Publicado

2024-03-04

Acoplamiento molecular in silico de compuestos de Moringa oleifera Lam. con el sitio catalítico y de unión a FAD-NADPH de la tripanotiona reductasa de Leishmania infantum

In silico molecular docking of Moringa oleifera Lam. compounds with the catalytic and FAD-NADPH-binding site of trypanothione reductase from Leishmania infantum

Docking molecular in silico de compostos de Moringa oleifera Lam. com o sítio catalítico e de ligação FAD-NADPH da tripanotiona redutase de Leishmania infantum

Palabras clave:

moringa, fitoconstituyentes, acoplamiento molecular, leishmania, tripanotiona reductasa (es)
moringa, phytoconstituents, molecular docking, leishmania, trypanothione reductase (en)

Descargas

Autores/as

  • Shirley Fernández Universidad Nacional de Asunción
  • Elvio Gayozo Melgarejo Universidad Nacional de Asunción

Introducción: la búsqueda computacional de nuevos compuestos para futuras terapias farmacológicas contra la leishmaniasis se ha enfocado en la tripanotiona reductasa. Esta enzima es esencial para la supervivencia de Leishmania infantum, su ausencia en el huésped y su alta farmacobilidad la convierten en un buen objetivo para el desarrollo de nuevas drogas. El uso de plantas como fitoterapéuticos ha sido ampliamente investigado debido a que han demostrado importantes actividades leishmanicidas. Objetivo: analizar las interacciones de los compuestos de Moringa oleifera con el sitio catalítico y de unión a FAD-NADPH de la tripanotiona reductasa de L. infantum empleando el acoplamiento molecular. Método: fueron evaluados treinta compuestos descritos en la especie de M. oleifera, estas se sometieron a ensayos computacionales de acoplamiento molecular semiflexible con el sitio catalítico de la enzima y el dominio de unión FAD-NADPH. Resultados: se evidencia que los compuestos que demostraron valores favorables de energía de unión con el sitio catalítico de la enzima fueron la apigenina, la quercetina, la miricetina y la isorhamnetina. Mientras que los compuestos que presentaron uniones favorables con el dominio FAD-NADPH fueron la rutina y el ácido 5,6,7,8-tetrahidrofólico. Conclusión: estos hallazgos sugieren que los compuestos de M. oleifera mencionados presentan afinidades de unión por el sitio catalítico y el dominio de unión FAD-NADPH de la tripanotiona reductasa de L. infantum, pudiendo ser utilizados para pruebas in vitro.

Introduction: Computational search of new compounds for future drug therapies against leishmaniasis has focused on trypanothione reductase. This enzyme is essential for the survival of Leishmania infantum, the absence in the host and its high druggability make it a good target for the development of new drugs. The use of plants for phytotherapeutics purpose has been widely investigated due to its important leishmanicidal activities. Aim: The aim of this study was to analyze the interactions of Moringa oleifera compounds to the catalytic and FAD-NADPH binding site of L. infantum trypanothione reductase using molecular docking. Method: Thirty compounds described in M. oleifera species were evaluated and subjected to computational semi-flexible molecular docking assays with the catalytic site and the FAD-NADPH binding domain of the enzyme. Results: The results show that the compounds that demonstrated favorable binding energy values with the catalytic site of the enzyme were apigenin, quercetin, myricetin and isorhamnetin. While the compounds that exhibited favorable binding with the FAD-NADPH domain were rutin and 5,6,7,8-tetrahydrofolic acid. Conclusion: These findings suggest that mentioned M. oleifera compounds present binding affinities for the catalytic site and the FAD-NADPH binding domain of L. infantum trypanothione reductase and could be used for in vitro assays.Introduction: Computational search of new compounds for future drug therapies against leishmaniasis has focused on trypanothione reductase. This enzyme is essential for the survival of Leishmania infantum, the absence in the host and its high druggability make it a good target for the development of new drugs. The use of plants for phytotherapeutics purpose has been widely investigated due to its important leishmanicidal activities. Aim: The aim of this study was to analyze the interactions of Moringa oleifera compounds to the catalytic and FAD-NADPH binding site of L. infantum trypanothione reductase using molecular docking. Method: Thirty compounds described in M. oleifera species were evaluated and subjected to computational semi-flexible molecular docking assays with the catalytic site and the FAD-NADPH binding domain of the enzyme. Results: The results show that the compounds that demonstrated favorable binding energy values with the catalytic site of the enzyme were apigenin, quercetin, myricetin and isorhamnetin. While the compounds that exhibited favorable binding with the FAD-NADPH domain were rutin and 5,6,7,8-tetrahydrofolic acid. Conclusion: These findings suggest that mentioned M. oleifera compounds present binding affinities for the catalytic site and the FAD-NADPH binding domain of L. infantum trypanothione reductase and could be used for in vitro assays.

