Publicado

2019-05-01

Sistemas de entrega de fármacos autoemulsificables: una plataforma de desarrollo alternativa para la industria farmacéutica colombiana

Self-emulsifying drug delivery systems (SEDDS): an alternative development platform for the Colombian pharmaceutical industry

DOI:

https://doi.org/10.15446/rcciquifa.v48n2.82696

Palabras clave:

Sistemas de entrega de fármacos autoemulsificables, biodisponibilidad, solubilidad, fármacos poco solubles en agua, caracterización (es)
ESelf-emulsifying drug delivery systems, bioavailability, solubility, poor water-soluble drug, characterization (en)

Descargas

Autores/as

  • Yeimy L. Cueto Universidad del Atlántico - Facultad de Química y Farmacia - Programa de Farmacia - Grupo de Investigación en Control y Tecnología Farmacéutica (GITECFAR)
  • Wilfrido L. Ortega Universidad del Atlántico - Facultad de Química y Farmacia - Programa de Farmacia - Grupo de Investigación en Control y Tecnología Farmacéutica (GITECFAR)
  • Reinaldo G. Sotomayor Universidad del Atlántico - Facultad de Química y Farmacia - Programa de Farmacia - Grupo de Investigación en Control y Tecnología Farmacéutica (GITECFAR)
Los grandes avances tecnológicos en la industria farmacéutica, que involucran el uso de la química combinatoria y el cribado de alto rendimiento, han conllevado al descubrimiento de muchas entidades químicas candidatas a fármacos que presentan baja solubilidad acuosa, debido a su elevada complejidad molecular, lo que hace difícil el desarrollo de productos con estas sustancias. Los sistemas de entrega de fármacos autoemulsificables (SEDDS) han generado un interés para el desarrollo farmacéutico porque son una alternativa efectiva para mejorar la biodisponibilidad de fármacos poco solubles en agua. Para describir el estado de conocimiento sobre estos sistemas se realizó una revisión sistemática en diferentes bases de datos sobre la literatura relacionada con los SEDDS a nivel nacional e internacional, logrando así describir los aspectos más relevantes sobre los SEDDS (tipos, composición, mecanismos para aumentar biodisponibilidad, caracterización, formulaciones). A pesar de las numerosas investigaciones realizadas durante los últimos años que muestran el potencial de los SEDDS para mejorar la biodisponibilidad de los fármacos poco solubles en agua, se pudo evidenciar que solo algunas sustancias activas han sido incluidas en estos sistemas y comercializadas exitosamente, esto debido a algunas limitaciones que indican la necesidad de un mayor entendimiento sobre estos sistemas.
The great technological advances within the pharmaceutical industry that involve the use of combinatorial chemistry and high-throughput screening have led to the discovery of many chemical entities that are candidates for drugs that have poor water solubility due to their high molecular complexity, which makes it difficult the development of products with these substances. Self-emulsifying Drug Delivery Systems (SEDDS) have gained an interest in pharmaceutical development, showing to be an effective alternative to improve the poorly water-soluble drugs’ bioavailability. In order to describe the state of knowledge about these systems, a systematic review was carried out in different databases about the literature related to SEDDS at a national and international level, describing the most relevant issues about SEDDS (types, composition, mechanisms to improve bioavailability, characterization, formulations). Despite the several investigations carried out during past years showing SEDDS potential to improve the bioavailability of poorly water-soluble drugs, it was evident that only a few active substances have been included in these systems and successfully commercialized, due to some limitations that indicate the need for a greater understanding about these systems.

Referencias

C. Leichner, C. Menzel, F. Laffleur, A. Bernkop-Schnürch, Development and in vitro characterization of a papain loaded mucolytic self-emulsifying drug delivery system (SEDDS), Int. J. Pharm., 530, 346 (2017).

H. Tønsberg, R. Holm, H. Mu, J.B. Boll, J. Jacobsen, A. Müllertz, Effect of bile on the oral absorption of halofantrine in polyethylene glycol 400 and polysorbate 80 formulations dosed to bile duct cannulated rats, J. Pharm. Pharmacol., 63, 817 (2011).

V. Nekkanti, J. Rueda, Z. Wang, G.V. Betageri, Comparative evaluation of proliposomes and self micro-emulsifying drug delivery system for improved oral bioavailability of nisoldipine, Int. J. Pharm., 505, 79 (2016).

F. Carrière, Impact of gastrointestinal lipolysis on oral lipid-based formulations and bioavailability of lipophilic drugs, Biochimie, 125, 297 (2016).

A. Singh, Z.A. Worku, G. Van den Mooter, Oral formulation strategies to improve solubility of poorly water-soluble drugs, Expert Opin. Drug Deliv., 8, 1361 (2011).

Y. Kawabata, K. Wada, M. Nakatani, S. Yamada, S. Onoue, Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: Basic approaches and practical applications, Int J Pharm., 420, 1 (2011).

D. Douroumis, A. Fahr, Drug Delivery Strategies for Poorly Water-Soluble Drugs, Wiley, New York, 2013, p. 403.

B. Tang, G. Cheng, J.C. Gu, C.H. Xu, Development of solid self-emulsifying drug delivery systems: preparation techniques and dosage forms, Drug Discov. Today, 13, 606 (2008).

P. van Hoogevest, X. Liu, A. Fahr, Drug delivery strategies for poorly water-soluble drugs: the industrial perspective, Expert Opin. Drug Deliv., 8, 1481 (2011).

N. Borkar, R. Holm, M. Yang, A. Müllertz, H. Mu, In vivo evaluation of lipidbased formulations for oral delivery of apomorphine and its diester prodrugs, Int. J. Pharm., 513, 211 (2016).

O. Chambin, T. Karbowiak, L. Djebili, V. Jannin, D. Champion, Y. Pourcelot, P. Cayot, Influence of drug polarity upon the solid-state structure and release properties of self-emulsifying drug delivery systems in relation with water affinity, Colloids Surfaces B Biointerfaces, 71, 73 (2009).

A.V. Shah, A.T. Serajuddin, Development of solid self-Emulsifying drug delivery system (SEDDS) I: Use of poloxamer 188 as both solidifying and emulsifying agent for lipids, Pharm. Res., 29, 2817 (2012).

