Publicado
Modelagem matemática da detecção eletroanalítica da nereistoxina, assistida pelo compósito de oxihidróxido de cobalto com polímeros condutores
The mathematical modeling for nereistoxin electrochemical determination, assisted by cobalt oxyhydroxide/conducting polymer composite
The mathematical modeling for nereistoxin electrochemical determination, assisted by cobalt oxyhydroxide/conducting polymer composite
Palabras clave:
nereistoxina, sensor eletroquímico, oxihidróxido de cobalto, polímero condutor, estado estacionário estável (pt)nereistoxine , electrochemical sensor, cobalt oxyhydroxide, conducting polymer, stable steady (en)
nereistoxina , sensor electroquímico, oxihidróxido de cobalto , polímero conductor, estado estacionario estable (es)
Descargas
Introdução: Pela primeira vez, a possibilidade da detecção eletroanalítica da nereistoxina no elétrodo, modificado pelo compósito de oxihidróxido de cobalto e polímeros condutores. Desenvolvimento: A eletrooxidação dá-se gradualmente pelos átomos do enxofre levando à rutura do anel e formação do ácido dissulfênico, seguida pela formação do ácido dissulfônico. Resultado: A análise do modelo correspondente, mediante a teoria de estabilidade lineal e de bifurcações confirma a eficiência do oxihidróxido de cobalto e polímero condutor como modificador de ânodo para a determinação eletroquímica da nereistoxina. Por outro lado, a probabilidade do comportamento oscilatório neste sistema aumenta, haja vista a formação de novas formas iônicas.
Introduction: For the first time, the possibility of nereistoxin electrochemical determination on a CoO(OH)/CP-modified electrode has been given. Proposal: The electrooxidation is carried out gradually by the sulfur atoms, leading to the ring cleavage and formation of a disulfenic acid, followed by a disulfonic acid formation. Result: The analysis of the correspondente model by means of the linear stability theory and bifurcation analysis confirms the efficiency of cobalto oxyhydroxide and conducting polymer for nereistoxin determination. On the other hand, the probability of the oscillatory behavior in this system is enhanced, due to the formation of the new ionic forms.
Introduction: For the first time, the possibility of nereistoxin electrochemical determination on a CoO(OH)/CP-modified electrode has been given. Proposal: The electrooxidation is carried out gradually by the sulfur atoms, leading to the ring cleavage and formation of a disulfenic acid, followed by a disulfonic acid formation. Result: The analysis of the correspondente model by means of the linear stability theory and bifurcation analysis confirms the efficiency of cobalto oxyhydroxide and conducting polymer for nereistoxin determination. On the other hand, the probability of the oscillatory behavior in this system is enhanced, due to the formation of the new ionic forms.
Referencias
W.R. Kem, K. Andrud, G. Bruno, et al., Interactions of nereistoxin and its analogs with vertebrate nicotinic acetylcholine receptors and molluscan ACh binding proteins, Marine Drugs, 20, 49 (2022).
R. López-Ruiz, E. Belmonte-Sánchez, R. Romero-González, et al., A laboratory study on dissipation and risk assessment of the proinsecticide thiocyclam and its metabolite nereistoxin in tomato using liquid chromatography high resolution mass spectrometry, Food Chem., 344, 128729 (2021).
J. Dai, Ch. Jiang, Y. Chai, et al., Photolysis kinetics of cartap and nereistoxin in water and tea beverages under irradiation of simulated sunlight and ultraviolet under laboratory conditions, Food Chem., 355, 129595 (2021).
J. Zhang, L. Pang, J. Jing, et al., Development, optimization, and validation of a method for detection of cartap, thiocyclam, thiosultap-monosodium, and thiosultap- disodium residues in plant foods by GC-ECD, Food Chem., 371, 131198 (2022).
E. Kurisaki, N. Kato, T. Ishida, et al., Fatal human poisoning with Padan™: A cartap-containing pesticide, Clin. Toxicol., 48, 153–155 (2010).
Y. Nagawa, Y. Saji, S. Chiba, T. Yui, Neuromuscular blocking action of nereistoxin and its derivatives and antagonism by sulfhydryl compounds, Japan J. Pharmacol., 21, 185–197 (1971).
Makoto Ihara, Steven D. Buckingham, Kazuhiko Matsuda, David B Sattelle, Modes of action, resistance and toxicity of insecticides targeting nicotinic acetylcholine receptors, Curr. Med. Chem., 24(27), 2925–2934 (2017).
N. Suganthan, R. Manmathan, T. Kumanan, Rhabdomyolysis and acute kidney injury associated with thiocyclam hydrogen oxalate (Evisect) poisoning, SAGE Open Med. Case Rep., 8, 2050313X20954942 (2020).
