Publicado
Drug delivery using doping of boron nitride nanosensor towards releasing chloroquine drug in the cells: A promising method for overcoming viral disease
Administración de fármacos mediante dopaje de nanosensor de nitruro de boro para liberar el fármaco cloroquina en las células: un método prometedor para superar la enfermedad viral
Entrega de medicamentos usando dopagem de nanosensor de nitruro de boro para liberação de cloroquina nas células: um método promissor para superar doenças virais
DOI:
https://doi.org/10.15446/rcciquifa.v53n2.114450Palabras clave:
Chloroquine, Drug delivery, COVID–19, X–B4N10 (X=Al/C/Si) (en)cloroquina, administración de fármacos, COVID–19, X–B4N10 (X=Al/C/Si) (es)
cloroquina, Drug delivery, COVID–19, X–B4N10 (X=Al/C/Si) (pt)
Descargas
Introduction: Chloroquine drug as the SARS-CoV-2’s primary protease which can prevent in vitro viral duplication of all diverse experiments to now. Chloroquine drug is an anti-viral drug enlarged by Pfizer which can operate as an orally effective 3C-like protease inhibitor. Materials and Methods: In this work, chloroquine drug has been evaluated in forbiddance of coronavirus across trapping on the boron nitride nanocage (B4N10_NC) functionalized with some atoms as the drug delivery procedure owing to the direct electron transfer principle which can be illustrated by quantum mechanics method of density functional theory (DFT). Results and Discussion: As a matter of fact, it was performed the theoretical method of the B3LYP/6-311+G (d,p) to account the aptitude of B4N10_NC for grabbing Chloroquine drug via density of electronic states, nuclear quadrupole resonance, nuclear magnetic resonance, and thermodynamic specifications. Finally, the resulted amounts illustrated that using B4N10_NC functionalized with aluminum (Al), carbon (C), silicon (Si) for adsorbing Chloroquine drug towards formation of Chloroquine @Al–B4N10_NC, Chloroquine @C–B4N10_NC, Chloroquine @Si– B4N10_NC might provide the reasonable formula in drug delivery technique which is able to be fulfilled by quantum mechanics computations due to physicochemical properties of PDOS, NMR, NQR, and IR spectrum. Conclusions: Here, we used network pharmacology, metabolite analysis, and molecular simulation to figure out the biochemical basis of the health-raising influence of Chloroquine drug through drug delivery with B4N10_NC. This research article peruses the drug ability, metabolites, and potential interaction of Chloroquine drug with Coronavirus-induced pathogenesis.
Introducción: El fármaco cloroquina es la proteasa primaria del SARS-CoV-2 que puede prevenir la duplicación viral in vitro de todos los experimentos diversos hasta ahora. El fármaco cloroquina es un fármaco antiviral ampliado por Pfizer que puede funcionar como un inhibidor de la proteasa similar al 3C eficaz por vía oral. Materiales y métodos: en este trabajo, el fármaco cloroquina se ha evaluado para prevenir el coronavirus mediante la captura en la nanojaula de nitruro de boro (B4N10_NC) funcionalizada con algunos átomos como procedimiento de administración del fármaco debido al principio de transferencia directa de electrones que puede ilustrarse mediante la mecánica cuántica. Método de teoría funcional de la densidad (DFT). Resultados y Discusión: De hecho, se realizó el método teórico del B3LYP/6-311+G (d,p) para dar cuenta de la aptitud de B4N10_NC para capturar la droga cloroquina a través de la densidad de estados electrónicos, resonancia cuadrupolo nuclear, resonancia magnética nuclear y especificaciones termodinámicas. Finalmente, las cantidades resultantes ilustraron que el uso de B4N10_NC funcionalizado con aluminio (Al), carbono (C), silicio (Si) para adsorber el fármaco cloroquina hacia la formación de cloroquina @Al–B4N10_NC, cloroquina @C–B4N10_NC, cloroquina @Si–B4N10_NC podría proporcionar la fórmula razonable en la técnica de administración de fármacos que puede cumplirse mediante cálculos de mecánica cuántica debido a las propiedades fisicoquímicas de PDOS, NMR, NQR y espectro IR. Conclusiones: Aquí utilizamos farmacología de red, análisis de metabolitos y simulación molecular para descubrir la base bioquímica del efecto saludable del medicamento cloroquina a través de la administración de fármacos con B4N10_NC. Este artículo de investigación examina detenidamente la capacidad del fármaco, los metabolitos y la posible interacción del fármaco cloroquina con la patogénesis inducida por el coronavirus.