Introdução: a busca computacional por novos compostos para futuras terapias farmacológicas contra a leishmaniose tem se concentrado na tripanotiona redutase. Esta enzima é essencial para a sobrevivência de Leishmania infantum, sua ausência no hospedeiro e sua alta farmacobilidade a tornam um bom alvo para o desenvolvimento de novos fármacos. O uso de plantas como fitoterápicos tem sido amplamente investigado por apresentarem importantes atividades leishmanicidas. Objetivo: o objetivo deste estudo foi analisar as interações dos compostos da Moringa oleifera com o sítio catalítico e de ligação FAD-NADPH da tripanotiona redutase de L. infantum usando docking molecular. Método: foram avaliados trinta compostos descritos na espécie M. oleifera, os quais foram submetidos a testes computacionais de docking molecular semi-flexível com o sítio catalítico da enzima e o domínio de ligação FAD-NADPH. Resultados: fica evidente que os compostos que demonstraram valores de energia de ligação favoráveis com o sítio catalítico da enzima foram apigenina, quercetina, miricetina e isorhamnetina. Enquanto os compostos que apresentaram ligações favoráveis com o domínio FAD-NADPH foram a rutina e o ácido 5,6,7,8-tetraidrofólico. Conclusão: esses achados sugerem que os compostos de M. oleifera mencionados possuem afinidades de ligação para o sítio catalítico e o domínio de ligação FAD-NADPH da tripanotiona redutase de L. infantum, e podem ser usados para testes in vitro.

 

Referencias

República de Paraguay, Ministerio de Salud Pública y Bienestar Social, Reporte de Leishmaniasis Visceral en humanos y caninos, Paraguay, período 2016 al 2018, DGVS, Asunción, paraguay, 2018. URL: https://dgvs.mspbs.gov.py/files/boletines_ anuales/15_2018_BoletinAnual.pdf

L. Turcano, E. Torrente, A. Missineo, M. Andreini, M. Gramiccia, T. Di Muccio, I. Genovese, A. Fiorillo, S. Harper, A. Bresciani, G. Colotti, A. IlariI, Identification and binding mode of a novel Leishmania Trypanothione reductase inhibitor from high throughput screening, PLoS Neglected Tropical Diseases, 12(11), e0006969 (2018). https://doi.org/10.1371/journal.pntd.0006969

P.R.T. Romão, J. Tovar, S.G. Fonseca, R. H. Moraes, A.K. Cruz, J.S. Hothersal, A.A. Noronha-Dutra, S.H. Ferreira, F.Q. Cunha, Glutathione and the redox control system trypanothione/trypanothione reductase are involved in the protection of Leishmania spp. against nitrosothiol-induced cytotoxicity, Brazilian Journal of Medical and Biological Research, 39(3), 355–363 (2006). https://doi.org/10.1590/s0100-879x2006000300006

B.K. Singh, N. Sarkar, M.V. Jagannadham, V.K. Dubey, Modeled structure of trypanothione reductase of Leishmania infantum, BMB Reports, 41(6), 444– 447 (2008). https://doi.org/10.5483/bmbrep.2008.41.6.444

F. Saccoliti, G. Angiulli, G. Pupo, L. Pescatori, V.N. Madia, A. Messore, G. Colotti, A. Fiorillo, L. Scipione, M. Gramiccia, T. Di Muccio, R. Di Santo, R. Costi, A. Ilari, Inhibition of Leishmania infantum trypanothione reductase by diaryl sulfide derivatives, Journal of Enzyme Inhibition and Medicinal Chemistry, 32(1), 304-310 (2017). https://doi.org/10.1080/14756366.2016.1250755

