Publicado
The theoretical description for cobalt oxyhydroxide-assisted resveratrol electrochemical determination in vines and juices
La descripción teórica de la detección electroanalítica de resveratrol en vinos y jugos, asistida por el oxihidróxido de cobalto
A descrição teórica da detecção eletroanalítica de resveratrol em vinhos e sucos, assistida pelo oxihidróxido de cobalto
DOI:
https://doi.org/10.15446/rcciquifa.v53n2.114424Palabras clave:
resveratrol, electrochemical sensor, cobalt oxyhydroxide, conducting polymer, stable steady-state (en)resveratrol, sensor electroquímico, oxihidróxido de cobalto, polímeros conductores, estado estacionario estable (es)
resveratrol, sensor eletroquímico, oxihidróxido de cobalto, polímeros condutores, estado estacionário estável (pt)
Descargas
Introduction: The possibility of resveratrol electrochemical determination, assisted by cobalt (III) oxyhydroxide and its composites with conducting polymers has been evaluated from the theoretical point of view. Methodology: The correspondent mathematical model has been developed and analyzed by means of the linear stability theory and bifurcation analysis. Results: The analysis of the model confirms that the cobalto oxyhydroxide may serve as an efficient electrode modifier for resveratrol electroanalytical determination. Conclusion: Depending on the analysis conditions, the electroanalytical process may be either diffusion- or kinetically controlled. On the other hand, the oscillatory behavior is also possible being even more probable than in the simplest cases, due to the impact of the chemical and electrochemical stages on DEL.
Introducción: La posibilidad de la detección electroanalítica de resveratrol, asistida por el oxihidróxido de cobalto y sus compuestos con polímeros conductores ha sido teóricamente evaluada. Metodología: El modelo matemático correspondiente ha sido desarrollado y analizado mediante la teoría de estabilidad lineal y análisis de bifurcaciones. Resultados: El análisis del modelo confirma que el oxihidróxido de cobalto puede ser eficaz en la detección electroanalítica de resveratrol. Conclusión: Dependiendo de las condiciones de análisis, el proceso electroanalítico puede ser controlado tanto por la difusión como por la cinética del proceso. Por otro lado, el comportamiento oscilatorio también es posible, siendo, además, más probable que en los casos más simples, visto el impacto de las etapas químicas y la electroquímica en la doble capa eléctrica.
Introdução: A possibilidade da detecção eletroanalítica de resveratrol, assistida pelo oxihidróxido de cobalto e seus compósitos com polímeros condutores tem sido avaliada do ponto de vista teórico. Metodologia: O modelo matemático correspondente tem sido desenvolvido e analisado mediante a teoria de estabilidade linear e análise de bifurcações. Resultados: A análise do modelo confirma que o oxihidróxido de cobalto pode servir de uma substância ativa eficaz na detecção eletroanalítica de resveratrol. Conclusão: A depender das condições da análise, o processo eletroanalítico pode ser controlado tanto pela difusão como pela cinética do processo. Por outro lado, o comportamento oscilatório também é possível, sendo, ademais, mais provável que nos casos mais simples, haja vista o impacto das etapas químicas e eletroquímica na dupla camada eléctrica.