H. D. Williams, P. Sassene, K. Kleberg, J.C Bakala-N’Goma, M. Calderone, V. Jannin, A. Igonin, A. Partheil, D. Marchaud, E. Jule, J. Vertommen, M. Maio, R. Blundell, H. Benameur, F. Carriere, A. Müllertz, C. Porter, C. Pouton, Toward the establishment of standardized in vitro tests for lipid-based formulations, Part 1: Method parameterization and comparison of in vitro digestion profiles across a range of representative formulations, J. Pharm. Sci., 101, 3360 (2012).

P. van Hoogevest, An update on the use of oral phospholipid excipients, Eur. J. Pharm. Sci., 108, 1 (2017).

C. X. He, Z. G. He, J.G. Gao, Microemulsions as drug delivery systems to improve the solubility and the bioavailability of poorly water-soluble drugs, Expert Opin. Drug Deliv., 7, 445 ( 2010).

K. Kawakami, Current status of amorphous formulation and other special dosage forms as formulations for early clinical phases, J. Pharm. Sci., 98, 2875 (2009).

G. Wang, J. Wang, W. Wu, S.S Tony, H. Zhao, J. Wang, Advances in lipid-based drug delivery: enhancing efficiency for hydrophobic drugs, Expert Opin. Drug Deliv., 12, 1475 (2015).

D. Shukla, S. Chakraborty, S. Singh, B. Mishra, Lipid-based oral multiparticulate formulations advantages, technological advances and industrial applications, Expert Opin. Drug Deliv., 8, 207 (2011).

A. Müllertz, A. Ogbonna, S. Ren, T. Rades, New perspectives on lipid and surfactant based drug delivery systems for oral delivery of poorly soluble drugs, J. Pharm. Pharmacol., 62, 1622 ( 2010).

S. Dokania, A.K. Joshi, Self-microemulsifying drug delivery system (SMEDDS)-challenges and road ahead, Drug Deliv., 22, 675 (2015).

W. H. Tang, M.C. Guan, Z. Xu, J. Sun, Pharmacological and pharmacokinetic studies with vitamin D-loaded nanoemulsions in asthma model, Inflammation, 37, 723 (2014).

S. Alqahtani, A. Alayoubi, S. Nazzal, P.W. Sylvester, A. Kaddoumi, Nonlinear absorption kinetics of self-emulsifying drug delivery systems (SEDDS) containing tocotrienols as lipophilic molecules: in vivo and in vitro studies, AAPS J., 15, 684 (2013).

C.W. Pouton, Lipid formulations for oral administration of drugs: Non-emulsifying, self-emulsifying and “self-microemulsifying” drug delivery systems, Eur. J. Pharm. Sci., 11, 93 (2000).

S. Chakraborty, D. Shukla, B. Mishra, S. Singh, Lipid. An emerging platform for oral delivery of drugs with poor bioavailability, Eur. J. Pharm. Biopharm., 73, 1 (2009).

O.A. Ahmed, S.M. Badr-Eldin, M.K. Tawfik, T.A. Ahmed, K.M. El-Say, J. M. Badr, Design and optimization of self-nanoemulsifying delivery system to enhance quercetin hepatoprotective activity in paracetamol-induced hepatotoxicity, J. Pharm. Sci., 103, 602 (2014).

R. Ghadi, N. Dand, BCS class IV drugs: Highly notorious candidates for formulation development, J. Control Release, 248, 71 (2017).

S. Kotta, A.W. Khan, K. Pramod, S.H. Ansari, R.K. Sharma, J. Ali, Exploring oral nanoemulsions for bioavailability enhancement of poorly water-soluble drugs, Expert Opin. Drug Deliv., 9, 585, (2012).

S. Rao, C.A. Prestidge, Polymer-lipid hybrid systems: merging the benefits of polymeric and lipid-based nanocarriers to improve oral drug delivery, Expert Opin. Drug Deliv., 13, 691 (2016).

S.K. Yadava, J.B. Naik, J.S. Patil, V.J. Mokale, R. Singh, Enhanced solubility and bioavailability of lovastatin using stabilized form of self-emulsifying drug delivery system, Colloids Surfaces A Physicochem. Eng. Asp., 481, 63 (2015).

S.G. Gumaste, D.M. Dalrymple, A.T. Serajuddin, Development of solid SEDDS, V: Compaction and drug release properties of tablets prepared by adsorbing lipid-based formulations onto neusilin® US2, Pharm. Res., 30, 3186 (2013).

F. Buyukozturk, S. Di Maio, D.E. Budil, R.L. Carrier, Effect of ingested lipids on drug dissolution and release with concurrent digestion: A modeling approach, Pharm. Res., 30, 3131 (2013).

O.M. Feeney, M.F. Crum, C.L. McEvoy, N.L. Trevaskis, H.D. Williams, C.W. Pouton, W. Charman, C. Bergström, C. Porter, 50 years of oral lipid-based formulations: Provenance, progress and future perspectives, Adv. Drug Deliv. Rev., 101, 167 (2016).

G.H. Shin, J.T. Kim, H.J. Park, Recent developments in nanoformulations of lipophilic functional foods, Trends Food Sci. Technol., 46, 1 (2015).

R. Sane, R.K. Mittapalli, W.F. Elmquist, Development and evaluation of a novel microemulsion formulation of elacridar to improve its bioavailability, J. Pharm. Sci., 102, 1343 (2013).

D.G. Fatouros, A. Müllertz, In vitro lipid digestion models in design of drug delivery systems for enhancing oral bioavailability, Expert Opin. Drug Metab. Toxicol., 4, 65 (2008).

P. Li, H.M. Nielsen, A. Müllertz, Oral delivery of peptides and proteins using lipid-based drug delivery systems, Expert Opin. Drug Deliv., 9, 1289 (2012).

Z. Niu, I. Conejos-Sánchez, B.T. Griffin, C.M. O’Driscoll, M. J. Alonso, Lipidbased nanocarriers for oral peptide delivery, Adv. Drug Deliv. Rev., 106, 337 (2016).

K. Mohsin, M.A. Long, C.W. Pouton, Design of lipid-based formulations for oral administration of poorly water-soluble drugs: Precipitation of drug after dispersion of formulations in aqueous solution, J. Pharm. Sci., 98, 3582 (2009).

C.W. Pouton, C.J.H. Porter, Formulation of lipid-based delivery systems for oral administration: Materials, methods and strategies, Adv. Drug Deliv. Rev., 60, 625 (2008).

