Publicado

2020-01-01

Descubrimiento de fármacos basado en imagenología de células vivas

Drug discovery based on live cell imaging

DOI:

https://doi.org/10.15446/rcciquifa.v49n1.87026

Palabras clave:

Descubrimiento de fármacos, microscopía confocal, técnicas in vitro, estructura molecular, biomarcadores, sondas moleculares. (es)
Drug discovery, confocal microscopy, in vitro techniques, molecular structure, biomarkers, molecular probes (en)

Autores/as

  • Camilo Eduardo Hernández Cuellar Grupo de Medicina Molecular y de Translación, Facultad de Medicina, Universidad de Antioquia, Medellín
  • Esteban Castrillón-Martínez Facultad de Medicina, Universidad de Antioquia, Medellín
  • Juan Carlos Gallego-Gómez Facultad de Medicina, Universidad de Antioquia, Medellín

El diseño eficiente de compuestos aprovechando las características estructurales de las moléculas y la búsqueda eficiente de dianas terapéuticas, ha proporcionado herramientas efectivas en la investigación de nuevos tratamientos cuando esta se enfoca en mecanismos celulares de la enfermedad. Los cambios fenotípicos producidos por la interacción in vitro entre molécula-diana, pueden controlarse cuantitativamente mediante imagenología de células vivas. Para garantizar una interacción adecuada, es necesario considerar diferentes elementos cruciales: 1. Las características estructurales y la dinámica molecular del compuesto a evaluar. 2. La relevancia del blanco para la fisiopatología de interés. Sin embargo, el desconocimiento del panorama general en el descubrimiento de fármacos, desde problemáticas estructurales y celulares, ha enlentecido la búsqueda de nuevos tratamientos. Esta revisión descriptiva de tema presenta algunos aspectos estructurales importantes para la caracterización de compuestos como candidatos terapéuticos, y aproximaciones experimentales para desarrollo de sistemas celulares. Los tópicos discutidos se enfocan en la monitorización por imagenología de células vivas y así mismo proporcionamos ejemplos relevantes. La monitorización de efectos fenotípicos producidos por interacciones entre candidato químico y blanco terapéutico en un sistema celular puede favorecer la búsqueda eficiente de moléculas potencialmente terapéuticas.

The efficient compounds' design taking advantage of the molecule’s structural characteristics and efficient search for therapeutic targets has provided effective tools for the research of new treatments when this is focused on disease cellular mechanisms. Phenotypic changes produced by in vitro interaction between molecules and targets can be monitored quantitatively by live cell imaging. To guarantee adequate interaction, it is necessary to consider different crucial elements: 1. Structural characteristics and molecular dynamics of the evaluated compound. 2. Target relevance for the concern physiopathology. However, overview's ignorance of the drug discovery, from structural and cellular problems, has slowed the new treatments research. This literature review presents some important structural aspects for compounds' characterization as therapeutic candidates and experimental approaches for cellular systems development. Subjects discussed are focused on live cell imaging and we also provide relevant examples. Phenotypic monitoring of interactions' produced effects between the chemical candidate and therapeutic target in a cellular system can favor the efficient search of potentially therapeutic molecules.

Referencias

T. Gareth, An introduction to drug discovery, en: Fundamentals of medicinal chemistry, T. Gareth, Ed., Wiley, New York, 2003, Vol. 2, pp. 57-70.

R. Liu, M. Li, Z Liu, J. Wu, L. Chen, K. Aihara, Identifying critical transitions and their leading biomolecular networks in complex diseases, Scientific Reports, 2, 813 (2012).

J. Trosset, N. Vodovar, Structure-based target druggability assessment, Methods and Protocols, 986, 141 (2013).

C. Vockley, A. Barrera, T. Reddy, Decoding the role of regulatory element polymorphisms in complex disease, Current Opinion in Genetics and Development, 43, 38 (2017).

T. Lavé, A. Caruso, N. Parrott, A. Walz, Translational PK/PD modeling to increase probability of success in drug discovery and early development, Drug Discov .Today Technol., 21-22, 27 (2016).

P. Bonate, P. Vicini, Preclinical pharmacokinetic-pharmacodynamic modeling and simulation in drug development, en: Preclinical drug development, M. Rogge, D. Taft, Eds., Informa HealthCare, New York, 2016, Vol. 187, pp. 141-160.

