Publicado

2024-03-04

TRAIL receptors as prognostic markers and survival predictors in ovarian cancer: A systematic review of clinical studies and meta-analysis

Receptores TRAIL como marcador de pronóstico y predictores de la supervivencia en el cáncer de ovario: una revisión sistemática de estudios clínicos y metanálisis

Receptores TRAIL como marcadores de prognóstico e preditores da sobrevivência no câncer de ovário: uma revisão sistemática de estudos clínicos e metanálises

DOI:

https://doi.org/10.15446/rcciquifa.v52n3.112478

Palabras clave:

Ovarian cancer, Apoptosis-Inducing , TRAIL , DR4, DR5, Caspase (en)
Cáncer de ovario, Inductor de apoptosis, TRAIL, DR4, DR5, Caspasa (es)
Câncer de ovário, Indutor de apoptoses, TRAIL, DR4, DR5, Caspase (pt)

Autores/as

  • Luciana Maria Silva Fundação Ezequiel Dias
  • Kamila de Sousa Gomes Instituto SENAI de Inovação em Biomassa
  • Paula Calaça Fundação Ezequiel Dias
  • Julio Cesar Moreira Brito Fundação Ezequiel Dias

Introduction: TRAIL cytokine (TNF-Related Apoptosis-Inducing Ligand) interacts with five receptors, four of which are expressed at the plasma membrane (DR4, DR5, DcR1, DcR2), and the fifth is a soluble osteoprotegerin receptor (OPG). Only the death receptors DR4 and DR5 contain the cytoplasmic death domain (DD), which is involved in triggering the apoptotic cascade. These receptors are found in tumor cells of various types, including ovarian cancer cells. Purpose: The aim of this article is to describe in a systematic review the presence of death receptors in cancer cells of patients and to discuss the clinical implications of this approach on various signs and clinical mechanisms of cancer. Method: The systematic review was performed on June 1, 2022, using PubMed Central - PMC, SCOPUS (Elsevier), Web of Science, Cochrane Library, and Biblioteca Virtual em Saúde - BVS (BIREME). The data were summarized in tables and critically analyzed. After the database search, five relevant studies were identified for review. Results: Analysis of these studies revealed evidence of increased survival in patients with ovarian cancer who detected these receptors in cancer tissue. In addition, we seek to understand the biological mechanisms involved in the resistance of cancer cells to TRAIL-induced apoptosis.

Introducción: La citocina TRAIL (Ligando inductor de apoptosis relacionado con TNF) interactúa con cinco receptores, cuatro de los cuales se expresan en la membrana plasmática (DR4, DR5, DcR1, DcR2), y el quinto es un receptor de osteoprotegerina soluble (OPG). Solo los receptores de muerte DR4 y DR5 contienen el dominio de muerte citoplasmático (DD), que está involucrado en el desencadenamiento de la cascada apoptótica. Estos receptores se encuentran en células tumorales de varios tipos, incluidas las células de cáncer de ovario. Propósito: El objetivo de este artículo es describir en una revisión sistemática la presencia de receptores de muerte en células cancerosas de pacientes y discutir las implicaciones clínicas de este enfoque en varios signos y mecanismos clínicos del cáncer. Método: La revisión sistemática se realizó el 1 de junio de 2022, utilizando PubMed Central - PMC, SCOPUS (Elsevier), Web of Science, Cochrane Library y Biblioteca Virtual em Saúde - BVS (BIREME). Los datos se resumieron en tablas y se analizaron críticamente. Después de la búsqueda en la base de datos, se identificaron 5 estudios relevantes para su revisión. Resultados: El análisis de estos estudios reveló evidencia de una mayor supervivencia en pacientes con cáncer de ovario en quienes se detectaron estos receptores en el tejido canceroso. Además, buscamos comprender los mecanismos biológicos involucrados en la resistencia de las células cancerosas a la apoptosis inducida por TRAIL.

