ophthalm. Ther., 11, 869-879 (2022). DOI: https://doi.org/10.1007/s40123-022-00482-2
R.L. Kow, K. Jiang, A.V. Naydenov, et al., Modulation of pilocarpine-induced
seizures by cannabinoid receptor 1, PLoS One, 9, e95922 (2014). DOI: https://doi.org/10.1371/journal.pone.0095922
W.K. Abdulsahib, S.H. Kathem, M.Y. Al-Radeef, L.S. Jasim, Mentha piperita oil
exerts an antiepileptic effect in pilocarpine and pentylenetetrazol-induced seizures
in mice, Veterin. Med. Int., 2022, 4431317 (2022).
Ch. Fan, G. Liu Y. Long, et al., Thiolation in arsenic metabolism: A chemical
perspective, Metallomics, 10, 1368-1382 (2018). DOI: https://doi.org/10.1039/C8MT00231B
X-L. Liu, A novel sensor based on electropolymerizationpoly(safranin) film electrode
for voltammetric determination of 4-nitrophenol, Bull. Kor. Chem. Soc.,
, 1182-1186 (2010).
A. Stadnik, E.M. Caldas, A. Galli, F.J. Anaissi, Eletrodo modificado com
[CoO(OH)] coloidal aplicado na detecção de ácido oxálico, Orbital. Elec. J.
Chem., 7, 122-128 (2015). DOI: https://doi.org/10.5406/jamerfolk.128.507.0122
Volodymyr V. Tkach, Marta V. Kushnir, Sílvio C. de Oliveira, Yana G. Ivanushko et al.
J.S. Bonini, F.Q. Mariani, E. Guimarães-Castro, et al., Partículas de CoO(OH)
dispersas em pasta de carbono aplicado na eletrooxidação de compostos fenólicos,
Orbital Elec. J. Chem., 7, 318-326 (2015).
O. Stadnik, Synthesis, electrochemical and photoelectrochemical properties of
the oxide-hydroxide compounds of cobalt, Diss. Kand. Chim. N. – Kyiv., 2011.
O. Stadnik, N. Ivanova, Y. Boldyrev, 218th Int. Electrochem. Soc. Meeting, Abstract
# 2240.
Y.Jung, N. Singh, K.-Sh. Choi, Cathodic deposition of polypyrrole enabling the
one-step assembly of metal-polymer hybrid electrodes, Angew. Chem., Int. Ed.,
, 8331-8334 (2009).
S. Sadki, P. Schottland, N. Brodie, G. Saboraud, The mechanisms of pyrrole electropolymerization,
Chem. Soc. Rev., 29, 283-293 (2000). DOI: https://doi.org/10.1039/a807124a
F. Ağın, Electrochemical determination of amoxicillin on a poly(acridine orange)
modified glassy carbon electrode, Anal. Lett., 49, 1366-1378 (2016). DOI: https://doi.org/10.1080/00032719.2015.1101602
E. Lima, L. Reis, “Lights, Squaraines, Action!” - The role of squaraine dyes in
photodynamic therapy, Future Med. Chem., 19, 1385-1402 (2022).
T.D. Martins, E. Lima, R.E. Boto, et al., Red and near-infrared absorbing dicyanomethylene
squaraine cyanine dyes: Photophysicochemical properties and
anti-tumor photosensitizing effects, Materials, 13, 2083 (2020). DOI: https://doi.org/10.3390/ma13092083
S. Sreejith, P. Carol, P. Chithra, A. Ajayaghosh, Squaraine dyes: A mine of molecular
materials, J. Mater. Chem., 18, 264-274 (2008). DOI: https://doi.org/10.1039/B707734C
D. Lynch, Pyrrolyl-squaraines. Fifty golden years, Metals, 5, 1349-1370 (2015). DOI: https://doi.org/10.3390/met5031349
I. Das, N. Goel, N.R. Agrawal, S.K. Gupta, Growth patterns of dendrimers
and electric potential oscillations during electropolymerization of pyrrole using
mono- and mixed surfactants, J. Phys. Chem. B, 114(40), 12888-12896 (2010). DOI: https://doi.org/10.1021/jp105183q
M.S. Ba-Shammakh, Ph. D. thesis, King Fahd University of Petroleum and
Minerals, Dharan, Saudi Arabia, 2002.
I. Das, N. Goel, S.K. Gupta, N.R. Agrawal, Electropolymerization of pyrrole:
Dendrimers, nano-sized patterns and oscillations in potential in presence of aromatic
and aliphatic surfactants, J. Electroanal. Chem., 670, 1-10 (2012). DOI: https://doi.org/10.1016/j.jelechem.2012.01.023
M. Bazzaoui, E.A. Bazzaoui, L. Martins, J.I. Martins, Electropolymerization of
pyrrole on zinc-lead-silver alloys’ electrodes in neutral and acid organic media,
Synth. Metals, 130, 73-83 (2002). DOI: https://doi.org/10.1016/S0379-6779(02)00101-7
K. Aoki, I. Mukoyama, J. Chen, Competition between polymerization and dissolution
of poly(3-methylthiophene) films, Russ. J. Electrochem., 40, 280-285 (2004). DOI: https://doi.org/10.1023/B:RUEL.0000019665.59805.4c
V.V. Tkach, M.V. Kushnir, S.C. de Oliveira, et al., The mathematical description
for sucralose electrochemical detection on the novel acridinic derivative, Applied
Journal of Environmental Engineering Science, 4, 141-148 (2018).
V.V. Tkach, N.M. Storoshchuk, B.D. Storoshchuk, et al., The theoretical description
for sucralose cathodical electrochemical determination on the conducting
polymer containing pyridinic nitrogen atoms, Biointerface Res. Appl. Chem., 12,
-1506 (2022).
V.V. Tkach, M.V; Kushnir, S.C. de Oliveira, et al., The theoretical description
for a sucralose electrochemical cathodical determination over a 9-9´-diacridylmodified
electrode, Orbital, 13, 219- 222 (2021).
V.V. Tkach, M.V. Kushnir, S.C. de Oliveira, et al., Theoretical description for
anti-COVID-19 drug molnupiravir electrochemical determination over the
poly(1,2,4-triazole)-co-squaraine dye composite with cobalt (III) oxyhydroxide,
Biointerface Res. Appl. Chem., 13, 74 (2023).
V.V. Tkach, M.M. Kucher, N.Slyvka, et al., The modeling for anti-Covid-19 drug
molnupiravir electrochemical sensing on C3N4, Biointerface Res. Appl. Chem.,
, 446 (2023).
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
El Departamento de Farmacia de la Facultad de Ciencias de la Universidad Nacional de Colombia autoriza la fotocopia de artículos y textos para fines de uso académico o interno de las instituciones citando la fuente. Las ideas emitidas por los autores son responsabilidad expresa de estos y no de la revista.
Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons de Atribución 4.0 aprobada en Colombia. Consulte la normativa en: http://co.creativecommons.org/?page_id=13