T. Vasconcelos, S. Marques, B. Sarmento, Measuring the emulsification dynamics and stability of self-emulsifying drug delivery systems, Eur. J. Pharm. Biopharm., 123, 8 (2018).

W. Suchaoin, A. Bernkop-Schnürch, Nanocarriers protecting toward an intestinal pre-uptake metabolism, Nanomedicine, 12, 255 (2017).

C. Menzel, A. Bernkop-Schnürch, Enzyme decorated drug carriers: Targeted swords to cleave and overcome the mucus barrier, Adv. Drug Deliv. Rev., 124, 164 (2017).

C.H. Porter, C.W. Pouton, J.F. Cuine, W.N. Charman, Enhancing intestinal drug solubilisation using lipid-based delivery systems, Adv. Drug Deliv. Rev., 60, 673 (2008).

M.U. Anby, T.H. Nguyen, Y.Y. Yeap, O.M. Feeney, H.D. Williams, H. Benameur, C.W. Pouton, C.H Porter, An in vitro digestion test that reflects rat intestinal conditions to probe the importance of formulation digestion vs first pass metabolism in danazol bioavailability from lipid based formulations, Mol. Pharm., 11, 4069 (2014).

Y. Sahbaz, T.H. Nguyen, L. Ford, C.L. McEvoy, H.D. Williams, P.J. Scammells, C.H. Porter, Ionic liquid forms of weakly acidic drugs in oral lipid formulations: Preparation, characterization, in vitro digestion, and in vivo absorption studies, Mol. Pharm., 14, 3669 (2017).

A.W. Khan, S. Kotta, S.H. Ansari, R.K. Sharma, J. Ali, Potentials and challenges in self-nanoemulsifying drug delivery systems, Expert Opin. Drug. Deliv., 9, 1305 (2012).

R. Devraj, H.D. Williams, D.B. Warren, C.H. Porter, C.W. Pouton, Choice of nonionic surfactant used to formulate type iiia self-emulsifying drug delivery systems and the physicochemical properties of the drug have a pronounced influence on the degree of drug supersaturation that develops during in vitro digestion, J. Pharm. Sci., 103, 1050 (2014).

C. Gu, C. Hu, C. Ma, Q. Fang, T. Xing, Q. Xia, Development and characterization of solid lipid microparticles containing vitamin C for topical and cosmetic use, Eur. J. Lipid Sci. Technol., 118, 1093 (2016).

B.J. Gurley, Emerging technologies for improving phytochemical bioavailability: Benefits and risks, Clin. Pharmacol. Ther., 89, 915 (2011).

A. Amri, S. Le Clanche, P. Thérond, D. Bonnefont-Rousselot, D. Borderie, R. Lai-Kuen, J.C. Chaumeil, S. Sfar, C. Charrueau, Resveratrol self-emulsifying system increases the uptake by endothelial cells and improves protection against oxidative stress-mediated death, Eur. J. Pharm. Biopharm., 86, 418 (2014).

B. Garg, S. Beg, R. Kaur, R. Kumar, O.P. Katare, B. Singh, Long-chain triglycerides-based self-nanoemulsifying oily formulations (SNEOFs) of darunavir with improved lymphatic targeting potential, J. Drug Target., 26, 252 (2018).

O. Zupančič, G. Leonaviciute, H.T. Lam, A. Partenhauser, S. Podričnik, A. Bernkop- Schnürch, Development and in vitro evaluation of an oral SEDDS for desmopressin, Drug Deliv., 23, 2074 (2016).

R. Tiwari, K. Pathak, Statins therapy: A review on conventional and novel formulation approaches, J. Pharm. Pharmacol., 63, 983 (2011).

S. G. Gumaste, A.T. Serajuddin, Development of solid SEDDS, VII: Effect of pore size of silica on drug release from adsorbed self-emulsifying lipid-based formulations, Eur. J. Pharm. Sci., 110, 134 (2017).

C. Ye, H. Chi, A review of recent progress in drug and protein encapsulation: Approaches, applications and challenges, Mater. Sci. Eng. C, Mater. Biol. Appl., 83, 233 (2018).

S.A. Rodríguez, F. Qiu, M. Mulcey, K. Weigandt, T. Tamblyn, Monitoring the chemical and physical stability for tromethamine excipient in a lipid based formulation by HPLC coupled with ELSD, J. Pharm. Biomed. Anal., 115, 245 (2015).

A. Arya, H. Ahmad, S. Tulsankar, S. Agrawal, N. Mittapelly, R. Boda, R. Bhatta, K. Miltra, A. Dwivedi, Bioflavonoid hesperetin overcome bicalutamide induced toxicity by co-delivery in novel SNEDDS formulations: Optimization, in vivo evaluation and uptake mechanism, Mater. Sci. Eng. C, Mater. Biol. Appl., 71, 954 (2017).

H. Li, M. Huo, J. Zhou, Y. Dai, Y. Deng, X. Shi, J. Masoud, Enhanced oral absorption of paclitaxel in N-deoxycholic acid-N, O-hydroxyethyl chitosan micellar system, J. Pharm. Sci., 99, 4543 (2010).

M. Ogino, K. Yakushiji, H. Suzuki, K. Shiokawa, H. Kikuchi, Y. Seto, H. Sato, S. Onoue, Enhanced pharmacokinetic behavior and hepatoprotective function of ginger extract-loaded supersaturable self-emulsifying drug delivery systems, J. Funct. Foods, 40, 156 (2018).

S.P. Benson, J. Pleiss, Molecular dynamics simulations of self-emulsifying drugdelivery systems (SEDDS): Influence of excipients on droplet nanostructure and drug localization, Langmuir, 30, 8471 (2014).

D.J. Mcclements, L. Zou, R. Zhang, L. Salvia-Trujillo, T. Kumosani, H. Xiao, Enhancing nutraceutical performance using excipient foods: Designing food structures and compositions to increase bioavailability, Compr. Rev. Food Sci. Food Saf., 14, 824 (2015).

M. Morgen, A. Saxena, X.Q. Chen, W. Miller, R. Nkansah, A. Goodwin, J. Cape, R. Haskell, C. Su, O. Gudmundsson, M. Hageman, A. Kumar, G. Singh, A. Rao, V. Holenarsipur, Lipophilic salts of poorly soluble compounds to enable highdose lipidic SEDDS formulations in drug discovery, Eur. J. Pharm. Biopharm., 117, 212 (2017).