 

Introdução: A citocina TRAIL (TNF-Related Apoptosis-Inducing Ligand) interage com cinco receptores, quatro dos quais são expressos na membrana plasmática (DR4, DR5, DcR1, DcR2) e o quinto é um receptor solúvel de osteoprotegerina (OPG). Apenas os receptores de morte DR4 e DR5 contêm o domínio citoplasmático de morte (DD), que está envolvido no desencadeamento da cascata apoptótica. Esses receptores são encontrados em células tumorais de vários tipos, incluindo células de câncer de ovário. Propósito: O objetivo deste artigo é descrever em uma revisão sistemática, a presença de receptores de morte em células cancerígenas de pacientes e discutir as implicações clínicas desta abordagem em vários sinais e mecanismos clínicos do câncer. Método: A revisão sistemática foi realizada em 1º de junho de 2022, utilizando PubMed Central - PMC, SCOPUS (Elsevier), Web of Science, Cochrane Library e Biblioteca Virtual em Saúde - BVS (BIREME). Os dados foram resumidos em tabelas e analisados criticamente. Após a busca nos bancos de dados, cinco estudos relevantes foram identificados para revisão. Resultados: A análise desses estudos revelou evidências de aumento da sobrevida em pacientes com câncer de ovário nos quais esses receptores foram detectados no tecido canceroso. Além disso, buscamos entender os mecanismos biológicos envolvidos na resistência das células cancerígenas à apoptose induzida por TRAIL.

Referencias

J. Ferlay, I. Soerjomataram, R. Dikshit, S. Eser, C. Mathers, M. Rebelo, et al., Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012, Int. J. Cancer, 136, E359–E386 (2015). https://doi.org/10.1002/ijc.29210

R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2020, CA Cancer J. Clin., 70, 7–30 (2020). https://doi.org/10.3322/caac.21590

U.A. Matulonis, A.K. Sood, L. Fallowfield, B.E. Howitt, J. Sehouli, B.Y. Karlan, Ovarian cancer, Nat. Rev. Dis. Prim., 2, 16061 (2016). https://doi.org/10.1038/nrdp.2016.61

W.-F. Li, Z. Hu, N.-Y. Rao, C.-G. Song, B. Zhang, M.-Z. Cao, et al., The prevalence of BRCA1 and BRCA2 germline mutations in high-risk breast cancer patients of Chinese Han nationality: two recurrent mutations were identified, Breast Cancer Res. Treat., 110, 99–109 (2008). https://doi.org/10.1007/s10549-007-9708-3

D. de Miguel, J. Lemke, A. Anel, H. Walczak, L. Martinez-Lostao, Onto better TRAILs for cancer treatment, Cell Death Differ., 23, 733–747 (2016). https://doi.org/10.1038/cdd.2015.174

S.H.M. Wong, W.Y. Kong, C.-M. Fang, H.-S. Loh, L.-H. Chuah, S. Abdullah, et al., The TRAIL to cancer therapy: Hindrances and potential solutions, Crit. Rev. Oncol. Hematol., 143, 81–94 (2019). https://doi.org/10.1016/j.critrevonc.2019.08.008

Y. Huang, X. Yang, T. Xu, Q. Kong, Y. Zhang, Y. Shen, et al., Overcoming resistance to TRAIL-induced apoptosis in solid tumor cells by simultaneously targeting death receptors, c-FLIP and IAPs, Int. J. Oncol., 49, 153–163 (2016). https://doi.org/10.3892/ijo.2016.3525

U. Schaefer, TRAIL: a multifunctional cytokine, Front. Biosci., 12, 3813 (2007). https://doi.org/10.2741/2354

S. Fulda, Safety and tolerability of TRAIL receptor agonists in cancer treatment, Eur. J. Clin. Pharmacol., 71, 525–527 (2015). https://doi.org/10.1007/s00228-015-1823-1

J.P.T. Higgins, J. Thomas, J. Chandler, M. Cumpston, T. Li, M.J. Page, et al. (editors), Cochrane Handbook for Systematic Reviews of Interventions, Cochrane, 2021.