Referencias
G.d.N. Barbosa de Souza, J.C.d. Sales-Ferreira, Efeitos do resveratrol nas células cancerígenas, Research, Society and Development, 11(6), e3711628841 (2022). Doi: https://doi.org/10.33448/rsd-v11i6.28841
Y. Bian, X. Wang, Z. Zheng, G. Ren, H. Zhu, M. Qiao, G. Li, Resveratrol drives cancer cell senescence via enhancing p38MAPK and DLC1 expressions, Food & Function, 13(6), 3283–3293 (2022). Doi: https://doi.org/10.1039/d1fo02365a
R. Haunschild, W. Marx, On health effects of resveratrol in wine, International Journal of Environmental Research and Public Health, 19(5), 3110 (2022). Doi: https://doi.org/10.3390/ijerph19053110
M. Mikolajkova, N. Ladicka, M. Janusova, K. Ondrova, H.K. Mikulaskova, D. Dordevic, Resveratrol content in wine – resveratrol biochemical properties, MASO International – Journal of Food Science and Technology, 11, 31–38 (2021). Doi: https://doi.org/10.2478/mjfst-2022-0005
R. Vejarano, M. Luján-Corro, Red wine and health: Approaches to improve the phenolic content during winemaking, Frontiers in Nutrition, 9, e809066 (2022). Doi: https://doi.org/10.3389/fnut.2022.890066
M. Naiker, S. Anderson, J.B. Johnson, J.S. Mani, L. Wakeling, V. Bowry, Loss of trans-resveratrol during storage and ageing of red wines, Australian Journal of Grape and Wine Research, 26(4), 385–387 (2020). Doi: https://doi.org/10.1111/ajgw.12449
F. Hajizadeh-Sharafabad, A. Sahebkar, F. Zabetiah-Targhi, V. Maleki, The impact of resveratrol on toxicity and related complications of advanced glycation end products: A systematic review, BioFactors, 45(5), 651–665 (2019). Doi: https://doi.org/10.1002/biof.1531
A. Shaito, A.M. Posadino, N. Younes, H. Hasan, S. Halabi, D. Alhababi, A. Al-Mohannadi, W.M. Abdel-Rahman, A.H. Eid, G.K. Nasrallah, G. Pintus, Potential adverse effects of resveratrol: A literature review, International Journal of Molecular Sciences, 21(6), 2084 (2020). Doi: https://doi.org/10.3390%2Fijms21062084
Z.S. Erdemir Tıraş, H.H. Okur, Z. Günay, H.K. Yıldırım, Different approaches to enhance resveratrol content in wine, Ciência e Técnica Vitivinícola, 37(1), 13–28 (2022). Doi: https://doi.org/10.1051/ctv/ctv20223701013
A.L. Crăciun, G. Gutt, Study on kinetics of trans-resveratrol, total phenolic content, and antioxidant activity increase in vine waste during post-pruning storage, Applied Sciences, 12(3), 1450 (2022). Doi: https://doi.org/10.3390/app12031450
I. Bononi, P. Tedeschi, V. Mantovani, A. Maietti, E. Mazzoni, C. Pancaldi, V. Brandolini, M. Tognon, Antioxidant activity of resveratrol diastereomeric forms assayed in fluorescent-engineered human keratinocytes, Antioxidants, 11(2), 196 (2022). Doi: https://doi.org/10.3390/antiox11020196
W. Wu, K. Li, C. Zhao, X. Ran, Y. Zhang, T. Zhang, Rapid HPLC–MS/MS method for the simultaneous determination of luteolin, resveratrol and their metabolites in rat plasma and its application to pharmacokinetic interaction studies, Journal of Chromatography B, 1191, 123118 (2022). Doi: https://doi.org/10.1016/j.jchromb.2022.123118
R.S. Klein, M.M. Taniguchi, P.D. Dos Santos, E.G. Bonafe, A.F. Martins, J.P. Monteiro, Trans-resveratrol electrochemical detection using portable device based on unmodified screen-printed electrode, Journal of Pharmaceutical and Biomedical Analysis, 207, 114399 (2022). Doi: https://doi.org/10.1016/j.jpba.2021.114399
I.G. Munteanu, C. Apetrei, A review on electrochemical sensors and biosensors used in assessing antioxidant activity, Antioxidants, 11(3), 584 (2022). Doi: https://doi.org/10.3390/antiox11030584