J.A. Gómez-Intriago, J. Cañarte-Alcivar, Leishmaniasis: un tema siempre de actualidad, Revista Científica Arbitrada en Investigaciones de la Salud “GESTAR”, 5(10), 2–21 (2022). URL: https://journalgestar.org/index.php/gestar/article/view/75/134

A. Kaur, P.K. Kaur, S. Singh, I. P. Singh, Antileishmanial compounds from Moringa oleifera Lam., Zeitschrift für Naturforschung C, 69(3-4), 110–116 (2014). https://doi.org/10.5560/znc.2013-0159

M.K. Singh, J. Paul, T. De, T. Chakraborti, Bioactivity guided fractionation of Moringa oleifera Kam. flower targeting Leishmania donovani, Indian Journal of Experimental Biology, 53, 747–752 (2015). URL: https://nopr.niscpr.res.in/bitstream/123456789/33101/1/IJEB%2053%2811%29%20747-752.pdf

F.A. Espinosa-Méndez, Leishmanicidal activity of ishpingo and moringa plants, Tesis de Maestría en Microbiología, Universidad San Francisco de Quito (USFQ), Quito, Ecuador, 2019. URL: https://repositorio.usfq.edu.ec/bitstream/23000/9185/1/140970.pdf

I.A. Raubilu, U. Isah, M.A. Ahmad, Antimicrobial activity of Moringa oleifera: A short review, Bayero Journal of Pure and Applied Sciences, 12(1), 128–132 (2019). https://doi.org/10.4314/bajopas.v12i1.21S

K.A. Hammi, R. Essid, O. Tabbene, S. Elkahoui, H. Majdoub, R. Ksouri, Antileishmanial activity of Moringa oleifera leaf extracts and potential synergy with amphotericin B, South African Journal of Botany, 129, 67–73 (2019). https://doi.org/10.1016/j.sajb.2019.01.008

A.R. Nur-Zahirah, H. Khairana, K. Endang, Moringa genus: A review of phytochemistry and pharmacology, Frontiers in Pharmacology, 9, 108 (2018). https://doi.org/10.3389/fphar.2018.00108

R.K. Saini, I. Sivanesan, Y.S. Keum, Phytochemicals of Moringa oleifera: A review of their nutritional, therapeutic and industrial significance, 3 Biotech, 6(2), 203 (2016). https://doi.org/10.1007/s13205-016-0526-3

S.J. Stohs, M.J. Hartman, Review of the safety and efficacy of Moringa oleifera, Phytotherapy Research, 29(6), 796–804 (2015). https://doi.org/10.1002/ptr.5325

S. Kim, J. Chen, T. Chen, A. Gindulyte, J. He, S. He, Q. Li, B.A. Shoemaker, P.A. Thiessen, B. Yu, L. Zaslavsky, J. Zhang, E.E. Bolton, PubChem in 2021: New data content and improved web interfaces, Nucleic Acids Res., 49(D1), D1388– D1395 (2021). https://doi.org/10.1093/nar/gkaa971

P. Baiocco, G. Poce, S. Alfonso, M. Cocozza, G.C. Porretta, G. Colotti, M. Biava, F. Moraca, B. Botta, V. Yardley, A. Fiorillo, A. Lantella, F. Malatesta, A. Ilari, Inhibition of Leishmania infantum trypanothione reductase by azolebased compounds: A comparative analysis with its physiological substrate by x‐ray crystallography, ChemMedChem, 8(7), 1175–1183 (2013). https://doi.org/10.1002/cmdc.201300176

M.D. Hanwell, D.E. Curtis, D.C. Lonie, T. Vandermeersch, E. Zurek, G.R. Hutchison, Avogadro: An advanced semantic chemical editor, visualization, and analysis platform, Journal of Cheminformatics, 4(1), 17 (2012). https://doi.org/10.1186/1758-2946-4-17

O. Trott, A.J. Olson, AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, Journal of Computational Chemistry, 31(2), 455-461 (2010). https://doi.org/10.1002/jcc.21334

S. Dallakyan, A.J. Olson, Small-molecule library screening by docking with PyRx, Chemical Biology: Methods and Protocols, 1263, 243–250 (2015). https://doi.org/10.1007/978-1-4939-2269-7_19