Introdução: A droga cloroquina como a protease primária do SARS-CoV-2 que pode prevenir a duplicação viral in vitro de todos os diversos experimentos até agora. O medicamento cloroquina é um medicamento antiviral ampliado pela Pfizer que pode operar como um inibidor de protease semelhante ao 3C por via oral. Materiais e Métodos: Neste trabalho, a droga cloroquina foi avaliada na proibição do coronavírus através do aprisionamento na nanogaiola de nitruro de boro (B4N10_ NC) funcionalizada com alguns átomos como procedimento de entrega da droga devido ao princípio de transferência direta de elétrons que pode ser ilustrado pela mecânica quântica, método da teoria do funcional da densidade (DFT). Resultados e Discussão: Na verdade, foi realizado o método teórico do B3LYP/6-311+G (d,p) para contabilizar a aptidão do B4N10_NC para capturar a droga Cloroquina via densidade de estados eletrônicos, ressonância quadrupolo nuclear, ressonância magnética nuclear e especificações termodinâmicas. Finalmente, os valores resultantes ilustraram que o uso de B4N10_NC funcionalizado com alumínio (Al), carbono (C), silício (Si) para adsorver o medicamento Cloroquina para a formação de Cloroquina @Al – B4N10_NC, Cloroquina @ C – B4N10_NC, Cloroquina @ Si – B4N10_NC pode fornecer a fórmula razoável na técnica de entrega de medicamentos que pode ser realizada por cálculos de mecânica quântica devido às propriedades físico-químicas do espectro PDOS, RMN, NQR e IR. Conclusões: Aqui, usamos farmacologia de rede, análise de metabólitos e simulação molecular para descobrir a base bioquímica da influência do medicamento Cloroquina na melhoria da saúde por meio da entrega de medicamentos com B4N10_NC. Este artigo de pesquisa examina a capacidade do medicamento, os metabólitos e a interação potencial do medicamento Cloroquina com a patogênese induzida pelo Coronavírus.
Referencias
A. Sharma, S. Tiwari, M.K. Deb, J.L. Marty, Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): a global pandemic and treatment strategies, International Journal of Antimicrobial Agents, 56(2), 106054 (2020). Doi: https://doi.org/10.1016/j.ijantimicag.2020.106054 DOI: https://doi.org/10.1016/j.ijantimicag.2020.106054
F. Mollaamin, M. Monajjemi, Thermodynamic research on the inhibitors of coronavirus through drug delivery method, Journal of the Chilean Chemical Society, 66(2), 5195-5205 (2021). Doi: https://doi.org/10.4067/S0717-97072021000205195 DOI: https://doi.org/10.4067/S0717-97072021000205195
B. Hu, H. Guo, P. Zhou, Z.-L. Shi, Characteristics of SARS-CoV-2 and COVID-19, Nature Reviews Microbiology, 19(3), 141-154 (2021). Doi: https://doi.org/10.1038/s41579-020-00459-7 DOI: https://doi.org/10.1038/s41579-020-00459-7
S. Shahriari, M. Monajjemi, F. Mollaamin, Determination of proteins specification with SARS- COVID-19 based ligand designing, Journal of the Chilean Chemical Society, 67(2), 5468-5476 (2022). Doi: https://doi.org/10.4067/S0717-97072022000205468 DOI: https://doi.org/10.4067/S0717-97072022000205468
F. Mollaamin, Physicochemical investigation of anti-COVID19 drugs using several medicinal plants, Journal of the Chilean Chemical Society, 67(2), 5537-5546 (2022). Doi: https://doi.org/10.4067/S0717-97072022000205537 DOI: https://doi.org/10.4067/S0717-97072022000205537
