Publicado
Solid self-emulsifying dosage forms for carrying Amphotericin B: A preformulation study
Formulaciones autoemulsionantes sólidas conteniendo Anfotericina B: Un estudio de preformulación
Formulações sólidas autoemulsionantes contendo anfotericina B: um estudo de pré-formulação
DOI:
https://doi.org/10.15446/rcciquifa.v54n1.119557Palabras clave:
Leishmaniasis, Fungal infections, Solubility, Solid SEDDS, Biorelevant media (en)Leishmaniasis, Infecciones fúngicas, Solubilidad, SEDDS sólidos, Medios biorelevantes (es)
Leishmaniose, Infecções fúngicas, Solubilidade, SEDDS sólidos, Meios biorelevantes (pt)
Descargas
Introduction: Amphotericin B (AmB) is a macrolide derived from Streptomyces nodosus used to treat fungal infections and leishmaniasis. Its main clinical limitation is associated with severe nephrotoxicity after iv administration. Aim: Therefore, this study aimed to develop and characterize AmB-loaded solid self-emulsifying drug delivery systems (SEDDS) for oral administration. Methodology: to reach this goal, first an extensive solubility test was performed on 45 excipients, followed by a pseudo-ternary phase diagram to understand the phase behavior after mixing the chosen excipients with intestinal biorelevant media. Thereafter, solid SEDDS were produced either by filling hard capsules with SEDDS (LFC) or by adsorbing them onto solid excipients to formulate tablets and granules. Results: Phosal 50 PG presented the highest AmB solubility, and based on the phase behavior, two formulations with different oil-surfactant proportions were selected. The nitrogen adsorption method indicated that solid excipients incorporated the SEDDS, and no significant difference between these two formulations was found regarding droplet size, PDI, and AmB concentration. Conclusions: the LFC revealed to be the most promising dosage form, not only carrying the highest drug load, but also displaying an average size assigned as the ideal range for intestinal absorption. Therefore, supporting further in vivo studies to evaluate its therapeutic potential.
Introducción: La Anfotericina B (AmB) es un macrólido derivado de Streptomyces nodosus utilizado para tratar infecciones fúngicas y leishmaniasis. Su principal limitación clínica está asociada con una nefrotoxicidad severa después de la administración intravenosa. Objetivo: Por lo tanto, este estudio tuvo como objetivo desarrollar y caracterizar sistemas de administración de medicamentos autoemulsionantes sólidos (SEDDS) cargados con AmB para administración oral. Metodología: Para alcanzar este objetivo, primero se realizó una prueba de solubilidad extensa en 45 excipientes, seguida de un diagrama de fase pseudo-ternaria para entender el comportamiento de fase después de mezclar los excipientes elegidos con medios biorelevantes intestinales. Posteriormente, los SEDDS sólidos fueran desarrojados sea llenando cápsulas duras con SEDDS (LFC) o incorporandolos en excipientes sólidos para formular comprimidos y gránulos. Resultados: Phosal 50 PG presentó la mayor solubilidad de AmB y, basado en el comportamiento de fase, se seleccionaron dos formulaciones con diferentes proporciones de aceite y surfactante. El método de adsorción de nitrógeno indicó que los excipientes sólidos incorporaron los SEDDS, y no se encontró una diferencia significativa entre estas dos formulaciones en cuanto al tamaño de las gotas, PDI y concentración de AmB. Conclusiones: El LFC demostró ser la forma farmacéutica prometedora, no solo llevando la mayor carga de medicamento, sino también mostrando un tamaño promedio como el rango ideal para la absorción intestinal. Por lo tanto, corroborando la realización de estudios in vivo para evaluar su potencial terapéutico.
Introdução: A Anfotericina B (AmB) é um macrolídeo, derivado de Streptomyces nodosus, usado para tratar infecções fúngicas e leishmaniose. Sua principal limitação clínica está associada à nefrotoxicidade severa após a administração intravenosa. Objetivo: Portanto, este estudo teve como objetivo desenvolver e caracterizar sistemas autoemulsionantes sólidos (SEDDS) contendo AmB para administração oral. Metodologia: Primeiramente foi realizado um extenso teste de solubilidade em 45 excipientes, seguido por um diagrama de fase pseudo-ternário para entender o comportamento de fase após a mistura dos excipientes escolhidos com meios biorelevantes intestinais. Posteriormente, os SEDDS sólidos foram produzidos preenchendo cápsulas duras com SEDDS (CL) ou adsorvendo-os em excipientes sólidos para formular comprimidos e grânulos. Resultados: a maior solubilidade da AmB foi encontrada no Phosal 50 PG. Com base no comportamento de fase, duas formulações com diferentes proporções de óleo-surfactante foram selecionadas. O método de adsorção de nitrogênio indicou que os excipientes sólidos incorporaram os SEDDS, e não foi encontrada diferença significativa entre essas duas formulações em relação ao tamanho das gotículas, PDI e concentração de AmB. Conclusões: as CL revelaram ser a forma farmacêutica mais promissora, não apenas carregando a maior carga de medicamento, mas também exibindo um tamanho médio considerado como a faixa ideal para a absorção intestinal. Portanto, corroborando com a realização de estudos in vivo para avaliar seu potencial terapêutico.