E. Gayozo, L. Rojas, Análisis estructural de interacciones in silico de fitoconstituyentes de Solanum americanum Mill., Solanum guaraniticum A. St.-Hil. y Solanum lycopersicum L. con la proteína tripanotiona reductasa de Leishmania infantum, Steviana, 12(2), 31–54 (2022). https://doi.org/10.56152/Steviana-FacenV12N2A2_2020

E.F. Pettersen, T.D. Goddard, C.C. Huang, G.S. Couch, D.M. Greenblatt, E.C. Meng, T.E. Ferrin, UCSF Chimera—A visualization system for exploratory research and analysis, Journal of Computational Chemistry, 25(13), 1605–1612 (2004). https://doi.org/10.1002/jcc.20084

E.F. Pettersen, T.D. Goddard, C.C. Huang, E.C. Meng, G.S. Couch, T.I. Croll, T.E. Ferrin, UCSF ChimeraX: Structure visualization for researchers, educators, and developers, Protein Science, 30(1), 70–82 (2021). https://doi.org/10.1002/pro.3943

P.C. Fricker, M. Gastreich, M. Rarey, Automated generation of structural molecular formulas under constraints, Journal of Chemical Information and Computer Sciences, 44(3), 1065–1078 (2004). https://doi.org/10.1021/ci049958u

K. Stierand, P. Maaß, M. Rarey, Molecular complexes at a glance: Automated generation of two-dimensional complex diagrams, Bioinformatics, 22(14), 1710–1716 (2006). https://doi.org/10.1093/bioinformatics/btl150

C.A. Lipinski, F. Lombardo, B.W Dominy, P.J. Feeney, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development, Advanced Drug Delivery Reviews, 46(1-3), 3–26 (2001). https://doi.org/10.1016/S0169-409X(00)00129-0

A. Daina, O. Michielin, V. Zoete, iLOGP: A simple, robust, and efficient description of n-octanol/water partition coefficient for drug design using the GB/SA approach, Journal of Chemical Information and Modeling, 54(12), 3284-3301 (2014). https://doi.org/10.1021/ci500467k

A. Daina, V. Zoete, A boiled-egg to predict gastrointestinal absorption and brain penetration of small molecules, ChemMedChem, 11(11), 1117-1121 (2016). https://doi.org/10.1002/cmdc.201600182

N. Daina, A. Sivakumar, J.W. Polak, Electric vehicle charging choices: Modelling and implications for smart charging services, Transportation Research Part C: Emerging Technologies, 81, 36–56 (2017). https://doi.org/10.1016/j. trc.2017.05.006

P. Banerjee, A.O. Eckert, A.K. Schrey, R. Preissner, ProTox-II: A webserver for the prediction of toxicity of chemicals, Nucleic Acids Research, 46(W1), W257– W263 (2018). https://doi.org/10.1093/nar/gky318

W.H. Kruskal, W.A Wallis, Use of ranks in one-criterion variance analysis, Journal of the American Statistical Association, 47(260), 583–621 (1952). https://doi.org/10.1080/01621459.1952.10483441

O.J. Dunn, Multiple comparisons using rank sums, Technometrics, 6(3), 241– 252 (1964). https://doi.org/10.1080/00401706.1964.10490181

Ø. Hammer, D.A. Harper, P.D. Ryan, PAST: Paleontological statistics software package for education and data analysis, Palaeontologia electronica, 4(1), 9 (2001).

P. Matteini, A. Goti, G. Agati, Theoretical conformational analysis of rutin, Monatshefte für Chemie-Chemical Monthly, 141, 793–800 (2010). https://doi.org/10.1007/s00706-010-0330-4

X. Song, L. Tan, M. Wang, C. Ren, C. Guo, B. Yang, Y. Ren, Z. Cao, Y. Li, J. Pei, Myricetin: A review of the most recent research, Biomedicine & Pharmacotherapy, 134, 111017 (2021). https://doi.org/10.1016/j.biopha.2020.111017

C.A. Hobbs, C. Swartz, R. Maronpot, J. Davis, L. Recio, M. Koyanagi, S.M. Hayashi, Genotoxicity evaluation of the flavonoid, myricitrin, and its aglycone, myricetin, Food and Chemical Toxicology, 83, 283–292 (2015). https://doi.org/10.1016/j.fct.2015.06.016

R. Vrijsen, Y. Michotte, A. Boeyé, Metabolic activation of quercetin mutagenicity. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 232(2), 243–248 (1990). https://doi.org/10.1016/0027-5107(90)90130-V

J.H. Lin, A. Y. Lu, Role of pharmacokinetics and metabolism in drug discovery and development, Pharmacological Reviews, 49(4), 403–449 (1997).