F. Mollaamin, S. Shahriari, M. Monajjemi, Treating omicron BA.4 & BA.5 via herbal antioxidant asafoetida: A DFT study of carbon nanocarrier in drug delivery, Journal of the Chilean Chemical Society, 68(1), 5781-5786 (2023). Doi: https://doi.org/10.4067/S0717-97072023000105781 DOI: https://doi.org/10.4067/S0717-97072023000105781
F. Mollaamin, S. Shahriari, M. Monajjemi, Monkeypox disease treatment by tecovirimat adsorbed onto single-walled carbon nanotube through drug delivery method, Journal of the Chilean Chemical Society, 68(1), 5796-5801 (2023). Doi: https://doi.org/10.4067/S0717-97072023000105796 DOI: https://doi.org/10.4067/S0717-97072023000105796
M. Monajjemi, F. Mollaamin, S. Shojaei, An overview on coronaviruses family from past to COVID-19: Introduce some inhibitors as antiviruses from Gillan’s plants, Biointerface Research in Applied Chemistry, 10(3), 5575-5585 (2020). Doi: https://doi.org/10.33263/BRIAC103.575585 DOI: https://doi.org/10.33263/BRIAC103.575585
F. Mollaamin, M. Monajjemi, Molecular drug discovery of potential inhibitor of Covid–19 using several medicinal plant ingredients: A promising therapy for viral disease, Revista de la Facultad de Ciencias, 13(1), 141-158 (2024). Doi: https://doi.org/10.15446/rev.fac.cienc.v13n1.111288 DOI: https://doi.org/10.15446/rev.fac.cienc.v13n1.111288
U. Anand, C. Cabreros, J. Mal, F. Ballesteros, Jr., M. Sillanpää, V. Tripathi, E. Bontempi, Novel coronavirus disease 2019 (COVID-19) pandemic: From transmission to control with an interdisciplinary vision, Environmental Research, 197, 111126 (2021). Doi: https://doi.org/10.1016/j.envres.2021.111126 DOI: https://doi.org/10.1016/j.envres.2021.111126
R. Rana, R. Kant, R.S. Huirem, D. Bohra, N.K. Ganguly, Omicron variant: Current insights and future directions, Microbiological Research, 265, 127204 (2022). Doi: https://doi.org/10.1016/j.micres.2022.127204 DOI: https://doi.org/10.1016/j.micres.2022.127204
P.C. Taylor, A.C. Adams, M.M. Hufford, I. de la Torre, K. Winthrop, R.L. Gottlieb, Neutralizing monoclonal antibodies for treatment of COVID-19, Nature Reviews Immunology, 21(6), 382-393 (2021). Doi: https://doi.org/10.1038/s41577-021-00542-x DOI: https://doi.org/10.1038/s41577-021-00542-x
R.L. Gottlieb, C.E. Vaca, R. Paredes, J. Mera, B.J. Webb, G. Perez, G. Oguchi, P. Ryan, B.U. Nielsen, M. Brown, A. Hidalgo, Y. Sachdeva, et al., Early remdesivir to prevent progression to severe Covid-19 in outpatients, The New England Journal of Medicine, 386(4), 305-315 (2022). Doi: https://doi.org/10.1056/NEJMoa2116846 DOI: https://doi.org/10.1056/NEJMoa2116846
P.S. Kim, S.W. Read, A.S. Fauci, Therapy for early COVID-19: A critical need, JAMA, 324(21), 2149-2150 (2020). Doi: https://doi.org/10.1001/jama.2020.22813 DOI: https://doi.org/10.1001/jama.2020.22813
Z. Plavec, A. Domanska, X. Liu, P. Laine, L. Paulin, M. Varjosalo, P. Auvinen, S.G. Wolf, M. Anastasina, S.J. Butcher, SARS-CoV-2 Production, purification methods and UV inactivation for proteomics and structural studies, Viruses, 14(9), 1989 (2022). Doi: https://doi.org/10.3390/v14091989 DOI: https://doi.org/10.3390/v14091989
N.Z. Zabidi, H.L. Liew, I.A. Farouk, A. Puniyamurti, A.J.W. Yip, V.N. Wijesinghe, Z.Y. Low, J.W. Tang, V.T.K. Chow, S.K. Lal, Evolution of SARS- CoV-2 variants: Implications on immune escape, vaccination, therapeutic and diagnostic strategies, Viruses, 15(4), 944 (2023). Doi: https://doi.org/10.3390/v15040944 DOI: https://doi.org/10.3390/v15040944