Ö. Güngör, C.B.A. Hassine, M. Burç, S.T. Duran, Voltammetric determination of resveratrol using poly(l-phenylalanine)-modified gold electrode, MacedonianJournal of Chemistry and Chemical Engineering, 39(2), 177 (2020). Doi: https://doi.org/10.20450/mjcce.2020.2073
R. Pourghobadi, D. Nematollahi, M.R. Baezzat, S. Alizadeh, H. Goljani, Electropolymerization of catechol on wireless graphite electrode. Unusual cathodic polycatechol formation, Journal of Electroanalytical Chemistry, 866, 114180 (2020). Doi: https://doi.org/10.1016/j.jelechem.2020.114180
A.M. Gavrila, E.B. Stoica, T.V. Iordache, A. Sarbu, Modern and dedicated methods for producing molecularly imprinted polymer layers in sensing applications, Applied Sciences, 12(6), 3080 (2022). Doi: https://doi.org/10.3390/app12063080
G. Ziyatdinova, E. Guss, E. Yakupova, Electrochemical sensors based on the electropolymerized natural phenolic antioxidants and their analytical application, Sensors, 21(24), 8385 (2021). Doi: https://doi.org/10.3390/s21248385
C. White, Electropolymerization and Characterization of Thin Film Dielectrics, M. Sc. Thesis, University of Nebraska, Lincoln, Nebraska, 2019. URL: https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1102&context=chemistrydiss
M. Bonechi, M. Innocenti, D. Vanossi, C. Fontanesi, The fundamental and underrated role of the base electrolyte in the polymerization mechanism. The resorcinol case study, Journal of Physical Chemistry A, 125(1), 34–42 (2021).Doi: https://doi.org/10.1021/acs.jpca.0c07702
K.-l. Song, R. Li, K. Li, H. Yu, Simultaneous determination of dihydroxybenzene isomers using a three-dimensional over-oxidized polypyrrole–reduced graphene oxide composite film electrode prepared by an electrochemical method, New Journal of Chemistry, 44, 20294–20302 (2020). Doi: https://doi.org/10.1039/d0nj01613f
L. Ji, Q. Wang, L. Peng, X. Li, X. Zhu, P. Hu, Cu-TCPP nanosheets-sensitized electrode for simultaneous determination of hydroquinone and catechol, Materials, 15(13), 4625 (2022). Doi: https://doi.org/10.3390/ma15134625
Z. Khalifa, K. Hassan, M.F.A. Oura, A. Hathoot, M.A. Azzem, Individual and simultaneous voltammetric determination of ultratrace environmental contaminant dihydroxybenzene isomers based on a composite electrode sandwich-like structure, ACS Omega, 5(30), 18950 (2020). Doi: https://doi.org/10.1021/acsomega.0c02228
J. Zuo, Y. Shen, J. Gao, H. Song, Z. Ye, Y. Liang, S. Zhang, Highly sensitive determination of paracetamol, uric acid, dopamine, and catechol based on flexible plastic electrochemical sensors, Analytical and Bioanalytical Chemistry, 414, 5917–5928 (2022). Doi: https://doi.org/10.1007/s00216-022-04157-6
S. Xue, K. Wang, Y. Cheng, B. Tu, Y. Xia, S. Yuan, H. Tao, Simultaneous determination of catechol and hydroquinone with L-cysteine and nickel cobaltite Co-functionalised graphene oxide modified glassy carbon electrode, International Journal of Environmental Analytical Chemistry, 103(4), 899–914 (2023). Doi: https://doi.org/10.1080/03067319.2020.1865330
M. Yang, H. Guo, L. Sun, N. Wu, M. Wang, F. Yang, T. Zhang, J. Zhang, Z. Pan, W. Yang, Simultaneous electrochemical detection of hydroquinone and catechol using MWCNT-COOH/CTF-1 composite modified electrode, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 625, 126917 (2021). Doi: https://doi.org/10.1016/j.colsurfa.2021.126917