G. Steel, Preformulation as an aid to product design in early drug development, en: Pharmaceutical preformulation and formulation: A practical guide from candidate drug selection to commercial dosage form, M. Gibson, Ed., Informa HealthCare, New York, 2016, Vol. 2, pp. 188-246.

M. Gibson, Product optimization, en: Pharmaceutical preformulation and formulation: A practical guide from candidate drug selection to commercial dosage form, M. Gibson, Ed., Informa HealthCare, New York, 2016, Vol. 2, pp. 289-324.

T. McCann, Live cell imaging: An industrial perspective, en: Live cell imaging: Methods and protocols, D. Papkovsky, Ed., Springer Protocols, Switzerland, 2010, Vol. 591, pp. 47-66.

E. Kerns, L. Di, Advantages of good drug-like properties, en: Drug-like properties: Concepts, structure design and methods. From ADME to toxicity optimization, E. Kerns, L. Di, Eds., Elsevier, London, 2008, Vol. 1, p. 6-15.

E. Kerns, L. Di, Physicochemical properties, en: Drug-like properties: Concepts, structure design and methods. From ADME to toxicity pptimization, E. Kerns, L. Di, Ed., Elsevier, London, 2008, Vol. 1, pp. 37-96.

E. Kerns, L. Di, Disposition, metabolism, and safety, en: Drug-like properties: Concepts, structure design and methods. From ADME to toxicity optimization, E. Kerns, L. Di, Ed., Elsevier, London, 2008, Vol. 1, pp. 137-124.

E. Kerns, L. Di, Disposition, Metabolism, and Safety-Pharmacokinetics. en: Drug-like properties: concepts, structure design and methods. From ADME to toxicity optimization, E. Kerns, L. Di, Ed., Elsevier, London, 2008, Vol. 1, pp. 228-235.

A. Van der Laan, M. Boenink, Beyond bench and bedside: Disentangling the concept of translational research, Health Care Anal., 23(1), 32-49 (2015).

J. Gallego-Gómez, Video: jueves 2:00 PM-4:30 PM • XXVII Congreso Nacional de Medicina General y Social • 8/10/2015, Enfoque en Medicina de Translación, Minuto 36:23-1:05, YouTube: https://www.youtube.com/watch?v=t6R2XCh6_6g, consultado en septiembre de 2018

F.W. Crowley, J.F. Gusella, Changing models of biomedical research, Translational Research, 1(1), 1-6 (2009).

R. Santos, O. Ursu, A. Gaulton, R. Donadi, C. Bologa, A. Karlsson, B. Al-Lazikani, A. Hersey, T.I. Oprea, J.P. Overington, A comprehensive map of molecular drug targets, Nat. Rev. Drug. Discov., 16(1), 19-34 (2016).

E. Barnes, R. Kumar, R. Davis, The use of isolated natural products as scaffolds for the generation of chemically diverse screening libraries for drug discovery, Nat. Prod. Rep., 33(3), 372-381 (2016).

G. Cragg, D. Newman, Natural products: A continuing source of novel drug leads, Biochim. Biophys. Acta, 1830(6), 3670-3695 (2013).

E. Schwartz, R. Poulin, N. Mojib, J. Kubanek, Chemical ecology of marine plankton, Nat. Prod. Rep., 33(7), 843-860 (2016).

A. van der Meij, S. Worsley, M. Hutchings, G. van Wezel, Chemical ecology of antibiotic production by actinomycetes, FEMS Microbiol. Rev., 41(3), 392-416 (2017).

C. Pye, M. Bertin, R. Lokey, W. Gerwick, Retrospective analysis of natural products provides insights for future discovery trends, Proc. Natl. Acad. Sci., 114(22), 5601-5606 (2017).

A. Ganesan, M. Coote, K. Barakat, Molecular dynamics-driven drug discovery: Leaping forward with confidence, Drug Discov. Today, 22(2), 249-269 (2017).

P. Lang, K. Yeow, A. Nichols, A. Scheer, Cellular imaging in drug discovery, Nat. Rev. Drug Discov., 5(4), 343-356 (2006).

M. Robers, T. Machleidt, K. Wood, High throughput screening compatible methods for quantifying protein interactions in living cells, en: High throughput screening methods: Evolution and refinement, J.A. Bittker, N.T. Ross, Eds., Royal Society of Chemistry, Cambridge, 2017, Vol. 1, pp. 396.