O.I. Yarovaya, D.N. Shcherbakov, S.S. Borisevich, A.S. Sokolova, M.A. Gureev, E.M. Khamitov, N.B. Rudometova, A.V. Zybkina, E.D. Mordvinova, A.V. Zaykovskaya, A.D. Rogachev, O.V. Pyankov, R.A. Maksyutov, N.F. Salakhutdinov, Borneol ester derivatives as entry inhibitors of a wide spectrum of SARS-CoV-2 viruses, Viruses, 14(6), 1295 (2022). Doi: https://doi.org/10.3390/v14061295 DOI: https://doi.org/10.3390/v14061295
A. Majeed, X. Zhang, On the adoption of modern technologies to fight the COVID-19 pandemic: A technical synthesis of latest developments, COVID, 3(1), 90-123 (2023). Doi: https://doi.org/10.3390/covid3010006 DOI: https://doi.org/10.3390/covid3010006
G. Bonaccorsi, F. Pierri, M. Cinelli, A. Flori, A. Galeazzi, F. Porcelli, A.L. Schmidt, C.M. Valensise, A. Scala, W. Quattrociocchi, F. Pammolli, Economic and social consequences of human mobility restrictions under COVID-19, Proceedings of the National Academy of Sciences of the United States of America, 117(27), 15530- 15535 (2020). Doi: https://doi.org/10.1073/pnas.2007658117 DOI: https://doi.org/10.1073/pnas.2007658117
A. Barakat, A. Mostafa, M. Ali, A.M. Al-Majid, L.R. Domingo, O. Kutkat, Y. Moatasim, K. Zia, Z. Ul-Haq, Y.A.M.M. Elshaier, Design, synthesis and in vitro evaluation of spirooxindole-based phenylsulfonyl moiety as a candidate anti-SAR-CoV-2 and MERS-CoV-2 with the implementation of combination studies, International Journal of Molecular Sciences, 23(19), 11861 (2022). Doi: https://doi.org/10.3390/ijms231911861 DOI: https://doi.org/10.3390/ijms231911861
F. Zeng, Y. Huang, Y. Guo, M. Yin, X. Chen, L. Xiao, G. Deng, Association of inflammatory markers with the severity of COVID-19: a meta-analysis, International Journal of Infectious Diseases, 96, 467-474 (2020). Doi: https://doi.org/10.1016/j.ijid.2020.05.055 DOI: https://doi.org/10.1016/j.ijid.2020.05.055
Q.M.S. Jamal, Antiviral potential of plants against COVID-19 during outbreaks—An update, International Journal of Molecular Sciences, 23(21), 13564 (2022). Doi: https://doi.org/10.3390/ijms232113564 DOI: https://doi.org/10.3390/ijms232113564
S. Bibi, M.S. Khan, S.A. El-Kafrawy, T.A. Alandijany, M.M. El-Daly, Q. Yousafi, D. Fatima, A.A. Faizo, L.H. Bajrai, E.I. Azhar, Virtual screening and molecular dynamics simulation analysis of Forsythoside A as a plant-derived inhibitor of SARS-CoV-2 3CLpro, Saudi Pharmaceutical Journal, 30(7), 979-1002 (2022). Doi: https://doi.org/10.1016/j.jsps.2022.05.003 DOI: https://doi.org/10.1016/j.jsps.2022.05.003
M. Wang, R. Cao, L. Zhang, X. Yang, J. Liu, M. Xu, Z. Shi, Z. Hu, W. Zhong, G. Xiao, Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro, Cell Research, 30(3), 269-271 (2020). Doi: https://doi.org/10.1038/s41422-020-0282-0 DOI: https://doi.org/10.1038/s41422-020-0282-0
F. Touret, X. de Lamballerie, Of chloroquine and COVID-19, Antiviral Research, 177, 104762 (2020). Doi: https://doi.org/10.1016/j.antiviral.2020.104762 DOI: https://doi.org/10.1016/j.antiviral.2020.104762
P. Colson, J.M. Rolain, J.C. Lagier, P. Brouqui, D. Raoult, Chloroquine and hydroxychloroquine as available weapons to fight COVID-19, International Journal of Antimicrobial Agents, 55(4), 105932 (2020). Doi: https://doi.org/10.1016/j.ijantimicag.2020.105932 DOI: https://doi.org/10.1016/j.ijantimicag.2020.105932