M.M. Rao, R. Settu, Sh.-M. Chen, P. Alagarsamy, T.-W. Chen, I.-S. Hong, Electrochemical determination of catechol using functionalized multiwalled carbon nanotubes modified screen printed carbon electrode, International Journal of Electrochemical Science, 13(6), 6126–6134 (2018). https://doi.org/10.20964/2018.06.121
S. Piña, Ch. Candia-Onofray, N. Hassan, P. Jara-Ulloa, D. Contreras, R. Salazar, Glassy carbon electrode modified with C/Au nanostructured materials for simultaneous determination of hydroquinone and catechol in water matrices, Chemosensors, 9(5), 88 (2021). Doi: https://doi.org/10.3390/chemosensors9050088
B. Dalkiran, C. Brett, Poly(safranine T)-deep eutectic solvent/copper oxide nanoparticle-carbon nanotube nanocomposite modified electrode and its application to the simultaneous determination of hydroquinone and catechol, Microchemical Journal, 179, 107531 (2022). Doi: https://doi.org/10.1016/j.microc.2022.107531
I. Maor, S. Asadi, S. Korganbayev, D. Dahis, Y. Shamay, E. Schena, H. Azhari, P. Saccomandi, I.S. Weitz, Laser-induced thermal response and controlled release of copper oxide nanoparticles from multifunctional polymeric nanocarriers, Science and Technology of Advanced Materials, 22(1), 218–233 (2021). Doi: https://doi.org/10.1080/14686996.2021.1883406
M.A. Sheikh-Mohseny, S. Pirsa, Simultaneous determination of dopamine and acetaminophen by a carbon paste electrode doubly modified with poly (pyrrole) and CuO nanoparticles, Analytical & Bioanalytical Electrochemistry, 8(6), 777–789 (2016). URL: http://abechem.ir/No.%206-2016/2016,%208(6),%20777-789.pdf
E. Fazio, S. Spadaro, C. Corsaro, G. Neri, S.G. Leonardi, F. Neri, N. Lavanya, C. Sekar, N. Donato, G. Neri, Metal-oxide based nanomaterials: Synthesis, characterization and their applications in electrical and electrochemical sensors, Sensors, 21(7), 2494 (2021). Doi: https://doi.org/10.3390/s21072494
Zs. Őri, A. Kiss, A.A. Ciucu, C. Mihailciuc, C.D. Stefanescu, L. Nagy, G. Nagy, Sensitivity enhancement of a “bananatrode” biosensor for dopamine based on SECM studies inside its reaction layer, Sensors and Actuators B: Chemical, 190, 149–156 (2014). Doi: https://doi.org/10.1016/j.snb.2013.08.063
G. Selvollini, C. Lazzarini G. Marazza, Electrochemical composite single use sensor for dopamine detection, Sensors, 19(14), 3097 (2019). Doi: https://doi.org/10.3390/s19143097
N. Stasiuk, O. Smutok, O. Demkiv, T. Prokopiv, G. Gayda, M. Nisnevitch, M. Gonchar, Synthesis, catalytic properties and application in biosensorics of nanozymes and electronanocatalysts: A review, Sensors, 20(16), 4509 (2020). Doi: https://doi.org/10.3390/s20164509
Y. Zou, J. Chen, Q. Chai, T. Zhu, S. Zeng, Y. Liu, Stimuli-responsive colorimetric sensor based on bifunctional pyrophosphate-triggered controlled release and enhancing activity of CoOOH nanozyme, Sensors and Actuators B: Chemical, 369, 132215 (2022). Doi: https://doi.org/10.1016/j.snb.2022.132215
Garima, G.A. Sachdev, I. Matai, An electrochemical sensor based on cobalt oxyhydroxide nanoflakes/reduced graphene oxide nanocomposite for detection of illicit drug clonazepam, Journal of Electroanalytical Chemistry, 919, 116537 (2022). Doi: https://doi.org/10.1016/j.jelechem.2022.116537
K. Tyszczuk-Rotko, J. Kozak, B. Czech, Screen-printed voltammetric sensors—Tools for environmental water monitoring of painkillers, Sensors, 22(7), 2437 (2022). Doi: https://doi.org/10.3390/s22072437
G. Balkourani, Th. Damartzis, A. Brouzgou, P. Tsiakaras, Cost effective synthesis of graphene nanomaterials for non-enzymatic electrochemical sensors for glucose: A comprehensive review, Sensors, 22(1), 355 (2022). Doi: https://doi.org/10.3390/s22010355