A. Liberati, D.G. Altman, J. Tetzlaff, C. Mulrow, P.C. Gøtzsche, J.P.A. Ioannidis, et al., The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration, PLoS Med., 6(7), e1000100 (2009). https://doi.org/10.1371/journal.pmed.1000100

M.B. Eriksen, T.F. Frandsen, The impact of patient, intervention, comparison, outcome (PICO) as a search strategy tool on literature search quality: a systematic review, J. Med. Libr. Assoc., 106(4), 420–431 (2018). https://doi.org/10.5195/JMLA.2018.345

M. Ouzzani, H. Hammady, Z. Fedorowicz, A. Elmagarmid, Rayyan—a web and mobile app for systematic reviews, Syst. Rev., 5, 210 (2016). https://doi. org/10.1186/s13643-016-0384-4

J.R. Landis, G.G. Koch, The measurement of observer agreement for categorical data, Biometrics, 33, 159 (1977). https://doi.org/10.2307/2529310

W.G. Lima, J.C.M. Brito, B.G. Cardoso, V.N. Cardoso, M.C. de Paiva, M.E. de Lima, et al., Rate of polymyxin resistance among Acinetobacter baumannii recovered from hospitalized patients: a systematic review and meta-analysis, Eur. J. Clin. Microbiol. Infect. Dis., 39(8), 1427-1438 (2020). https://doi.org/10.1007/s10096-020-03876-x

H. Vaez, A. Sahebkar, F. Khademi, Carbapenem-resistant Klebsiella Pneumoniae in Iran: a systematic review and meta-Analysis, J. Chemother., 31, 1–8 (2019). https://doi.org/10.1080/1120009X.2018.1533266

P. Horak, D. Pils, M. Roessler, S. Tomek, K. Elandt, R. Zeillinger, et al., Common death receptor 4 (DR4) polymorphisms do not predispose to ovarian cancer, Gynecol. Oncol., 97, 514–518 (2005). https://doi.org/10.1016/j. ygyno.2005.01.021

L.D.C. Braga, A.P. Álvares da Silva-Ramos, P. Traiman, L.M. Silva, A. Lopes da Silva-Filho, TRAIL-R3-related apoptosis: Epigenetic and expression analyses in women with ovarian neoplasia, Gynecol. Oncol., 126, 268–273 (2012). https://doi.org/10.1016/j.ygyno.2012.04.038

E.W. Duiker, A.G.J. van der Zee, P. de Graeff, W. Boersma-van Ek, H. Hollema, G.H. de Bock, et al., The extrinsic apoptosis pathway and its prognostic impact in ovarian câncer, Gynecol. Oncol., 116, 549–555 (2010). https://doi. org/10.1016/j.ygyno.2009.09.014

J.M. Lancaster, R. Sayer, C. Blanchette, B. Calingaert, R. Whitaker, J. Schildkraut, et al., High expression of tumor necrosis factor-related apoptosis-inducing ligand is associated with favorable ovarian cancer survival, Clin. Cancer Res., 9(2), 762-766 (2003).

V. Ouellet, C. Le Page, J. Madore, M.-C. Guyot, V. Barrès, C. Lussier, et al., An apoptotic molecular network identified by microarray: On the TRAIL to new insights in epithelial ovarian cancer, Cancer, 110, 297–308 (2007). https://doi.org/10.1002/cncr.22812

T. Griffith, B. James, Tumor necrosis factor-related apoptosis-inducing ligandinduced apoptotic pathways in cancer immunosurveillance: molecular mechanisms and prospects for therapy, Res. Reports Biochem., 5, 1–10 (2015). https:// doi.org/10.2147/RRBC.S59123

R. Liang, Y. Yao, G. Wang, E. Yue, G. Yang, X. Qi, et al., Repositioning quinacrine toward treatment of ovarian cancer by rational combination with TRAIL, Front. Oncol., 10, 1118 (2020). https://doi.org/10.3389/fonc.2020.01118

S. Wang, W.S. El-Deiry, TRAIL and apoptosis induction by TNF-family death receptors, Oncogene, 22, 8628–8633 (2003). https://doi.org/10.1038/sj.onc.1207232

M. Snajdauf, K. Havlova, J. Vachtenheim, A. Ozaniak, R. Lischke, J. Bartunkova, et al., The TRAIL in the treatment of human cancer: An update on clinical trials, Front. Mol. Biosci., 8, 628332 (2021). https://doi.org/10.3389/fmolb.2021.628332

M.S. D’Arcy, Cell death: a review of the major forms of apoptosis, necrosis and autophagy, Cell. Biol. Int., 43, 582–592 (2019). https://doi.org/10.1002/cbin.11137

C. Falschlehner, C.H. Emmerich, B. Gerlach, H. Walczak, TRAIL signalling: Decisions between life and death, Int. J. Biochem. Cell. Biol., 39, 1462–1475 (2007). https://doi.org/10.1016/j.biocel.2007.02.007

N. Pathoulas, Investigating TRAIL sensitivity in platinum-resistant ovarian cancer, College Thesis, The College of Saint Benedict and Saint John’s University, St. Joseph, Minnesota, 2019.