P.A Spósito, A.L. Mazzeti Silva, C. de Oliveira, J.A. Urbina, G. Pound-Lana, M.T. Bahia, V. Furtado, Ravuconazole self-emulsifying delivery system: in vitro activity against Trypanosoma cruzi amastigotes and in vivo toxicity, Int. J. Nanomedicine, 12, 3785 (2017).

A. Christiansen, T. Backensfeld, W. Weitschies, Effects of non-ionic surfactants on in vitro triglyceride digestion and their susceptibility to digestion by pancreatic enzymes, Eur. J. Pharm. Sci., 41, 376 (2010).

S.G. Yang, Biowaiver extension potential and IVIVC for BCS class II drugs by formulation design: Case study for cyclosporine self-microemulsifying formulation, Arch. Pharm. Res., 33, 1835 (2010).

I. Nikolakakis, S. Malamataris, Self-emulsifying pellets: Relations between kinetic parameters of drug release and emulsion reconstitution. Influence of formulation variables, J. Pharm. Sci., 103, 1453 (2014).

E. Içten, H.S. Purohit, C. Wallace, A. Giridhar, L.S. Taylor, Z.K. Nagy, G. Reklaitis, Dropwise additive manufacturing of pharmaceutical products for amorphous and self emulsifying drug delivery systems, Int. J. Pharm., 524, 424 (2017).

R.B. Chavan, S.R. Modi, A.K. Bansal, Role of solid carriers in pharmaceutical performance of solid supersaturable SEDDS of celecoxib, Int. J. Pharm., 495, 374 (2015).

P. Balakrishnan, B.J. Lee, D.H. Oh, J.O. Kim, M.J. Hong, J.P Jee, J.A. Kim, B.K. Yoo, J.S. Woo, C.S. Yong, H.G. Choi, Enhanced oral bioavailability of dexibuprofen by a novel solid self-emulsifying drug delivery system (SEDDS), Eur. J. Pharm. Biopharm., 72, 539 (2009).

P.S. Sandhu, S. Beg, F. Mehta, B. Singh, P. Trivedi, Novel dietary lipid-based selfnanoemulsifying drug delivery systems of paclitaxel with p-gp inhibitor: implications on cytotoxicity and biopharmaceutical performance, Expert Opin. Drug Deliv., 12, 1809 (2015).

H. Devalapally, S. Silchenko, F. Zhou, J. McDade, G. Goloverda, A. Owen, I. Hidalgo, Evaluation of a nanoemulsion formulation strategy for oral bioavailability enhancement of danazol in rats and dogs, J. Pharm. Sci., 102, 3808 (2013).

M. Van Speybroeck, H.D. Williams, T.H. Nguyen, M.U. Anby, C.J.H. Porter, P. Augustijns, Incomplete desorption of liquid excipients reduces the in vitro and in vivo performance of self-emulsifying drug delivery systems solidified by adsorption onto an inorganic mesoporous carrier, Mol. Pharm., 9, 2750 (2012).

B. Singh, R. Singh, S. Bandyopadhyay, R. Kapil, B. Garg, Optimized nanoemulsifying systems with enhanced bioavailability of carvedilol, Colloids Surfaces B, Biointerfaces, 101, 465 (2013).

C. Stillhart, D. Dürr, M. Kuentz, Toward an improved understanding of the precipitation behavior of weakly basic drugs from oral lipid-based formulations, J. Pharm. Sci., 103, 1194 (2014).

H. Tønsberg, R. Holm, J. Bisgaard, J. Jacobsen, A. Müllertz, Effects of polysorbate 80 on the in-vitro precipitation and oral bioavailability of halofantrine from polyethylene glycol 400 formulations in rats, J. Pharm. Pharmacol., 62, 63 (2010).

A.A. Kale, V.B. Patravale, Design and evaluation of self-emulsifying drug delivery systems (SEDDS) of nimodipine, AAPS PharmSciTech, 9, 191 (2008).

V. Pandey, R.M. Gilhotra, S. Kohli, Granulated colloidal silicon dioxide-based self-microemulsifying tablets, as a versatile approach in enhancement of solubility and therapeutic potential of anti-diabetic agent: formulation design and in vitro/in vivo evaluation, Drug Dev. Ind. Pharm., 43, 1023 (2017).

A. Czajkowska-Kosnik, M. Szekalska, A. Amelian, E. Szymanska, K. Winnicka, Development and evaluation of liquid and solid self-emulsifying drug delivery systems for atorvastatin, Molecules, 20, 21010 (2015).

M.C. Breitkreitz, G.P. Sabin, G. Polla, R.J. Poppi, Characterization of semisolid self-emulsifying drug delivery systems (SEDDS) of atorvastatin calcium by Raman image spectroscopy and chemometrics, J. Pharm. Biomed. Anal., 73, 3 (2013).

G. Quan, Q. Wu, X. Zhang, Z. Zhan, C. Zhou, B. Chen, Z. Zhang, G. Li, X. Pan, C. Wu, Enhancing in vitro dissolution and in vivo bioavailability of fenofibrate by solid self-emulsifying matrix combined with SBA-15 mesoporous silica, Colloids Surfaces B, Biointerfaces, 141, 476 (2016).

B.T. Griffin, M. Kuentz, M. Vertzoni, E.S. Kostewicz, Y. Fei, W. Faisal, C. Stillhart, C.M. O’Driscoll, C. Reppas, J.B. Dressman, Comparison of in vitro tests at various levels of complexity for the prediction of in vivo performance of lipidbased formulations: case studies with fenofibrate, Eur. J. Pharm. Biopharm., 86, 427 (2014).

T. Tran, S.D.V.S. Siqueira, H. Amenitsch, A. Müllertz, T. Rades, In vitro and in vivo performance of monoacyl phospholipid-based self-emulsifying drug delivery systems, J. Control Release, 255, 45 (2017).

B. Bahloul, M.A. Lassoued, J. Seguin, R. Lai-Kuen, H. Dhotel, S. Sfar, N. Mignet, Self-emulsifying drug delivery system developed by the HLB-RSM approach: characterization by transmission electron microscopy and pharmacokinetic study, Int. J. Pharm., 487, 56 (2015).

INS Boletín Informativo 19. URL: https://www.ins.gov.co/Comunicaciones/BoletinInsformativo/INSFORMATIVO.pdf. Consultado en mayo de 2018.