M. Sung, A checklist for successful quantitative live cell imaging in systems biology, Cells, 2(2), 284-293 (2013).

O. Méndez-Lucio, J. Medina-Franco, The many roles of molecular complexity in drug discovery, Drug Discov. Today, 22(1), 120-126 (2017).

T. Cernak, K. Dykstra, S. Tyagarajan, P. Vachal, S. Krska, The medicinal chemist’s toolbox for late stage functionalization of drug-like molecules, Chem. Soc. Rev., 45(3), 546-576 (2016).

O. Guvench, Computational functional group mapping for drug discovery, Drug Discov. Today, 21(12), 1928-1931 (2016).

M. De Vivo, M. Masetti, G. Bottegoni, A. Cavalli, Role of molecular dynamics and related methods in drug discovery, J. Med. Chem., 59(9), 4035-4061 (2016).

G. Williams, G. Ferenczy, J. Ulander, G. Keseru, Binding thermodynamics discriminates fragments from druglike compounds: A thermodynamic description of fragment-based drug discovery, Drug Discov. Today, 22(4), 681-689 (2016).

D. Erlanson, S. Fesik, R. Hubbard, W. Jahnke, H. Jhoti, Twenty years on: the impact of fragments on drug discovery, Nat. Rev. Drug Discov., 15(9), 605-619 (2016).

A. Kar, Molecular descriptors for polarity: the need of going beyond polar surface area, Future Medicinal Chemistry, 8(17), 1-4 (2016).

J. Christensen, H. Meng-Lund, H. Grohganz, A. Poso, T. Laitinen, O. Korhonen, L. Jørgensen, J. Pajander, Surface area, volume and shape descriptors as a novel tool for polymer lead design and discovery, Eur. J. Pharm. Sci., 102, 188-195 (2017).

C. Bergström, M. Yazdanian, Lipophilicity in drug development: Too much or not enough?, AAPS J., 18(5), 1095-1100 (2016).

R. Thompson, E. Isin, M. Ogese, J. Mettetal, D. Williams, Reactive metabolites: Current and emerging risk and hazard assessments, Chem. Res. Toxicol., 29(4), 505-533 (2016).

Y. Hong, Y. Mei, F. Chia, R. Yeo, G. Venkatesan, S.K. Koh, C.L. Chai, L. Zhou, P Kojodjojo, E.C. Chan, Inactivation of human cytochrome P450 3A4 and 3A5 by dronedarone and N-desbutyl dronedarone, Mol. Pharmacol., 89(1), 1-13 (2016).

A. Brink, A. Pahler, C. Funk, F. Schuler, S. Schadt, Minimizing the risk of chemically reactive metabolite formation of new drug candidates: Implications for preclinical drug design, Drug Discov. Today, 22(5), 751-756 (2016).

N. Borges, P. Kenny, C. Montanari, I. Prokopczyk, J. Ribeiro, J. Rocha, J.R. Rocha, G. Rodrigues, The influence of hydrogen bonding on partition coefficients, J. Comput. Aided Mol. Des., 31(2), 163-181 (2017).

M. Matos, S. Vilar, S. Kachler, S. Vazquez-Rodriguez, C. Varela, G. Delogu, G. Hripcsak, L. Santana, E. Uriarte, K.N. Klotz, F. Borges, Progress in the development of small molecules as new human A 3 adenosine receptor ligands based on the 3-thiophenylcoumarin core, Med. Chem. Commun., 7(5), 845-852 (2016).

J. Wang, L. Gao, Y. Lee, K. Kalesh, Y. Ong, J. Lim, J.E. Jee, H. Sun, S.S. Lee, Z.C. Hua, Q. Lin, Target identification of natural and traditional medicines with quantitative chemical proteomics approaches, Pharmacol. Ther., 162, 10-22 (2016).

M. Schirle, J. Jenkins, Identifying compound efficacy targets in phenotypic drug discovery, Drug Discov. Today, 21(1), 82-89 (2016).

J. Wang, C.J. Zhang, J. Zhang, Y. He, Y. Lee, S. Chen, T.K. Lim, S. Ng, H.M. Shen, Q. Lin, Mapping sites of aspirin-induced acetylations in live cells by quantitative acid-cleavable activity-based protein profiling (QA-ABPP), Sci. Rep., 5, 7896 (2015).