A. Cortegiani, G. Ingoglia, M. Ippolito, A. Giarratano, S. Einav, A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19, Journal of Critical Care, 57, 279-283 (2020). Doi: https://doi.org/10.1016/j.jcrc.2020.03.005 DOI: https://doi.org/10.1016/j.jcrc.2020.03.005
D. Tang, J. Li, R. Zhang, R. Kang, D.J. Klionsky, Chloroquine in fighting COVID-19: good, bad, or both? Autophagy, 16(12), 2273-2275 (2020). Doi: https://doi.org/10.1080/15548627.2020.1796014 DOI: https://doi.org/10.1080/15548627.2020.1796014
J. Li, M. Zeng, H. Shan, C. Tong, Microneedle patches as drug and vaccine delivery platform, Current Medicinal Chemistry, 24(22), 2413-2422 (2017). Doi: https://doi.org/10.2174/0929867324666170526124053 DOI: https://doi.org/10.2174/0929867324666170526124053
A.P. Singh, A. Biswas, A. Shukla, P. Maiti, Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles, Signal Transduction and Targeted Therapy, 4, 33 (2019). Doi: https://doi.org/10.1038/s41392-019-0068-3 DOI: https://doi.org/10.1038/s41392-019-0068-3
T.M. Allen, Drug delivery systems: Entering the mainstream, Science, 303(5665), 1818-1822 (2004). Doi: https://doi.org/10.1126/science.1095833 DOI: https://doi.org/10.1126/science.1095833
F. Mollaamin, M. Monajjemi, S. Mohammadi, Physicochemical characterization of antiviral phytochemicals of Artemisia annua plant as therapeutic potential against coronavirusdisease: In silico–drug delivery by density functional theory benchmark, Journal of Biological Regulators and Homeostatic Agents, 37(7), 3629-3639 (2023). Doi: https://doi.org/10.23812/j.biol.regul.homeost.agents.20233707.358
M. Monajjemi, M.T. Baie, F. Mollaamin, Interaction between threonine and cadmium cation in [Cd(Thr)] (n = 1-3) complexes: Density functional calculations, Russian Chemical Bulletin, 59, 886-889 (2010). Doi: https://doi.org/10.1007/s11172-010-0181-5 DOI: https://doi.org/10.1007/s11172-010-0181-5
F. Mollaamin, M. Monajjemi, In situ drug delivery investigation through characterization and application of carbon-based nanomaterials: A promising approach for treating viral diseases, Journal of Biological Regulators and Homeostatic Agents, 38(3), 1961-1973 (2024). Doi: https://doi.org/10.23812/j.biol.regul.homeost.agents.20243803.153
B. Ghalandari, M. Monajjemi, F. Mollaamin, Theoretical investigation of carbon nanotube binding to DNA in view of drug delivery, Journal of Computational and Theoretical Nanoscience, 8(7), 1212-1219 (2011). Doi: https://doi.org/10.1166/jctn.2011.1801 DOI: https://doi.org/10.1166/jctn.2011.1801
F. Mollaamin, Computational methods in the drug delivery of carbon nanocarriers onto several compounds in Sarraceniaceae medicinal plant as monkeypox therapy, Computation, 11(4), 84 (2023). Doi: https://doi.org/10.3390/computation11040084 DOI: https://doi.org/10.3390/computation11040084
B. Khalili-Hadad, F. Mollaamin, M. Monajjemi, Biophysical chemistry of macrocycles for drug delivery: A theoretical study, Russian Chemical Bulletin, 60(2), 238-241 (2011). Doi: https://doi.org/10.1007/s11172-011-0039-5 DOI: https://doi.org/10.1007/s11172-011-0039-5
F. Mollaamin, M. Monajjemi, Transition metal (X = Mn, Fe, Co, Ni, Cu, Zn)-doped graphene as gas sensor for CO2 and NO2 detection: A molecular modeling framework by DFT perspective, Journal of Molecular Modeling, 29(4), 119 (2023). Doi: https://doi.org/10.1007/s00894-023-05526-3 DOI: https://doi.org/10.1007/s00894-023-05526-3