J. Machado-Alba, M. Machado-Duque, M. Yepes, S. Manrique, L. Tobón. Tratamiento hipolipemiante y su efectividad en pacientes de cuatro ciudades colombianas, Acta Médica Colomb., 41, 181 (2016).

M.V. Solano-Roa, G. Garavito-Cárdenas, Condición de venta de analgésicos antiinflamatorios no esteroides, legalmente autorizados para su comercialización en Colombia. Estrategias de uso racional, Rev. Colomb. Cienc. Quím. Farm., 42, 145 (2013).

N. Borkar, B. Li, R. Holm, A.E. Håkansson, A. Müllertz, M. Yang, H. Mu, Lipophilic prodrugs of apomorphine I: Preparation, characterisation, and in vitro enzymatic hydrolysis in biorelevant media, Eur. J. Pharm. Biopharm., 89, 216 (2015).

E. Monteagudo, M. Langenheim, C. Salerno, F. Buontempo, C. Bregni, A. Carlucci, Pharmaceutical optimization of lipid-based dosage forms for the improvement of taste-masking, chemical stability and solubilizing capacity of phenobarbital, Drug Dev. Ind. Pharm., 40, 783 (2014).

G. Mamadou, C. Charrueau, J. Dairou, N. Limas Nzouzi, B. Eto, G. Ponchel, Increased intestinal permeation and modulation of presystemic metabolism of resveratrol formulated into self-emulsifying drug delivery systems, Int. J. Pharm., 521, 150 (2017).

G.F. Balata, E.A Essa, H.A. Shamardl, S.H. Zaidan, M.A. Abourehab, Self-emulsifying drug delivery systems as a tool to improve solubility and bioavailability of resveratrol, Drug Des. Devel. Ther., 10, 117 (2016).

S. Onoue, A. Uchida, K. Kuriyama, T. Nakamura, Y. Seto, M. Kato, M. Kato, J. Hatanaka, T. Tanak, H, Miyosh, S. Yamada, Novel solid self-emulsifying drug delivery system of coenzyme Q 10 with improved photochemical and pharmacokinetic behaviors, Eur. J. Pharm. Sci., 46, 492 (2012).

P. Balakrishnan, B.J. Lee, D.H. Oh, J.O. Kim, Y.I. Lee, D.D. Kim, J.P. Jee, Y.B. Lee, J.S. Woo, C.S. Yong, H.G. Choi, Enhanced oral bioavailability of Coenzyme Q10by self-emulsifying drug delivery systems, Int. J. Pharm., 374, 66 (2009).

T. Iosio, D. Voinovich, B. Perissutti, F. Serdoz, D. Hasa, I. Grabnar, S. Dall, G.P. Zara, E. Muntoni, J.F. Pinto, Oral bioavailability of silymarin phytocomplex formulated as self-emulsifying pellets, Phytomedicine, 18, 505 (2011).

P.R. Nepal, H.K. Han, H.K Choi, Preparation and in vitro-in vivo evaluation of Witepsol H35 based self-nanoemulsifying drug delivery systems (SNEDDS) of coenzyme Q10, Eur. J. Pharm. Sci., 39, 224 (2010).

S.E Knudson, J.E. Cummings, G.R. Bommineni, P. Pan, P.J Tonge, R.A. Slayden, Formulation studies of InhA inhibitors and combination therapy to improve efficacy against Mycobacterium tuberculosis, Tuberculosis, 101, 8 (2016).

H. Rachmawati, D.K. Budiputra, R. Mauludin, Curcumin nanoemulsion for transdermal application: Formulation and evaluation, Drug Dev. Ind. Pharm., 41, 560 (2015).

K. AboulFotouh, A.A. Allam, M. El-Badry, A.M. El-Sayed, Development and in vitro/in vivo performance of self-nanoemulsifying drug delivery systems loaded with candesartan cilexetil, Eur. J. Pharm. Sci., 109, 503 (2017) 98. L. Zhang, L. Zhang, M. Zhang, Y. Pang, Z. Li, A. Zhao, J. Feng, Self-emulsifying drug delivery system and the applications in herbal drugs, Drug Deliv., 22, 47 (2015).

F. Li, S. Song, Y. Guo, Q. Zhao, X. Zhang, W. Pan, X. Yang, Preparation and pharmacokinetics evaluation of oral self-emulsifying system for poorly watersoluble drug Lornoxicam, Drug Deliv., 22, 487 (2015).

A.R. Patel, C. Godugu, H. Wilson, S. Safe, M. Singh, Evaluation of spray BIOmax DIM-P in dogs for oral bioavailability and in nu/nu mice bearing orthotopic/metastatic lung tumor models for anticancer activity, Pharm. Res., 32, 2292 (2015).

N. Heshmati, X. Cheng, E. Dapat, P. Sassene, G. Eisenbrand, G. Fricker, A. Müllertz, In vitro and in vivo evaluations of the performance of an indirubin derivative, formulated in four different self-emulsifying drug delivery systems, J. Pharm. Pharmacol., 66, 1567 (2014).

R.R. Shah, S. Dodd, M. Schaefer, M. Ugozzoli, M. Singh, G.R. Otten, M.M. Amiji, D.T. O’Hagan, L.A. Brito, The development of self-emulsifying oil-inwater emulsion adjuvant and an evaluation of the impact of droplet size on performance, J. Pharm. Sci., 104,1352 (2015).

J. Tang, J. Sun, F. Cui, T. Zhang, X. Liu, Z. He, Self-emulsifying drug delivery systems for improving oral absorption of ginkgo biloba extracts, Drug Deliv., 15, 477 (2008).

D. Prasad, H. Chauhan, E. Atef, Studying the effect of lipid chain length on the precipitation of a poorly water soluble drug from self-emulsifying drug delivery system on dispersion into aqueous medium, J. Pharm. Pharmacol., 65, 1134 (2013).

T.H. Tran, Y. Guo, D. Song, R.S. Bruno, X. Lu, Quercetin-containing self-nanoemulsifying drug delivery system for improving oral bioavailability, J. Pharm. Sci., 103, 840 (2014).

F. Le Dévédec, S. Strandman, P. Hildgen, G. Leclair, X.X. Zhu, PEGylated bile acids for use in drug delivery systems: enhanced solubility and bioavailability of itraconazole, Mol. Pharm., 10, 3057 (2013).