A. Roberts, C. Ward, D. Nomura, Activity-based protein profiling for mapping and pharmacologically interrogating proteome-wide ligandable hotspots, Curr. Opin. Biotechnol., 43, 25-33 (2017).

M. Matthews, L. He, B. Horning, E. Olson, B. Correia, J. Yates, P.E. Dawson, B.F. Cravatt, Chemoproteomic profiling and discovery of protein electrophiles in human cells, Nat. Chem., 9(3), 234-243 (2016).

V. Gupta, K. Carroll, Sulfenic acid chemistry, detection and cellular lifetime, Biochim. Biophys. Acta-Gen Subj., 1840(2), 847-875 (2014).

Q. Zhao, X. Ouyang, X. Wan, K. Gajiwala, J. Kath, L.H. Jones, A.L Burlingame, J. Taunton, Broad-spectrum kinase profiling in live cells with lysine-targeted sulfonyl fluoride probes, J. Am. Chem. Soc., 139(2), 680-685 (2017).

J. Baskin, J. Prescher, S. Laughlin, N. Agard, P. Chang, I. Miller, A. Lo, J.A. Codelli, C.R. Bertozzi, Copper-free click chemistry for dynamic in vivo imaging, Proc. Natl. Acad. Sci., 104(43), 16793-16797 (2007).

M. Shang, M. Wang, T. Saint-Denis, M. Li, H. Dai, J. Yu, Copper-mediated late-stage functionalization of heterocycle-containing molecules, Angew. Chemie-Int., 56(19), 5317-5321 (2017).

J. Hartwig, Catalyst-controlled site-selective bond activation, Acc. Chem. Res., 50(3), 549-555 (2017).

Á. Fuentes de Arriba, E. Lenci, M. Sonawane, O. Formery, D. Dixon, Iridium-catalyzed reductive strecker reaction for late-stage amide and lactam cyanation, Angew. Chemie-Int., 56(13), 3655-3659 (2017).

W. Ma, H. Dong, D. Wang, L. Ackermann. Late-stage diversification of non-steroidal anti-inflammatory drugs by transition metal-catalyzed C-H alkenylations, thiolations and selenylations, Adv. Synth. Catal., 359(6), 966-973 (2017).

R. Griffiths, G. Burley, E. Talbot, Transition-metal-free amine oxidation: A chemoselective strategy for the late-stage formation of lactams, Org. Lett., 19(4), 870-873 (2017).

P. Horvath, N. Aulner, M. Bickle, A. Davies, E. Nery, D. Ebner, M.C. Montoya, P. Ostling, V. Pietiainen, L.S. Price, S.L. Shorte, G. Turcatti, C. von Schantz, N.O. Carragher, Screening out irrelevant cell-based models of disease, Nat. Rev. Drug Discov., 15(11), 751-769 (2016).

S. Totti, S. Vernardis, L. Meira, P. Pérez-Mancera, E. Costello, W. Greenhalf, D. Palmer, J. Neoptolemos, A. Mantalaris, E.G. Velliou, Designing a bio-inspired biomimetic in vitro system for the optimization of ex vivo studies of pancreatic cancer, Drug Discov. Today, 22(4), 690-701 (2017).

S. Yu, E. Chen, L. Sherwood, M. Hull, A. Woods, M. Tremblay, Ex vivo cell-based screening platform for modulators of hepatosteatosis ex vivo cell-based screening platform for modulators of hepatosteatosis, ACS Chem. Biol., 12(7), 1937-1946 (2017).

E. Karekla, W. Liao, B. Sharp, J. Pugh, H. Reid, J.L Quesne, D. Moore, C. Pritchard, M. MacFarlane, J.H. Pringle, Ex vivo explant cultures of non-small cell lung carcinoma enable evaluation of primary tumor responses to anticancer therapy, Cancer Res., 77(8), 2029-2039 (2017).

T. Schreiter, J. Sowa, M. Schlattjan, J. Treckmann, A. Paul, K. Strucksberg, H.A. Baba, M. Odenthal, R.K. Gieseler, G. Gerken, G.E. Arteel, A. Canbay, Human ex-vivo liver model for acetaminophen-induced liver damage, Scientific Reports, 6, 1-10 (2016).