N.G. Khaider, D. Lane, I. Matte, C. Rancourt, A. Piché, Targeted ovarian cancer treatment: the TRAILs of resistance, Am. J. Cancer Res., 2, 75–92 (2012).

X. Dai, J. Zhang, F. Arfuso, A. Chinnathambi, M. Zayed, S.A. Alharbi, et al., Targeting TNF-related apoptosis-inducing ligand (TRAIL) receptor by natural products as a potential therapeutic approach for cancer therapy, Exp. Biol. Med., 240, 760–773 (2015). https://doi.org/10.1177/1535370215579167

E. Razeghian, W. Suksatan, H. Sulaiman-Rahman, D.O. Bokov, W.K. Abdelbasset, A. Hassanzadeh, et al., Harnessing TRAIL-induced apoptosis pathway for cancer immunotherapy and associated challenges, Front. Immunol., 12, 699746 (2021). https://doi.org/10.3389/fimmu.2021.699746

J. Abdulghani, W.S. El-Deiry, TRAIL receptor signaling and therapeutics, Expert Opin. Ther. Targets, 14, 1091–1108 (2010). https://doi.org/10.1517/14728222.2010.519701

A. Willms, H. Schupp, M. Poelker, A. Adawy, J.F. Debus, T. Hartwig, et al., TRAIL-receptor 2—a novel negative regulator of p53, Cell Death Dis., 12, 757 (2021). https://doi.org/10.1038/s41419-021-04048-1

M. de Looff, S. de Jong, F.A.E. Kruyt, Multiple interactions between cancer cells and the tumor microenvironment modulate TRAIL signaling: Implications for TRAIL receptor targeted therapy, Front. Immunol., 10, 1530 (2019). https://doi.org/10.3389/fimmu.2019.01530

Z.-X. Zhang, I. Gan, A. Pavlosky, X. Huang, B. Fuhrmann, A.M. Jevnikar, Intracellular pH regulates TRAIL-induced apoptosis and necroptosis in endothelial cells, J. Immunol. Res., 2017, 1503960 (2017). https://doi.org/10.1155/2017/1503960

C.R. Reis, P.-H. Chen, N. Bendris, S.L. Schmid, TRAIL-death receptor endocytosis and apoptosis are selectively regulated by dynamin-1 activation, Proc. Natl. Acad. Sci., 114, 504–509 (2017). https://doi.org/10.1073/pnas.1615072114

J. Zhu, Q. Zhou, S. Tan, Targeting miRNAs associated with surface expression of death receptors to modulate TRAIL resistance in breast cancer, Cancer Lett., 383, 154–160 (2016). https://doi.org/10.1016/j.canlet.2016.09.021

D. Sarhan, P. D’Arcy, A. Lundqvist, Regulation of TRAIL-receptor expression by the ubiquitin-proteasome system, Int. J. Mol. Sci., 15, 18557–18573 (2014). https://doi.org/10.3390/ijms151018557

U. Bertsch, C. Röder, H. Kalthoff, A. Trauzold, Compartmentalization of TNFrelated apoptosis-inducing ligand (TRAIL) death receptor functions: emerging role of nuclear TRAIL-R2, Cell Death Dis., 5, e1390 (2014). https://doi. org/10.1038/cddis.2014.351

D. Chen, M. Frezza, S. Schmitt, J. Kanwar, P.Q. Dou, Bortezomib as the first proteasome inhibitor anticancer drug: Current status and future perspectives, Curr. Cancer Drug Targets, 11(3), 239–253 (2011). https://doi.org/10.2174/156800911794519752

C.T. Hellwig, M.E. Delgado, J. Skoko, L. Dyck, C. Hanna, A. Wentges, et al., Proteasome inhibition triggers the formation of TRAIL receptor 2 platforms for caspase-8 activation that accumulate in the cytosol, Cell Death Differ., 29, 147–155 (2022). https://doi.org/10.1038/s41418-021-00843-7