G. Preetha, Toxicity of different insecticides against rice stem borer, Pesticide Res. J., 32(2), 311–315 (2020).
M. Senthilvelan, B. Nageswaran, K. Baburaj, A. Elaiaraja, Cartap hydrochloride poisoning - A case report, J. Med. Sci. Clin. Res., 7, 701–704 (2019).
V.V. Oberemok, K.V. Laikova, Yu. I. Gninenko, et al., A short history of insecticides, J. Plant Prot. Res., 55(3), 221–225 (2015)
M. Awad, S.I. El-Desoky, E. Osman, et al., Nano-insecticides against the black cutworm Agrotis ipsilon (Lepidoptera: Noctuidae): Toxicity, development, enzyme activity, and DNA mutagenicity, PLoS One, 17, 0254285 (2022).
A. Stadnik, E.M. Caldas, A. Galli, F.J. Anaissi, Eletrodo modificado com [CoO(OH)] coloidal aplicado na detecção de ácido oxálico, Orbital. Elec. J. Chem., 7, 122–128 (2015).
J.S. Bonini, F.Q. Mariani, E. Guimarães Castro, et al., Partículas de CoO(OH) dispersas em pasta de carbono aplicado na eletrooxidação de compostos fenólicos, Orbital Elec. J. Chem., 7, 318–326 (2015).
O. Stadnik, Synthesis, electrochemical and photoelectrochemical properties of the oxide-hydroxide compounds of cobalt, Diss. Kand. Chim. N., Kyiv, 2011.
S. Sadki, P. Schottland, N. Brodie, G. Saboraud, The mechanisms of pyrrole electropolymerization, Chem. Soc. Rev., 29, 283–293 (2000).
F. Ağın, Electrochemical determination of amoxicillin on a poly (acridine orange) modified glassy carbon electrode, Anal. Lett., 49(9), 1366–1378 (2016).
T.D. Martins, M.L. Pacheco, R. Boto, et al., Synthesis, characterization and protein- association of dicyanomethylene squaraine dyes, Dyes Pigm., 147, 120–129 (2017).
S. Sreejith, P. Carol, P. Chithra, A. Ajayaghosh, Squaraine dyes: A mine of molecular materials, J. Mater. Chem., 18, 264–274 (2008).
D.E. Lynch, Pyrrolyl-squaraines – Fifty golden years, Metals, 5(3), 1349–1370 (2015).
M.S. Ba-Shammakh, Electropolymerization of pyrrole on mild steel for corrosion protection, M.Sc. Thesis, King Fahd University of Petroleum and Minerals, Dharan, Saudi Arabia, 2002.
I. Das, N.R. Agrawal, S.A. Ansari, S.K. Gupta, Pattern formation and oscillatory electropolymerization of thiophene, Ind. J. Chem. A, 47(12), 1798–1803 (2008).
K. Aoki, I. Mukoyama, J. Chen., Competition between polymerization and dissolution of poly(3-methylthiophene) films, Russ. J. Electrochem., 40, 280–285 (2004).
I. Das, N. Goel, N.R. Agrawal, S.K. Gupta, Electropolymerization of pyrrole: Dendrimers, nano-sized patterns and oscillations in potential in presence of aromatic and aliphatic surfactants, J. Phys. Chem., 114, 12888–12896 (2010).
M. Bazzaoui, E.A. Bazzaoui, L. Martins, J.I. Martins, Electropolymerization of pyrrole on zinc-lead-silver alloys’ electrodes in neutral and acid organic media, Synth. Metals, 130, 73–83 (2002).
I. Das, N. Goel, N.R. Agrawal, S.K. Gupta, Growth patterns of dendrimers and electric potential oscillations during electropolymerization of pyrrole using mono- and mixed surfactants, J. Electroanal. Chem, J. Phys. Chem. B, 114, 12888–128961 (2010)
V.V. Tkach, M.V. Kushnir, S.C. de Oliveira, et al., Theoretical description for anti-COVID-19 drug molnupiravir electrochemical determination over the poly(1,2,4-triazole)-co-squaraine dye composite with Cobalt (III) oxyhydroxide, Biointerface Res. Appl. Chem., 13, 74 (2023).
V.V. Tkach, M.M. Kucher, N. Slyvka, et al., The modeling for anti-Covid-19 drug molnupiravir electrochemical sensing on C3N4, Biointerface Res. Appl. Chem., 13, 446 (2023).
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Visitas a la página del resumen del artículo
Descargas
Licencia
Derechos de autor 2024 Revista Colombiana de Ciencias Químico-Farmacéuticas

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
El Departamento de Farmacia de la Facultad de Ciencias de la Universidad Nacional de Colombia autoriza la fotocopia de artículos y textos para fines de uso académico o interno de las instituciones citando la fuente. Las ideas emitidas por los autores son responsabilidad expresa de estos y no de la revista.
Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons de Atribución 4.0 aprobada en Colombia. Consulte la normativa en: http://co.creativecommons.org/?page_id=13