K.S. Makarova, Y.I. Wolf, O.S. Alkhnbashi, F. Costa, S.A. Shah, S.J. Saunders, R. Barrangou, S.J. Brouns, E. Charpentier, D.H. Haft, P. Horvath, S. Moineau, F.J.M. Mojica, R.M. Terns, M.P. Terns, M.F. White, A.F. Yakunin, R.A. Garrett, J. van der Oost, R. Backofen, E.V. Koonin, An updated evolutionary classification of CRISPR-Cas systems, Nature Reviews Microbiology, 13(11), 722-736 (2015).

K.S. Makarova, D.H. Haft, R. Barrangou, S.J. Brouns, E. Charpentier, P. Horvath, S. Moineau, F.J.M. Mojica, Y.I. Wolf, A.F. Yakunin, J. van der Oost, E.V. Koonin, Evolution and classification of the CRISPR-Cas systems, Nature Reviews Microbiology, 9(6), 467-477 (2011).

T. Seeger, M. Porteus, J. Wu, Genome editing in cardiovascular biology, Circulation Research, 120, 778-781 (2017).

B. Alberts, A. Johnson, J. Lewis, D. Morgan, M. Raff, K. Roberts, P. Walter, ADN replication, repair and recombination: Double-strand breaks are efficiently repaired and homologous recombination, en: Molecular biology of the cell, B. Alberts, A. Johnson, J. Lewis, D. Morgan, M. Raff, K. Roberts, P. Walter, Taylor & Francis Group, Eds. New York, 2015, Vol. 6, pp. 273-286.

A. Bassett, Editing the genome of hiPSC with CRISPR / Cas9: disease models, Mamm. Genome, 28(7-8), 1-17 (2017).

G. Nierode, P. Kwon, J. Dordick, S. Kwon, Cell-based assay design for high-content screening of drug candidates, J. Microbiol. Biotechnol., 26(2), 213-225 (2016).

J.C. Gallego-Gómez, Búsqueda de fármacos antivirales por imagenología de células vivas, Actual Biol., 34(96), 113-132 (2012).

G. Pegoraro, T. Misteli, High-throughput imaging for the discovery of cellular mechanisms of disease, Trends in Genetics, 33(9), 604-615 (2017).

J.C. Cardona-Gomez, L. Ariza-Jimenez, J.C. Gallego-Gómez, A proposal for a machine learning classifier for viral infection in living cells based on mitochondrial distribution, en: Genetics and molecular biology, N. Stevo, Ed., Cell Biology-New Insights - InTech, London, 2016, Vol. 1, pp. 3-25.

J. Kang, C. Hsu, Q. Wu, S. Liu, A. Coster, B. Posner, S.J. Altschulter, L.F Wu, Improving drug discovery with high-content phenotypic screens by systematic selection of reporter cell lines, Nature Biotechnology, 34(1), 70-77 (2016).

K. Umezawa, M. Yoshida, M. Kamiya, T. Yamasoba, Y. Urano, Rational design of reversible fluorescent probes for live-cell imaging and quantification of fast glutathione dynamics, Nature Chemistry, 9(3), 279-286 (2016).

N. Couto, J. Wood, J. Barber, The role of glutathione reductase and related enzymes on cellular redox homeostasis network, Free Radical Biology and Medicine, 95, 27-42 (2016).

G. Hummer, A. Szabo, Dynamics of the orientational factor in fluorescence resonance energy transfer, J. Phys. Chem., 121(15), 3331-3339 (2016).

Valm A, Cohen S, Legant W, Melunis J, Hershberg U, Wait E, A.E. Cohen, M.W. Davidson, E. Betzig, J. Lippincott-Schwartz, Applying systems-level spectral imaging and analysis to reveal the organelle interactome, Nature Letters, 546(7656), 162-167 (2017).

H. Shuai, Y. Xu, Q. Yu, E. Gylfe, A. Tengholm, Fluorescent protein vectors for pancreatic islet cell identification in live-cell imaging, European Journal of Physiology, 468(10), 1765-1777 (2016).

J. Gelles, J. Chipuk, Robust high-throughput kinetic analysis of apoptosis with real-time high-content live-cell imaging, Cell Death and Disease, 7(12), e2493-9 (2016).