Referencias
1. F. Ibrahim, O. Sivak, E.K. Wasan, K. Bartlett & K.M. Wasan. Efficacy of an oral and tropically stable lipid-based formulation of Amphotericin B (iCo-010) in an experimental mouse model of systemic candidiasis. Lipids in Health and Disease, 12, 158 (2013) Doi: https://doi.org/10.1186/1476-511X-12-158
2. A. Lemke, A.F. Kiderlen & O. Kayser. Amphotericin B. Applied Microbiology and Biotechnology, 68, 151 (2005). Doi: https://doi.org/10.1007/s00253-005-1955-9
3. WHO. World Health Organization Model List of Essential Medicines - 22nd Edition. World Health Or-ganization, Geneva, 2021; 66 p. URL: https://www.who.int/publications/i/item/WHO-MHP-HPS-EML-2021.02
4. D.W. Bates, L. Su, D.T. Yu, G.M. Chertow, D.L. Seger, D.R.J. Gomes, E.J. Dasbach & R. Platt. Mor-tality and costs of acute renal failure associated with Amphotericin B therapy. Clinical Infectious Diseases, 32(5), 686–693 (2001) Doi: https://doi.org/10.1086/319211
5. R.A. Zager, C.R. Bredl & B.A. Schimpf. Direct amphotericin B-mediated tubular toxicity: Assess-ments of selected cytoprotective agents. Kidney International, 41, 588–1594 (1992) Doi: https://doi.org/10.1038/ki.1992.229
6. J. Barwicz, S. Christian & I. Gruda. Effects of the aggregation state of amphotericin B on its toxicity to mice. Antimicrobial Agents and Chemotherapy, 36(10), 2310–2315 (1992) Doi: https://doi.org/10.1128/AAC.36.10.2310
7. D.R. Serrano & A. Lalatsa. Oral amphotericin B: The journey from bench to market. Journal of Drug Delivery Science and Technology, 42, 75-83 (2017) Doi: https://doi.org/10.1016/j.jddst.2017.04.017
8. S. Chakraborty, D. Shukla, B. Mishra & S. Singh. Lipid – An emerging platform for oral delivery of drugs with poor bioavailability. European Journal of Pharmaceutics and Biopharmaceutics, 73(1), 1–15 (2009). Doi: https://doi.org/10.1016/j.ejpb.2009.06.001
9. C.A. Lipinski, F. Lombardo, B.W. Dominy & P.J. Feeney. Experimental and computational ap-proaches to estimate solubility and permeability in drug discovery and development settings. Ad-vanced Drug Delivery Reviews, 46(1-3), 3–26 (2001). Doi: https://doi.org/10.1016/S0169-409X(00)00129-0
10. G.L. Amidon, H. Lennernäs, V.P. Shah & J.R. Crison. A theoretical basis for a Biopharmaceutic Drug Classification: The correlation of in vitro drug product dissolution and in vivo bioavailability. Pharmaceutical Research, 12, 413–420 (1995). Doi: https://doi.org/10.1023/A:1016212804288
11. C.-Y. Wu & L.Z Benet. Predicting drug disposition via application of BCS: Transport/Absorp-tion/Elimination interplay and development of a Biopharmaceutics Drug Disposition Classification System. Pharmaceutical Research, 22, 11–23 (2005). Doi: https://doi.org/10.1007/s11095-004-9004-4
12. R. Ghadi & N. Dand. BCS class IV drugs: Highly notorious candidates for formulation develop-ment. Journal of Controlled Release, 248, 71–95 (2017). Doi: https://doi.org/10.1016/j.jcon-rel.2017.01.014
13. B. Rivnay, J. Wakim, K. Avery, P. Petrochenko, J.H. Myung, D. Kozak, S. Yoon, N. Landrau & A. Nivorozhkin. Critical process parameters in manufacturing of liposomal formulations of ampho-tericin B. International Journal of Pharmaceutics, 565, 447-457 (2019). Doi: https://doi.org/10.1016/j.ijpharm.2019.04.052
14. C.W. Pouton. Self-emulsifying drug delivery systems: assessment of the efficiency of emulsifica-tion. International Journal of Pharmaceutics, 27(2-3), 335–348 (1985). Doi: https://doi.org/10.1016/0378-5173(85)90081-X
15. J. Liu, C. Hirschberg, M. Fanø, H. Mu & A. Müllertz. Evaluation of self-emulsifying drug delivery systems for oral insulin delivery using an in vitro model simulating the intestinal proteolysis. Eu-ropean Journal of Pharmaceutical Sciences, 147, 105272 (2020). Doi: https://doi.org/10.1016/j.ejps.2020.105272
16. A. Patel, P. Shelat & A. Lalwani. Development and optimization of solid self-nanoemulsifying drug delivery system (S-SNEDDS) using Scheffe’s design for improvement of oral bioavailability of nelfinavir mesylate. Drug Delivery and Translational Research, 4, 171–186 (2014). Doi: https://doi.org/10.1007/s13346-014-0191-1