P. Zhou, J. Huang, F. Tian, Specific noncovalent interactions at protein-ligand interface: Implications for rational drug design, Current Medicinal Chemistry, 19(2), 226–238 (2012). https://doi.org/10.2174/092986712803414150

C.N. Pace, H. Fu, K.L. Fryar, J. Landua, S.R. Trevino, D. Schell, R.L. Thurlkill, S. Imura, J.M. Scholtz, K. Gajiwala, J. Sevcik, L. Urbanikova, J.K. Myers, K. Takano, E.J. Hebert, B.A. Shirley, G.R. Grimsley, Contribution of hydrogen bonds to protein stability, Protein Science: A Publication of the Protein Society, 23(5), 652–661 (2014). https://doi.org/10.1002/pro.2449

A. Khaldan, S. Bouamrane, R. El-mernissi, H. Maghat, A. Sbai, M. Bouachrine, T. Lakhlifi, Molecular docking, ADMET prediction, and quantum computational on 2-methoxy benzoyl hydrazone compounds as potential antileishmanial inhibitors, Biointerface Research in Applied Chemistry, 13(4), 302 (2022). https://doi.org/10.33263/BRIAC134.302

Y.Z. Zheng, Y. Zhou, Q. Liang, D.F. Chen, R. Guo, R.C. Lai, Hydrogen-bonding interactions between Apigenin and ethanol/water: a theoretical study, Scientific Reports, 6(1), 34647 (2016). https://doi.org/10.1038/srep34647

M. Rossi, L.F. Rickles, W.A. Halpin, The crystal and molecular structure of quercetin: A biologically active and naturally occurring flavonoid, Bioorganic Chemistry, 14(1), 55–69 (1986). https://doi.org/10.1016/0045-2068(86)90018-0

G. Gong, Y.Y. Guan, Z.L. Zhang, K. Rahman, S.J. Wang, S. Zhou, X. Luan, H. Zhang, Isorhamnetin: A review of pharmacological effects, Biomedicine & Pharmacotherapy, 128, 110301 (2020). https://doi.org/10.1016/j. biopha.2020.110301

R. Patil, S. Das, A. Stanley, L. Yadav, A. Sudhakar, A.K. Varma, Optimized hydrophobic interactions and hydrogen bonding at the target-ligand interface leads the pathways of drug-designing, PLoS One, 5(8), e12029 (2010). https://doi.org/10.1371/journal.pone.0012029

C. M. Roth, B.L. Neal, A.M. Lenhoff, Van der Waals interactions involving proteins, Biophysical Journal, 70(2), 977–987 (1996). https://doi.org/10.1016/S0006-3495(96)79641-8

L. Turcano, E. Torrente, A. Missineo, M. Andreini, M, Gramiccia, T. Di Muccio, I. Genovese, A. Fiorillo, S. Harper, A. Bresciani, G. Colotti, A. IlariI, Identification and binding mode of a novel Leishmania trypanothione reductase inhibitor from high throughput screening, PLoS Neglected Tropical Diseases, 12(11), e0006969 (2018). https://doi.org/10.1371/journal.pntd.0006969

T. Battista, G. Colotti, A. Ilari, A. Fiorillo, Targeting trypanothione reductase, a key enzyme in the redox trypanosomatid metabolism, to develop new drugs against leishmaniasis and trypanosomiases, Molecules (Basel), 25(8), 1924 (2020). https://doi.org/10.3390/molecules25081924

F. Fonseca-Silva, J.D.F Inacio, M.M. Canto-Cavalheiro, E.E. Almeida-Amaral, Reactive oxygen species production and mitochondrial dysfunction contribute to quercetin induced death in Leishmania amazonensis, PLoS One, 6(2), e14666 (2011). https://doi.org/10.1371/journal.pone.0014666