S. Bandyopadhyay, O.P. Katare, B. Singh, Optimized self nano-emulsifying systems of ezetimibe with enhanced bioavailability potential using long chain and medium chain triglycerides, Colloids Surfaces B Biointerfaces, 100, 50 (2012).

P.K. Gupta, A.K. Jaiswal, S. Asthana, V. Teja B, P. Shukla, M. Shukla, N. Sagar, A. Dube, S.K. Rath, P.R. Mishra, Synergistic enhancement of parasiticidal activity of amphotericin B using copaiba oil in nanoemulsified carrier for oral delivery: an approach for non-toxic chemotherapy, Br. J. Pharmacol., 172, 3596 (2015).

C. Planchette, A. Mercuri, L. Arcangeli, M. Kriechbaum, P. Laggner, Self-emulsification of lipidic drug delivery system in pure water and in concentrated glycerol solution, AAPS PharmSciTech, 18, 3053 (2017).

B. Shao , C. Cui, H. Ji, J. Tang, Z. Wang, H. Liu, M. Qin, X. Li, L. Wu, Enhanced oral bioavailability of piperine by self-emulsifying drug delivery systems: in vitro, in vivo and in situ intestinal permeability studies, Drug Deliv., 22, 740 (2015).

F. Buyukozturk, J.C. Benneyan, R.L. Carrier, Impact of emulsion-based drug delivery systems on intestinal permeability and drug release kinetics, J. Control Release, 142, 22 (2010).

N. Heshmati, X. Cheng, G. Eisenbrand, G. Fricker, Enhancement of oral bioavailability of E804 by self-nanoemulsifying drug delivery system (SNEDDS) in rats, J. Pharm. Sci., 102, 3792 (2013).

S. Inugala, B.B. Eedara, S. Sunkavalli, R. Dhurke, P. Kandadi, R. Jukanti, S. Bandari, Solid self-nanoemulsifying drug delivery system (S-SNEDDS) of darunavir for improved dissolution and oral bioavailability: in vitro and in vivo evaluation, Eur. J. Pharm. Sci., 74, 1 (2015).

Y.G. Seo, D.H. Kim, T. Ramasamy, J.H. Kim, N. Marasini, Y.K. Oh, D.W. Kim, J.K. Kim, C.S. Yong, J.O. Kim, H.G. Choi, Development of docetaxel-loaded solid self-nanoemulsifying drug delivery system (SNEDDS) for enhanced chemotherapeutic effect, Int. J. Pharm., 452, 412 (2013).

L. Kiss, F.R. Walter, A. Bocsik, S. Veszelka, B. Ózsvári, L.G. Puskás, P. Szabórévés, M.A. Deli, Kinetic analysis of the toxicity of pharmaceutical excipients Cremophor EL and RH40 on endothelial and epithelial cells, J. Pharm. Sci., 102, 1173 (2013).

M. Milović, S. Simović, D. Lošić, A. Dashevskiy, S. Ibrić, Solid self-emulsifying phospholipid suspension (SSEPS) with diatom as a drug carrier, Eur. J. Pharm. Sci., 63, 226 (2014).

M. Fernandez-Tarrio, F. Yañez, K. Immesoete, C. Alvarez-Lorenzo, A. Concheiro, Pluronic and Tetronic copolymers with polyglycolyzed oils as self-emulsifying drug delivery systems, AAPS PharmSciTech, 9, 471 (2008).

H.J. Cho, D.W. Lee, N. Marasini, B.K. Poudel, J.H. Kim, T. Ramasamy, B.K. Yoo, H.G. Choi, C.S. Yong, J.O. Kim, Optimization of self-microemulsifying drug delivery system for telmisartan using Box-Behnken design and desirability function, J. Pharm. Pharmacol., 65, 1440 (2013).

J. Mandić, A. Zvonar Pobirk, F. Vrečer, M. Gašperlin, Overview of solidification techniques for self-emulsifying drug delivery systems from industrial perspective, Int. J. Pharm., 533, 335 (2017).

F.U. Rehman, K.U. Shah, S.U. Shah, I.U. Khan, G.M. Khan, A. Khan, From nanoemulsions to self-nanoemulsions, with recent advances in self-nanoemulsifying drug delivery systems (SNEDDS), Expert Opin. Drug Deliv., 14, 1325 (2017).

A. Sosnik, R. Augustine, Challenges in oral drug delivery of antiretrovirals and the innovative strategies to overcome them, Adv. Drug Deliv. Rev., 103, 105 (2016).

I. Cherniakov, A.J. Domb, A. Hoffman, Self-nano-emulsifying drug delivery systems: an update of the biopharmaceutical aspects, Expert Opin. Drug Deliv., 12, 1121 (2015).

N.P. Aditya, P.G. Vathsala, V. Vieira, R.S.R. Murthy, E.B. Souto, Advances in nanomedicines for malaria treatment, Adv. Colloid Interface Sci., 201–202, 1 (2013).

M. Davis, Recent strategies in spray drying for the enhanced bioavailability of poorly water-soluble drugs, J. Control. Release, 269, 110 (2017).

W. Cho, M.S. Kim, J.S. Kim, J. Park, H.J. Park, K.H. Cha, J.S. Park, S.J. Hwang, Optimized formulation of solid self-microemulsifying sirolimus delivery systems, Int. J. Nanomedicine, 8, 1673 (2013).

A. Gonçalves, N. Nikmaram, S. Roohinejad, B.N. Estevinho, F. Rocha, R. Greiner, D.J. McClements, Production, properties, and applications of solid self-emulsifying delivery systems (S-SEDS) in the food and pharmaceutical industries, Colloids Surfaces A, Physicochem. Eng. Asp., 538, 108 (2017).

H.D. Williams, M. Van Speybroeck, P. Augustijns, C.J.H. Porter, Lipid-based formulations solidified via adsorption onto the mesoporous carrier neusilin® US2: effect of drug type and formulation composition on in vitro pharmaceutical performance, J. Pharm. Sci., 103, 1734 (2014).

S. Beg, P.S. Sandhu, R.S. Batra, R.K. Khurana, B. Singh, QbD-based systematic development of novel optimized solid self-nanoemulsifying drug delivery systems (SNEDDS) of lovastatin with enhanced biopharmaceutical performance, Drug Deliv., 22, 765 (2015).