D. Pan, F. Su, H. Liu, Y. Ma, R. Das, Q. Hu, C. Liu, Z. Guo, The properties and preparation methods of different boron nitride nanostructures and applications of related nanocomposites, The Chemical Record, 20(11), 1314-1337 (2020). Doi: https://doi.org/10.1002/tcr.202000079 DOI: https://doi.org/10.1002/tcr.202000079
S.M. Sharker, Hexagonal boron nitrides (white graphene): A promising method for cancer drug delivery, International Journal of Nanomedicine, 14, 9983-9993 (2019). Doi: https://doi.org/10.2147/IJN.S205095 DOI: https://doi.org/10.2147/IJN.S205095
M. Penz, E.I. Tellgren, M.A. Csirik, M. Ruggenthaler, A. Laestadius, The structure of density-potential mapping. Part I: Standard density-functional theory, ACS Physical Chemistry Au, 3(4), 334-347 (2023). Doi: https://doi.org/10.1021/acsphyschemau.2c00069 DOI: https://doi.org/10.1021/acsphyschemau.2c00069
T. van Mourik, M. Bühl, M.-P. Gaigeot, Density functional theory across chemistry, physics and biology, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372(2011), 20120488 (2014). Doi: https://doi.org/10.1098/rsta.2012.0488 DOI: https://doi.org/10.1098/rsta.2012.0488
F. Mollaamin, M. Monajjemi, In silico-DFT investigation of nanocluster alloys of Al-(Mg, Ge, Sn) coated by nitrogen heterocyclic carbenes as corrosion inhibitors, Journal of Cluster Science, 34(6), 2901-2918 (2023). Doi: https://doi.org/10.1007/s10876-023-02436-5 DOI: https://doi.org/10.1007/s10876-023-02436-5
K. Bakhshi, F. Mollaamin, M. Monajjemi, Exchange and correlation effect of hydrogen chemisorption on nano V(100) surface: A DFT study by generalized gradient approximation (GGA), Journal of Computational and Theoretical Nanoscience, 8(4), 763-768 (2011). Doi: https://doi.org/10.1166/jctn.2011.1750 DOI: https://doi.org/10.1166/jctn.2011.1750
F. Mollaamin, M. Monajjemi, Graphene-based resistant sensor decorated with Mn, Co, Cu for nitric oxide detection: Langmuir adsorption & DFT method, Sensor Review, 43(4), 266-279 (2023). Doi: https://doi.org/10.1108/SR-03-2023-0040 DOI: https://doi.org/10.1108/SR-03-2023-0040
M. Monajjemi, J. Najafpour, F. Mollaamin, (3,3)4 Armchair carbon nanotube in connection with PNP and NPN junctions: Ab Initio and DFT-based studies, Fullerenes Nanotubes and Carbon Nanostructures, 21(3), 213-232 (2013). Doi: https://doi.org/10.1080/1536383X.2011.597010 DOI: https://doi.org/10.1080/1536383X.2011.597010
F. Mollaamin, M. Monajjemi, Molecular modelling framework of metal-organic clusters for conserving surfaces: Langmuir sorption through the TD-DFT/ ONIOM approach, Molecular Simulation, 49(4), 365-376 (2023). Doi: https://doi.org/10.1080/08927022.2022.2159996 DOI: https://doi.org/10.1080/08927022.2022.2159996
F. Mollaamin, M. Monajjemi, Adsorption ability of Ga5N10 nanomaterial for removing metal ions contamination from drinking water by DFT, International Journal of Quantum Chemistry, 124(2), e27348 (2024). Doi: https://doi.org/10.1002/qua.27348 DOI: https://doi.org/10.1002/qua.27348
A.D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Physical Review A, 38(6), 3098-3100 (1988). Doi: https://doi.org/10.1103/PhysRevA.38.3098 DOI: https://doi.org/10.1103/PhysRevA.38.3098