J. Mercado-Camargo, L. Cervantes-Ceballos, R. Vivas-Reyes, A. Pedretti, M.L. Serrano-García, H. Gómez-Estrada, Homology modeling of leishmanolysin (gp63) from Leishmania panamensis and molecular docking of flavonoids, ACS Omega, 5(24), 14741–14749 (2020). https://doi.org/10.1021/acsomega.0c01584

S. Das, P. Roy, S. Mondal, T. Bera, A. Mukherjee, One pot synthesis of gold nanoparticles and application in chemotherapy of wild and resistant type visceral leishmaniasis, Colloids and Surfaces B: Biointerfaces, 107, 27–34 (2013). https://doi.org/10.1016/j.colsurfb.2013.01.061

A. Sousa-Batista, F. Poletto, C. Philipon, S. Guterres, A. Pohlmann, B. Rossi- Bergmann, Lipid-core nanocapsules increase the oral efficacy of quercetin in cutaneous leishmaniasis, Parasitology, 144(13), 1769–1774 (2017). https://doi.org/10.1017/S003118201700097X

A. A. Hassan, H.E. Khalid, A.H. Abdalla, M.M. Mukhtar, W.J. Osman, T. Efferth, Antileishmanial activities of medicinal herbs and phytochemicals in vitro and in vivo: An update for the years 2015 to 2021, Molecules, 27(21), 7579 (2022). https://doi.org/10.3390/molecules27217579

R. Chandrasekar, D. Subasish, B. Sivagami, P. Jayasree, M. Niranjan Babu, Therapeutic efficacy of flavonoids and terpenoids an ongoing herbal therapy in the treatment of leishmaniasis, Natural Products: An Indian Journal, 14(2), 124 (2018). URL: https://www.tsijournals.com/articles/therapeutic-efficacy-offlavonoids-and-terpenoids-an-ongoing-herbal-therapy-in-the-treatment-of-leishmaniasis-13903.html

J.L. Baldim, B.G.V. de Alcântara, O.d.S. Domingos, M.G. Soares, I.S. Caldas, R.D. Novaes, T.B. Oliveira, J.H.G. Lago, D.A. Chagas-Paula, The correlation between chemical structures and antioxidant, prooxidant, and antitrypanosomatid properties of flavonoids, Oxidative Medicine and Cellular Longevity, 2017, ID3789856 (2017). https://doi.org/10.1155/2017/3789856

D. Tasdemir, M. Kaiser, R. Brun, V. Yardley, T.J. Schmidt, F. Tosun, P. Rüedi, Antitrypanosomal and antileishmanial activities of flavonoids and their analogues: In vitro, in vivo, structure-activity relationship, and quantitative structureactivity relationship studies, Antimicrobial Agents and Chemotherapy, 50(4), 1352–1364 (2006). https://doi.org/10.1128/AAC.50.4.1352-1364.2006

P.T.P.P. Neto, T.R. Santos, C.J.M. Tellis, Desenvolvimento de novos derivados de plantas medicinais para doenças negligenciadas: uma análise bibliométrica, Revista Fitos, 16(Supl. 2), 267–292 (2022). URL: https://www.arca.fiocruz.br/handle/icict/51650

M.G. Vidal-Sampaio, Avaliação do perfil fitoquímico e antiparasitário dos óleos essenciais extraídos de espécies eugenia provenientes da Caatinga, Tesis de Doctorado, Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Pernambuco, Brasil, 2016. URL: https://repositorio.ufpe.br/handle/123456789/36898

N.S. Vila-Nova, S.M. Morais, M.J. Falcão, C.M. Bevilaqua, F. Rondon, M.E. Wilson, H.F. Andrade, Leishmanicidal and cholinesterase inhibiting activities of phenolic compounds of Dimorphandra gardneriana and Platymiscium floribundum, native plants from Caatinga biome, Pesquisa Veterinária Brasileira, 32(11), 1164–1168 (2012). https://doi.org/10.1590/S0100-736X2012001100015

Cómo citar

APA

Fernández, S. y Gayozo Melgarejo, E. (2024). Acoplamiento molecular in silico de compuestos de Moringa oleifera Lam. con el sitio catalítico y de unión a FAD-NADPH de la tripanotiona reductasa de Leishmania infantum. Revista Colombiana de Ciencias Químico-Farmacéuticas, 52(3). https://revistas.unal.edu.co/index.php/rccquifa/article/view/110211

ACM

[1]
Fernández, S. y Gayozo Melgarejo, E. 2024. Acoplamiento molecular in silico de compuestos de Moringa oleifera Lam. con el sitio catalítico y de unión a FAD-NADPH de la tripanotiona reductasa de Leishmania infantum. Revista Colombiana de Ciencias Químico-Farmacéuticas. 52, 3 (mar. 2024).