A. Parikh, K. Kathawala, C.C. Tan, S. Garg, X-F. Zhou, Lipid-based nanosystem of edaravone: development, optimization, characterization and in vitro/in vivo evaluation, Drug Deliv., 24, 962 (2017).

P. Augustijns, M.E. Brewster, Supersaturating drug delivery systems: fast is not necessarily good enough, J. Pharm. Sci., 101, 7 (2012).

S.Y.K. Fong, A. Bauer-Brandl, M. Brandl, Oral bioavailability enhancement through supersaturation: An update and meta-analysis, Expert Opin. Drug Deliv., 14, 403 (2017).

P. Gao, A. Akrami, F. Alvarez, J. Hu, L. Li, C. Ma, S. Surapaneni, Characterization and optimization of AMG 517 supersaturatable self-emulsifying drug delivery system (S-SEDDS) for improved oral absorption, J. Pharm. Sci., 98, 516 (2009).

S. Raut, B. Karzuon, E. Atef, Using in situ Raman spectroscopy to study the drug precipitation inhibition and supersaturation mechanism of Vitamin E TPGS from self-emulsifying drug delivery systems (SEDDS), J. Pharm. Biomed. Anal., 109, 121 (2015).

R.P. Joshi, G. Negi, A. Kumar, Y.B. Pawar, B. Munjal, A.K. Bansal, S.S. Sharma, SNEDDS curcumin formulation leads to enhanced protection from pain and functional deficits associated with diabetic neuropathy: an insight into its mechanism for neuroprotection. Nanomedicine, 9, 776 (2013).

Z. Wang, J. Sun, Y. Wang, X. Liu, Y. Liu, Q. Fu, P. Meng, Z. He, Solid selfemulsifying nitrendipine pellets: preparation and in vitro/in vivo evaluation, Int. J. Pharm., 383, 1 (2010).

P. Bu, Y. Ji, S. Narayanan, D. Dalrymple, X. Cheng, A.T.M. Serajuddin, Assessment of cell viability and permeation enhancement in presence of lipidbased self-emulsifying drug delivery systems using Caco-2 cell model: polysorbate 80 as the surfactant, Eur. J. Pharm. Sci., 99, 350 (2017).

K. Čerpnjak, A. Zvonar, F. Vrečer, M. Gašperlin, Development of a solid selfmicroemulsifying drug delivery system (SMEDDS) for solubility enhancement of naproxen, Drug Dev. Ind. Pharm., 41, 1548 (2015).

M. Kazi, H. Al-Qarni, F.K. Alanazi, Development of oral solid self-emulsifying lipid formulations of risperidone with improved in vitro dissolution and digestion, Eur. J. Pharm. Biopharm., 114, 239 (2017).

O. Zupančič, J.A. Grieβinger, J. Rohrer, I. Pereira de Sousa, L. Danninger, A. Partenhauser, N. Sündermann, F. Laffleur, A. Bernkop-Schnürch, Development, in vitro and in vivo evaluation of a self-emulsifying drug delivery system (SEDDS) for oral enoxaparin administration, Eur. J. Pharm. Biopharm., 109, 113 (2016).

W. Suchaoin, I. Pereira de Sousa, K. Netsomboon, H.T. Lam, F. Laffleur, A. Bernkop- Schnürch, Development and in vitro evaluation of zeta potential changing self-emulsifying drug delivery systems for enhanced mucus permeation, Int. J. Pharm., 510, 255 (2016).

J. Rohrer, A. Partenhauser, S. Hauptstein, C.M. Gallati, B. Matuszczak, M. Abdulkarim, M. Gumbleton, A. Bernkop-Schnürch, Mucus permeating thiolated self-emulsifying drug delivery systems, Eur. J. Pharm. Biopharm., 98, 90 (2016).

J. Huang, W. Gong, Z. Chen, J. Huang, Q. Chen, H. Huang, C. Zhao, Emodin self-emulsifying platform ameliorates the expression of FN, ICAM-1 and TGF- β1 in AGEs-induced glomerular mesangial cells by promoting absorption, Eur. J. Pharm. Sci., 99, 128 (2017).

P.B. Memvanga, V. Préat, Formulation design and in vivo antimalarial evaluation of lipid-based drug delivery systems for oral delivery of β-arteether, Eur. J. Pharm. Biopharm., 82, 112 (2012).

V.S. Dave, D. Gupta, M. Yu, P. Nguyen, S. Varghese Gupta, Current and evolving approaches for improving the oral permeability of BCS Class III or analogous molecules, Drug Dev. Ind. Pharm., 43, 177 (2017).

K. Sachs-Barrable, S.D. Lee, E.K. Wasan, S.J. Thornton, K.M. Wasan, Enhancing drug absorption using lipids: a case study presenting the development and pharmacological evaluation of a novel lipid-based oral amphotericin B formulation for the treatment of systemic fungal infections, Adv. Drug Deliv. Rev., 60, 692 (2008).

J. Griesser, G. Hetényi, M. Moser, F. Demarne, V. Jannin, A. Bernkop-Schnürch, Hydrophobic ion pairing: key to highly payloaded self-emulsifying peptide drug delivery systems, Int. J. Pharm., 520, 267 (2017).

P.L. Beaulieu, J. De Marte, M. Garneau, L. Luo, T. Stammers, C. Telang, D. Wernic, G. Kukolj, J. Duan, A prodrug strategy for the oral delivery of a poorly soluble HCV NS5B thumb pocket 1 polymerase inhibitor using self-emulsifying drug delivery systems (SEDDS), Bioorg. Med. Chem. Lett., 25, 210 (2015).

R. Ayoub, S.T. Page, R.S. Swerdloff, P.Y. Liu, J.K. Amory, A. Leung, L. Hull, D. Blithe, A. Christy, J.H. Chao, W.J. Bremner, C. Wang, Comparison of the single dose pharmacokinetics, pharmacodynamics, and safety of two novel oral formulations of dimethandrolone undecanoate (DMAU): a potential oral, male contraceptive, Andrology, 5, 278 (2017).

G. Leonaviciute, A. Bernkop-Schnürch, Self-emulsifying drug delivery systems in oral (poly)peptide drug delivery, Expert Opin. Drug Deliv., 12, 1703 (2015).