17. B. Tang, G. Cheng, J.-C. Gu & C.-H. Xu. Development of solid self-emulsifying drug delivery sys-tems: preparation techniques and dosage forms. Drug Discovery Today, 13(13-14), 606–612 (2008). Doi: https://doi.org/10.1016/j.drudis.2008.04.006
18. J. Mandić, A. Zvonar Pobirk, F. Vrečer & M. Gašperlin. Overview of solidification techniques for self-emulsifying drug delivery systems from industrial perspective. International Journal of Pharma-ceutics, 533(2), 335–345 (2017) DOI: https://doi.org/10.1016/j.ijpharm.2017.05.036
19. Y. Choudhari, U. Reddy, F. Monsuur, T. Pauly, H. Hoefer & W. McCarthy. Comparative evaluation of porous silica based carriers for lipids and liquid drug formulations. Open Material Sciences, 1, 61–74 (2014). Doi: https://doi.org/10.2478/mesbi-2014-0004
20. A. Tan, S. Rao & C.A. Prestidge. Transforming lipid-based oral drug delivery systems into solid dosage forms: An overview of solid carriers, physicochemical properties, and biopharmaceutical performance. Pharmaceutical Research, 30, 2993–3017 (2013). Doi: https://doi.org/10.1007/s11095-013-1107-3
21. A. Seo, P. Holm, H.G. Kristensen, T. Schæfer. The preparation of agglomerates containing solid dispersions of diazepam by melt agglomeration in a high shear mixer. International Journal of Phar-maceutics, 259(1-2), 161–171 (2003). Doi: https://doi.org/10.1016/S0378-5173(03)00228-X
22. A.S. Narang, D. Desai & S. Badawy. Physicochemical interactions in solid dosage forms. Pharma-ceutical Research, 29, 2635–2638 (2012). Doi: https://doi.org/10.1007/s11095-012-0867-5
23. M.M. Gade & P.J. Hurkadale. Formulation and evaluation of self-emulsifying orlistat tablet to en-hance drug release and in vivo performance: factorial design approach. Drug Delivery and Transla-tional Research, 6, 276–288 (2016). Doi: https://doi.org/10.1007/s13346-016-0289-8
24. C. Salerno, S. Gorzalczany, A. Arechavala, S.L. Scioscia, A.M. Carlucci & C. Bregni. Novel gel-like microemulsion for topical delivery of Amphotericin B. Revista Colombiana de Ciencias Químico-Far-macéuticas, 44(3), 359–381 (2015). Doi: https://doi.org/10.15446/rcciquifa.v44n3.56285
25. S.G. Gumaste, B.O.S. Freire & A.T.M. Serajuddin. Development of solid SEDDS, VI: Effect of pre-coating of Neusilin® US2 with PVP on drug release from adsorbed self-emulsifying lipid-based formulations. European Journal of Pharmaceutical Sciences, 110, 124–133 (2017). Doi: https://doi.org/10.1016/j.ejps.2017.02.022
26. E.N. Vaikosen, S.J. Bunu, J.N. Oraeluno & D. Friday. Comparative application of derivative spec-trophotometric and HPLC techniques for the simultaneous determination of lamivudine and tenofovir disoproxil fumarate in fixed-dose combined drugs. Future Journal of Pharmaceutical Sci-ences, 9, 21 (2023). Doi: https://doi.org/10.1186/s43094-023-00471-7
27. S. Brunauer, P.H. Emmett & E. Teller. Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60(2), 309–319 (1938). Doi: https://doi.org/10.1021/ja01269a023
28. D.P. Lapham & J.L. Lapham. Gas adsorption on commercial magnesium stearate: Effects of degas-sing conditions on nitrogen BET surface area and isotherm characteristics. International Journal of Pharmaceutics, 530(1-2), 364–376 (2017). Doi: https://doi.org/10.1016/j.ijpharm.2017.08.003
29. K. AboulFotouh, A.A. Allam, M. El-Badry & A.M. El-Sayed. Role of self-emulsifying drug delivery systems in optimizing the oral delivery of hydrophilic macromolecules and reducing interindivid-ual variability. Colloids and Surfaces B: Biointerfaces, 167, 82–92 (2018). Doi: https://doi.org/10.1016/j.colsurfb.2018.03.034
30. E.S. Mahdi, M. Sakeena, M. Abdulkarim, G. Abdullah, M.Z. Abdul-Sattar & A. Noor. Effect of sur-factant and surfactant blends on pseudoternary phase diagram behavior of newly synthesized palm kernel oil esters. Drug Design, Development and Therapy, 5, 311–323 (2011). Doi: https://doi.org/10.2147/dddt.s15698