C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation- energy formula into a functional of the electron density, Physical Review B, 37(2), 785-789 (1988). Doi: https://doi.org/10.1103/PhysRevB.37.785 DOI: https://doi.org/10.1103/PhysRevB.37.785
L.J. Onsager, Electric moments of molecules in liquids, Journal of the American Chemical Society, 58(8), 1486-1493 (1936). Doi: https://doi.org/10.1021/ja01299a050 DOI: https://doi.org/10.1021/ja01299a050
C.J. Cramer, D.G. Truhlar, PM3-SM3: A general parameterization for including aqueous solvation effects in the PM3 molecular orbital model, Journal of Computational Chemistry, 13(9), 1089-1097 (1992). Doi: https://doi.org/10.1002/jcc.540130907 DOI: https://doi.org/10.1002/jcc.540130907
M. Monajjemi, M. Khaleghian, N. Tadayonpour, F. Mollaamin, The effect of different solvents and temperatures on stability of single-walled carbon nanotube: A QM/MD study, International Journal of Nanoscience, 9(5), 517- 529 (2010). Doi: https://doi.org/10.1142/S0219581X10007071 DOI: https://doi.org/10.1142/S0219581X10007071
F. Mollaamin, A. Ilkhani, N. Sakhaei, B. Bonsakhteh, A. Faridchehr, S. Tohidi, M. Monajjemi, Thermodynamic and solvent effect on dynamic structures of nano bilayer-cell membrane: Hydrogen bonding study, Journal of Computational and Theoretical Nanoscience, 12(10), 3148-3154 (2015). Doi: https://doi.org/10.1166/jctn.2015.4092 DOI: https://doi.org/10.1166/jctn.2015.4092
M. Khaleghian, M. Zahmatkesh, F. Mollaamin, M. Monajjemi, Investigation of solvent effects on armchair single-walled carbon nanotubes: A QM/MD study, Fullerenes, Nanotubes and Carbon Nanostructures, 19(4), 251-261 (2011). Doi: https://doi.org/10.1080/15363831003721757 DOI: https://doi.org/10.1080/15363831003721757
F. Mollaamin, F. Najafi, M. Khaleghian, B. Khalili-Hadad, M. Monajjemi, Theoretical study of different solvents and temperatures effects on single-walled carbon nanotube and temozolomide drug: A QM/MM study, Fullerenes, Nanotubes and Carbon Nanostructures, 19(7), 653-667 (2011). Doi: https://doi.org/10.1080/1536383X.2010.504956 DOI: https://doi.org/10.1080/1536383X.2010.504956
E.M. Sarasia, S. Afsharnezhad, B. Honarparvar, F. Mollaamin, M. Monajjemi, Theoretical study of solvent effect on NMR shielding tensors of luciferin derivatives, Physics and Chemistry of Liquids, 49(5), 561-571 (2011). Doi: https://doi.org/10.1080/00319101003698992 DOI: https://doi.org/10.1080/00319101003698992
F. Mollaamin, M. Monajjemi, S. Salemi, M.T. Baei, A dielectric effect on normal mode analysis and symmetry of BNNT nanotube, Fullerenes, Nanotubes and Carbon Nanostructures, 19(3), 182-196 (2011). Doi: https://doi.org/10.1080/15363831003782932 DOI: https://doi.org/10.1080/15363831003782932
M.A.A. Zadeh, H. Lari, L. Kharghanian, E. Balali, R. Khadivi, H. Yahyaei, F. Mollaamin, M. Monajjemi, Density functional theory study and anti-cancer properties of Shyshaq plant: In viewpoint of nano biotechnology, Journal of Computational and Theoretical Nanoscience, 12(11), 4358-4367 (2015). Doi: https://doi.org/10.1166/jctn.2015.4366 DOI: https://doi.org/10.1166/jctn.2015.4366
C.C. Chambers, G.D. Hawkins, C.J. Cramer, D.G. Truhlar, Model for aqueous solvation based on class IV atomic charges and first solvation shell effects, Journal of Physical Chemistry, 100(40), 16385-16398 (1996). Doi: https://doi.org/10.1021/jp9610776 DOI: https://doi.org/10.1021/jp9610776