G. Leonaviciute, O. Zupančič, F. Prüfert, J. Rohrer, A. Bernkop-Schnürch, Impact of lipases on the protective effect of SEDDS for incorporated peptide drugs towards intestinal peptidases, Int. J. Pharm., 508, 102 (2016). 151. A.G. Agrawal, A. Kumar, P.S. Gide, Self emulsifying drug delivery system for enhanced solubility and dissolution of glipizide, Colloids Surfaces B, Biointerfaces, 126, 553 (2015).

B. Brownlow, V.J. Nagaraj, A. Nayel, M. Joshi, T. Elbayoumi. Development and in vitro evaluation of vitamin E-enriched nanoemulsion vehicles loaded with genistein for chemoprevention against UVB-induced skin damage, J. Pharm. Sci., 104, 3510 (2015).

A. Niederquell, A.C. Völker, M. Kuentz. Introduction of diffusing wave spectroscopy to study self-emulsifying drug delivery systems with respect to liquid filling of capsules, Int. J. Pharm., 426, 144 (2012).

A. Abdalla, K. Mäder, Preparation and characterization of a self-emulsifying pellet formulation, Eur. J. Pharm. Biopharm., 66, 220 (2007).

A. Abdalla, K. Mäder, ESR studies on the influence of physiological dissolution and digestion media on the lipid phase characteristics of SEDDS and SEDDS pellets, Int. J. Pharm., 367, 29 (2009).

T. Kauss, A. Gaubert, L. Tabaran, G. Tonelli, T. Phoeung, M.H. Langlois, N. White, A. Cartwright, M. Gomes, K. Gaudin, Development of rectal self-emulsifying suspension of a moisture-labile water-soluble drug, Int. J. Pharm., 536, 283 (2018).

S. Shanmugam, J.H. Park, K.S. Kim, Z.Z. Piao, C.S. Yong, H.G. Choi, J.S. Woo, Enhanced bioavailability and retinal accumulation of lutein from self-emulsifying hospholipid suspension (SEPS), Int. J. Pharm., 412, 99 (2011).

K. Keohane, M. Rosa, I.S. Coulter, B.T. Griffin, Enhanced colonic delivery of ciclosporin A self-emulsifying drug delivery system encapsulated in coated minispheres, Drug Dev. Ind. Pharm., 42, 245 (2016).

Cómo citar

APA

Cueto, Y. L., Ortega, W. L. y Sotomayor, R. G. (2019). Sistemas de entrega de fármacos autoemulsificables: una plataforma de desarrollo alternativa para la industria farmacéutica colombiana. Revista Colombiana de Ciencias Químico-Farmacéuticas, 48(2), 260–313. https://doi.org/10.15446/rcciquifa.v48n2.82696

ACM

[1]
Cueto, Y.L., Ortega, W.L. y Sotomayor, R.G. 2019. Sistemas de entrega de fármacos autoemulsificables: una plataforma de desarrollo alternativa para la industria farmacéutica colombiana. Revista Colombiana de Ciencias Químico-Farmacéuticas. 48, 2 (may 2019), 260–313. DOI:https://doi.org/10.15446/rcciquifa.v48n2.82696.

ACS

(1)
Cueto, Y. L.; Ortega, W. L.; Sotomayor, R. G. Sistemas de entrega de fármacos autoemulsificables: una plataforma de desarrollo alternativa para la industria farmacéutica colombiana. Rev. Colomb. Cienc. Quím. Farm. 2019, 48, 260-313.

ABNT

CUETO, Y. L.; ORTEGA, W. L.; SOTOMAYOR, R. G. Sistemas de entrega de fármacos autoemulsificables: una plataforma de desarrollo alternativa para la industria farmacéutica colombiana. Revista Colombiana de Ciencias Químico-Farmacéuticas, [S. l.], v. 48, n. 2, p. 260–313, 2019. DOI: 10.15446/rcciquifa.v48n2.82696. Disponível em: https://revistas.unal.edu.co/index.php/rccquifa/article/view/82696. Acesso em: 28 ene. 2025.

Chicago

Cueto, Yeimy L., Wilfrido L. Ortega, y Reinaldo G. Sotomayor. 2019. «Sistemas de entrega de fármacos autoemulsificables: una plataforma de desarrollo alternativa para la industria farmacéutica colombiana». Revista Colombiana De Ciencias Químico-Farmacéuticas 48 (2):260-313. https://doi.org/10.15446/rcciquifa.v48n2.82696.

Harvard

Cueto, Y. L., Ortega, W. L. y Sotomayor, R. G. (2019) «Sistemas de entrega de fármacos autoemulsificables: una plataforma de desarrollo alternativa para la industria farmacéutica colombiana», Revista Colombiana de Ciencias Químico-Farmacéuticas, 48(2), pp. 260–313. doi: 10.15446/rcciquifa.v48n2.82696.

IEEE

[1]
Y. L. Cueto, W. L. Ortega, y R. G. Sotomayor, «Sistemas de entrega de fármacos autoemulsificables: una plataforma de desarrollo alternativa para la industria farmacéutica colombiana», Rev. Colomb. Cienc. Quím. Farm., vol. 48, n.º 2, pp. 260–313, may 2019.

MLA

Cueto, Y. L., W. L. Ortega, y R. G. Sotomayor. «Sistemas de entrega de fármacos autoemulsificables: una plataforma de desarrollo alternativa para la industria farmacéutica colombiana». Revista Colombiana de Ciencias Químico-Farmacéuticas, vol. 48, n.º 2, mayo de 2019, pp. 260-13, doi:10.15446/rcciquifa.v48n2.82696.

Turabian

Cueto, Yeimy L., Wilfrido L. Ortega, y Reinaldo G. Sotomayor. «Sistemas de entrega de fármacos autoemulsificables: una plataforma de desarrollo alternativa para la industria farmacéutica colombiana». Revista Colombiana de Ciencias Químico-Farmacéuticas 48, no. 2 (mayo 1, 2019): 260–313. Accedido enero 28, 2025. https://revistas.unal.edu.co/index.php/rccquifa/article/view/82696.

Vancouver

1.
Cueto YL, Ortega WL, Sotomayor RG. Sistemas de entrega de fármacos autoemulsificables: una plataforma de desarrollo alternativa para la industria farmacéutica colombiana. Rev. Colomb. Cienc. Quím. Farm. [Internet]. 1 de mayo de 2019 [citado 28 de enero de 2025];48(2):260-313. Disponible en: https://revistas.unal.edu.co/index.php/rccquifa/article/view/82696

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

2784

Descargas

Los datos de descargas todavía no están disponibles.