J. Li, Z-P. Li, Y-F. Bai, S.-X. Luo, Y. Guo, Y.-Y. Bao, R. Li, H.-Y. Liu, F. Feng, A flexible enzymeless glucose sensor via electrodepositing 3D flower-like CoS onto self-supporting graphene tape electrode, Journal of Electrochemistry, 28(1), 2104211 (2022). URL: https://jelectrochem.xmu.edu.cn/cgi/viewcontent.cgi?article=1169&context=journal
I. Das, N.R. Agrawal, S.A. Ansari, S.K. Gupta, Pattern formation and oscillatory electropolymerization of thiophene, Indian Journal of Chemistry, 47A, 1798–1803 (2008). URL: https://nopr.niscpr.res.in/bitstream/123456789/2565/1/IJCA%2047A(12)%201798-1803.pdf
K. Aoki, I. Mukoyama, J. Chen., Competition between polymerization and dissolution of poly(3-methylthiophene) films, Russian Journal of Electrochemistry, 40, 280–285 (2004). Doi: https://doi.org/10.1023/b:ruel.0000019665.59805.4c
I. Das, N. Goel, N.R. Agrawal, S.K. Gupta, Growth patterns of dendrimers and electric potential oscillations during electropolymerization of pyrrole using mono and mixed surfactants, Journal of Physical Chemistry B, 114(40), 12888–12896 (2020). Doi: https://doi.org/10.1021/jp105183q
M. Bazzaoui, E.A. Bazzaoui, L. Martins, J.I. Martins, Electropolymerization of pyrrole on zinc-lead-silver alloys’ electrodes in neutral and acid organic media, Synthetic Metals, 130(1), 73–83 (2002). Doi: https://doi.org/10.1016/S0379-6779(02)00101-7
V.V. Tkach, M.V. Kushnir, I.M. Shevchuk, S.d. Oliveira, V.V. Lystvan, A.O.V. Luganska, P.I. Yagodynets, Z.O. Kormosh, Y.G. Ivanushko, The theoretical description for ecopipam electrochemical determination on a Cobalt (III) oxyhydroxide based material, Applied Journal of Environmental Engineering Science, 8(2), 123–129 (2022). Doi: https://doi.org/10.48422/imist.prsm/ajees-v8i2.27095
V.V. Tkach, M.V. Kushnir, S.C. de Oliveira, I.M. Shevchenko, V.M. Odyntsova, V.M. Omelyanchik, et al., Theoretical description for anti-COVID-19 drug molnupiravir electrochemical determination over the poly(1,2,4-triazole)-cosquaraine dye composite with Cobalt (III) oxyhydroxide, Biointerface Research in Applied Chemistry, 13(1), 74 (2023). Doi: https://doi.org/10.33263/briac131.074
V.V. Tkach, M.M. Kucher, N. Slyvka et al., The modeling for anti-Covid-19 drug molnupiravir electrochemical sensing on C3N4, Biointerface Research in Applied Chemistry, 13(5), 446 (2023). Doi: https://doi.org/10.33263/briac135.446
D. Lynch, Pyrrolyl squaraines––Fifty golden years, Metals, 5(3), 1349 (2015). Doi: https://doi.org/10.3390/met5031349
E. Lima, R.E. Boto, D. Ferreira, J.R. Fernandes, P. Almeida, L.F.V. Ferreira, E.B. Souto, A.M. Silva, L.V. Reis, Quinoline- and benzoselenazole-derived unsymmetrical squaraine cyanine dyes: Design, synthesis, photophysicochemical features and light-triggerable antiproliferative effects against breast cancer cell lines, Materials, 13(11), 2646 (2020). Doi: https://doi.org/10.3390/ma13112646
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2024 Revista Colombiana de Ciencias Químico-Farmacéuticas
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
El Departamento de Farmacia de la Facultad de Ciencias de la Universidad Nacional de Colombia autoriza la fotocopia de artículos y textos para fines de uso académico o interno de las instituciones citando la fuente. Las ideas emitidas por los autores son responsabilidad expresa de estos y no de la revista.
Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons de Atribución 4.0 aprobada en Colombia. Consulte la normativa en: http://co.creativecommons.org/?page_id=13