Cómo citar

APA

Silva , L. M., de Sousa Gomes, K., Calaça, P. y Moreira Brito, J. C. (2024). TRAIL receptors as prognostic markers and survival predictors in ovarian cancer: A systematic review of clinical studies and meta-analysis. Revista Colombiana de Ciencias Químico-Farmacéuticas, 52(3). https://doi.org/10.15446/rcciquifa.v52n3.112478

ACM

[1]
Silva , L.M., de Sousa Gomes, K., Calaça, P. y Moreira Brito, J.C. 2024. TRAIL receptors as prognostic markers and survival predictors in ovarian cancer: A systematic review of clinical studies and meta-analysis. Revista Colombiana de Ciencias Químico-Farmacéuticas. 52, 3 (mar. 2024). DOI:https://doi.org/10.15446/rcciquifa.v52n3.112478.

ACS

(1)
Silva , L. M.; de Sousa Gomes, K.; Calaça, P.; Moreira Brito, J. C. TRAIL receptors as prognostic markers and survival predictors in ovarian cancer: A systematic review of clinical studies and meta-analysis. Rev. Colomb. Cienc. Quím. Farm. 2024, 52.

ABNT

SILVA , L. M.; DE SOUSA GOMES, K.; CALAÇA, P.; MOREIRA BRITO, J. C. TRAIL receptors as prognostic markers and survival predictors in ovarian cancer: A systematic review of clinical studies and meta-analysis. Revista Colombiana de Ciencias Químico-Farmacéuticas, [S. l.], v. 52, n. 3, 2024. DOI: 10.15446/rcciquifa.v52n3.112478. Disponível em: https://revistas.unal.edu.co/index.php/rccquifa/article/view/112478. Acesso em: 12 oct. 2024.

Chicago

Silva , Luciana Maria, Kamila de Sousa Gomes, Paula Calaça, y Julio Cesar Moreira Brito. 2024. «TRAIL receptors as prognostic markers and survival predictors in ovarian cancer: A systematic review of clinical studies and meta-analysis». Revista Colombiana De Ciencias Químico-Farmacéuticas 52 (3). https://doi.org/10.15446/rcciquifa.v52n3.112478.

Harvard

Silva , L. M., de Sousa Gomes, K., Calaça, P. y Moreira Brito, J. C. (2024) «TRAIL receptors as prognostic markers and survival predictors in ovarian cancer: A systematic review of clinical studies and meta-analysis», Revista Colombiana de Ciencias Químico-Farmacéuticas, 52(3). doi: 10.15446/rcciquifa.v52n3.112478.

IEEE

[1]
L. M. Silva, K. de Sousa Gomes, P. Calaça, y J. C. Moreira Brito, «TRAIL receptors as prognostic markers and survival predictors in ovarian cancer: A systematic review of clinical studies and meta-analysis», Rev. Colomb. Cienc. Quím. Farm., vol. 52, n.º 3, mar. 2024.

MLA

Silva , L. M., K. de Sousa Gomes, P. Calaça, y J. C. Moreira Brito. «TRAIL receptors as prognostic markers and survival predictors in ovarian cancer: A systematic review of clinical studies and meta-analysis». Revista Colombiana de Ciencias Químico-Farmacéuticas, vol. 52, n.º 3, marzo de 2024, doi:10.15446/rcciquifa.v52n3.112478.

Turabian

Silva , Luciana Maria, Kamila de Sousa Gomes, Paula Calaça, y Julio Cesar Moreira Brito. «TRAIL receptors as prognostic markers and survival predictors in ovarian cancer: A systematic review of clinical studies and meta-analysis». Revista Colombiana de Ciencias Químico-Farmacéuticas 52, no. 3 (marzo 4, 2024). Accedido octubre 12, 2024. https://revistas.unal.edu.co/index.php/rccquifa/article/view/112478.

Vancouver

1.
Silva LM, de Sousa Gomes K, Calaça P, Moreira Brito JC. TRAIL receptors as prognostic markers and survival predictors in ovarian cancer: A systematic review of clinical studies and meta-analysis. Rev. Colomb. Cienc. Quím. Farm. [Internet]. 4 de marzo de 2024 [citado 12 de octubre de 2024];52(3). Disponible en: https://revistas.unal.edu.co/index.php/rccquifa/article/view/112478

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

64

Descargas

Los datos de descargas todavía no están disponibles.