M. Monajjemi, M. Noei, F. Mollaamin, Design of fMet-tRNA and calculation of its bonding properties by quantum mechanics, Nucleosides, Nucleotides & Nucleic Acids, 29(9), 676-683 (2010). Doi: https://doi.org/10.1080/15257771003781642 DOI: https://doi.org/10.1080/15257771003781642
F. Mollaamin, Features of parametric point nuclear magnetic resonance of metals implantation on boron nitride nanotube by density functional theory/electron paramagnetic resonance, Journal of Computational and Theoretical Nanoscience, 11(11), 2393-2398 (2014). Doi: https://doi.org/10.1166/jctn.2014.3653 DOI: https://doi.org/10.1166/jctn.2014.3653
A. Tahan, F. Mollaamin, M. Monajjemi, Thermochemistry and NBO analysis of peptide bond: Investigation of basis sets and binding energy, Russian Journal of Physical Chemistry A, 83(4), 587-597 (2009). Doi: https://doi.org/10.1134/S003602440904013X DOI: https://doi.org/10.1134/S003602440904013X
F. Mollaamin, M. Monajjemi, B5N10 nanocarrier functionalized with Al, C, Si atoms: A drug delivery method for infectious disease remedy, OBM Genetics, 8(1), 214 (2024). Doi: https://doi.org/10.21926/obm.genet.2401214 DOI: https://doi.org/10.21926/obm.genet.2401214
F. Mollaamin, M. Monajjemi, Bone therapy through drug delivery of chelated [bisphosphonate-metal ions] adsorbed on the surface of carbon nanotubes, Revista Colombiana de Ciencias Químico-Farmacéuticas, 52(2), 741-765 (2023). Doi: https://doi.org/10.15446/rcciquifa.v52n2.110734
F. Mollaamin, M. Monajjemi, Harmonic linear combination and normal mode analysis of semiconductor nanotubes vibrations, Journal of Computational and Theoretical Nanoscience, 12(6), 1030-1039 (2015). Doi: https://doi.org/10.1166/jctn.2015.3846 DOI: https://doi.org/10.1166/jctn.2015.3846
A.M.Vargason, A.C. Anselmo, S. Mitragotri, The evolution of commercial drug delivery technologies, Nature Biomedical Engineering, 5(9), 951-967 (2021). Doi: https://doi.org/10.1038/s41551-021-00698-w DOI: https://doi.org/10.1038/s41551-021-00698-w
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, et al., Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford CT, 2016.
C. Ochsenfeld, J. Kussmann, F. Koziol, Ab initio NMR spectra for molecular systems with a thousand and more atoms: a linear-scaling methods. Angewante Chemie, International Edition, 43(34), 4485-4489 (2004). Doi: https://doi.org/10.1002/anie.200460336 DOI: https://doi.org/10.1002/anie.200460336
J.A.S. Smith, Nuclear quadrupole resonance spectroscopy. General principles, Journal of Chemical Education, 48(1), 39-41 (1971). Doi: https://doi.org/10.1021/ed048p39 DOI: https://doi.org/10.1021/ed048p39
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2024 Revista Colombiana de Ciencias Químico-Farmacéuticas

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
El Departamento de Farmacia de la Facultad de Ciencias de la Universidad Nacional de Colombia autoriza la fotocopia de artículos y textos para fines de uso académico o interno de las instituciones citando la fuente. Las ideas emitidas por los autores son responsabilidad expresa de estos y no de la revista.
Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons de Atribución 4.0 aprobada en Colombia. Consulte la normativa en: http://co.creativecommons.org/?page_id=13