31. D.Q.M. Craig, S.A. Barker, D. Banning & S.W. Booth. An investigation into the mechanisms of self-emulsification using particle size analysis and low frequency dielectric spectroscopy. International Journal of Pharmaceutics, 114(1), 103–110 (1995). Doi: https://doi.org/10.1016/0378-5173(94)00222-Q
32. S. Klein. The use of biorelevant dissolution media to forecast the in vivo performance of a drug. AAPS Journal, 12, 397–406 (2010). Doi: https://doi.org/10.1208/s12248-010-9203-3
33. S. Ahmed & K.A. Elraies. Microemulsion in enhanced oil recovery. In: Selcan Karakuş (editor). Science and Technology Behind Nanoemulsions. InTechOpen, London, 2018. Doi: https://doi.org/10.5772/intechopen.75778
34. M. Sanchez-Dominguez, C. Aubery & C. Solans. New trends on the synthesis of inorganic nano-particles using microemulsions as confined reaction media. In: A. Hashim (editor). Smart Nanopar-ticles Technology. InTechOpen, London, 2012. Doi: https://doi.org/10.5772/33010
35. E. Kontogiannidou, T. Meikopoulos, C. Virgiliou, N. Bouropoulos, H. Gika, I.S. Vizirianakis, A. Müllertz & D.G. Fatouros. Towards the development of Self-Nano-Emulsifying Drug Delivery Sys-tems (SNEDDS) containing trimethyl chitosan for the oral delivery of amphotericin B: In vitro as-sessment and cytocompatibility studies. Journal of Drug Delivery Science and Technology, 56(Part A), 101524 (2020). Doi: https://doi.org/10.1016/j.jddst.2020.101524
36. I. Nardin & S. Köllner. Successful development of oral SEDDS: Screening of excipients from the industrial point of view. Advanced Drug Delivery Reviews, 142, 128–140 (2019). Doi: https://doi.org/10.1016/j.addr.2018.10.014
37. C.W. Pouton. Formulation of poorly water-soluble drugs for oral administration: Physicochemical and physiological issues and the lipid formulation classification system. European Journal of Phar-maceutical Sciences, 29(3-4), 278–287 (2006). Doi: https://doi.org/10.1016/j.ejps.2006.04.016
38. Z. Ujhelyi, M. Vecsernyés, P. Fehér, D. Kósa, P. Arany, D. Nemes, D. Sinka, G. Vasvári, F. Fenyvesi, J. Váradi & I. Bácskay. Physico-chemical characterization of self-emulsifying drug delivery sys-tems. Drug Discovery Today: Technologies, 27, 81–86 (2018). Doi: https://doi.org/10.1016/j.ddtec.2018.06.005
39. G. Quan, Q. Wu, X. Zhang, Z. Zhan, C. Zhou, B. Chen, Z. Zhang, G. Li, X. Pan & C. Wu. Enhancing in vitro dissolution and in vivo bioavailability of fenofibrate by solid self-emulsifying matrix com-bined with SBA-15 mesoporous silica. Colloids and Surfaces B: Biointerfaces, 141, 476–482 (2016). Doi: https://doi.org/10.1016/j.colsurfb.2016.02.013
40. P. Joyce, T.J. Dening, T.R. Meola, H.B. Schultz, R. Holm, N. Thomas & C.A. Prestidge. Solidification to improve the biopharmaceutical performance of SEDDS: Opportunities and challenges. Advanced Drug Delivery Reviews, 142, 102–117 (2019). Doi: https://doi.org/10.1016/j.addr.2018.11.006
41. E. Franceschinis, A.C. Santomaso, L. Benda, B. Perissutti, D. Voinovich & N. Realdon. Influence of process variables on the properties of simvastatin self-emulsifying granules obtained through high shear wet granulation. Powder Technology, 274, 173–179 (2015). Doi: https://doi.org/10.1016/j.pow-tec.2015.01.026
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2025 Revista Colombiana de Ciencias Químico-Farmacéuticas

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
El Departamento de Farmacia de la Facultad de Ciencias de la Universidad Nacional de Colombia autoriza la fotocopia de artículos y textos para fines de uso académico o interno de las instituciones citando la fuente. Las ideas emitidas por los autores son responsabilidad expresa de estos y no de la revista.
Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons de Atribución 4.0 aprobada en Colombia. Consulte la normativa en: http://co.creativecommons.org/?page_id=13