ACS

(1)
Fernández, S.; Gayozo Melgarejo, E. Acoplamiento molecular in silico de compuestos de Moringa oleifera Lam. con el sitio catalítico y de unión a FAD-NADPH de la tripanotiona reductasa de Leishmania infantum. Rev. Colomb. Cienc. Quím. Farm. 2024, 52.

ABNT

FERNÁNDEZ, S.; GAYOZO MELGAREJO, E. Acoplamiento molecular in silico de compuestos de Moringa oleifera Lam. con el sitio catalítico y de unión a FAD-NADPH de la tripanotiona reductasa de Leishmania infantum. Revista Colombiana de Ciencias Químico-Farmacéuticas, [S. l.], v. 52, n. 3, 2024. Disponível em: https://revistas.unal.edu.co/index.php/rccquifa/article/view/110211. Acesso em: 20 abr. 2025.

Chicago

Fernández, Shirley, y Elvio Gayozo Melgarejo. 2024. «Acoplamiento molecular in silico de compuestos de Moringa oleifera Lam. con el sitio catalítico y de unión a FAD-NADPH de la tripanotiona reductasa de Leishmania infantum». Revista Colombiana De Ciencias Químico-Farmacéuticas 52 (3). https://revistas.unal.edu.co/index.php/rccquifa/article/view/110211.

Harvard

Fernández, S. y Gayozo Melgarejo, E. (2024) «Acoplamiento molecular in silico de compuestos de Moringa oleifera Lam. con el sitio catalítico y de unión a FAD-NADPH de la tripanotiona reductasa de Leishmania infantum», Revista Colombiana de Ciencias Químico-Farmacéuticas, 52(3). Disponible en: https://revistas.unal.edu.co/index.php/rccquifa/article/view/110211 (Accedido: 20 abril 2025).

IEEE

[1]
S. Fernández y E. Gayozo Melgarejo, «Acoplamiento molecular in silico de compuestos de Moringa oleifera Lam. con el sitio catalítico y de unión a FAD-NADPH de la tripanotiona reductasa de Leishmania infantum», Rev. Colomb. Cienc. Quím. Farm., vol. 52, n.º 3, mar. 2024.

MLA

Fernández, S., y E. Gayozo Melgarejo. «Acoplamiento molecular in silico de compuestos de Moringa oleifera Lam. con el sitio catalítico y de unión a FAD-NADPH de la tripanotiona reductasa de Leishmania infantum». Revista Colombiana de Ciencias Químico-Farmacéuticas, vol. 52, n.º 3, marzo de 2024, https://revistas.unal.edu.co/index.php/rccquifa/article/view/110211.

Turabian

Fernández, Shirley, y Elvio Gayozo Melgarejo. «Acoplamiento molecular in silico de compuestos de Moringa oleifera Lam. con el sitio catalítico y de unión a FAD-NADPH de la tripanotiona reductasa de Leishmania infantum». Revista Colombiana de Ciencias Químico-Farmacéuticas 52, no. 3 (marzo 4, 2024). Accedido abril 20, 2025. https://revistas.unal.edu.co/index.php/rccquifa/article/view/110211.

Vancouver

1.
Fernández S, Gayozo Melgarejo E. Acoplamiento molecular in silico de compuestos de Moringa oleifera Lam. con el sitio catalítico y de unión a FAD-NADPH de la tripanotiona reductasa de Leishmania infantum. Rev. Colomb. Cienc. Quím. Farm. [Internet]. 4 de marzo de 2024 [citado 20 de abril de 2025];52(3). Disponible en: https://revistas.unal.edu.co/index.php/rccquifa/article/view/110211

Descargar cita

Visitas a la página del resumen del artículo

165

Descargas

Los datos de descargas todavía no están disponibles.