J. Cardona, J.C. Gallego-Gómez, Quantitative study of the differences in mithocondrium distribution between DENV infected and mock cells, AIP Conference Proceedings, 1747(90005), 48-53 (2016).

G. Gerold, J. Bruening, B. Weigel, T. Pietschmann, Protein interactions during the flavivirus and hepacivirus life cycle, Molecular and Cellular Proteomics, 6,75-S91 (2016).

Cómo citar

APA

Hernández Cuellar, C. E., Castrillón-Martínez, E. y Gallego-Gómez, J. C. (2020). Descubrimiento de fármacos basado en imagenología de células vivas. Revista Colombiana de Ciencias Químico-Farmacéuticas, 49(1). https://doi.org/10.15446/rcciquifa.v49n1.87026

ACM

[1]
Hernández Cuellar, C.E., Castrillón-Martínez, E. y Gallego-Gómez, J.C. 2020. Descubrimiento de fármacos basado en imagenología de células vivas. Revista Colombiana de Ciencias Químico-Farmacéuticas. 49, 1 (ene. 2020). DOI:https://doi.org/10.15446/rcciquifa.v49n1.87026.

ACS

(1)
Hernández Cuellar, C. E.; Castrillón-Martínez, E.; Gallego-Gómez, J. C. Descubrimiento de fármacos basado en imagenología de células vivas. Rev. Colomb. Cienc. Quím. Farm. 2020, 49.

ABNT

HERNÁNDEZ CUELLAR, C. E.; CASTRILLÓN-MARTÍNEZ, E.; GALLEGO-GÓMEZ, J. C. Descubrimiento de fármacos basado en imagenología de células vivas. Revista Colombiana de Ciencias Químico-Farmacéuticas, [S. l.], v. 49, n. 1, 2020. DOI: 10.15446/rcciquifa.v49n1.87026. Disponível em: https://revistas.unal.edu.co/index.php/rccquifa/article/view/87026. Acesso em: 16 jul. 2024.

Chicago

Hernández Cuellar, Camilo Eduardo, Esteban Castrillón-Martínez, y Juan Carlos Gallego-Gómez. 2020. «Descubrimiento de fármacos basado en imagenología de células vivas». Revista Colombiana De Ciencias Químico-Farmacéuticas 49 (1). https://doi.org/10.15446/rcciquifa.v49n1.87026.

Harvard

Hernández Cuellar, C. E., Castrillón-Martínez, E. y Gallego-Gómez, J. C. (2020) «Descubrimiento de fármacos basado en imagenología de células vivas», Revista Colombiana de Ciencias Químico-Farmacéuticas, 49(1). doi: 10.15446/rcciquifa.v49n1.87026.

IEEE

[1]
C. E. Hernández Cuellar, E. Castrillón-Martínez, y J. C. Gallego-Gómez, «Descubrimiento de fármacos basado en imagenología de células vivas», Rev. Colomb. Cienc. Quím. Farm., vol. 49, n.º 1, ene. 2020.

MLA

Hernández Cuellar, C. E., E. Castrillón-Martínez, y J. C. Gallego-Gómez. «Descubrimiento de fármacos basado en imagenología de células vivas». Revista Colombiana de Ciencias Químico-Farmacéuticas, vol. 49, n.º 1, enero de 2020, doi:10.15446/rcciquifa.v49n1.87026.

Turabian

Hernández Cuellar, Camilo Eduardo, Esteban Castrillón-Martínez, y Juan Carlos Gallego-Gómez. «Descubrimiento de fármacos basado en imagenología de células vivas». Revista Colombiana de Ciencias Químico-Farmacéuticas 49, no. 1 (enero 1, 2020). Accedido julio 16, 2024. https://revistas.unal.edu.co/index.php/rccquifa/article/view/87026.

Vancouver

1.
Hernández Cuellar CE, Castrillón-Martínez E, Gallego-Gómez JC. Descubrimiento de fármacos basado en imagenología de células vivas. Rev. Colomb. Cienc. Quím. Farm. [Internet]. 1 de enero de 2020 [citado 16 de julio de 2024];49(1). Disponible en: https://revistas.unal.edu.co/index.php/rccquifa/article/view/87026

Descargar cita

CrossRef Cited-by

CrossRef citations2

1. Juan Carlos Gallego-Gómez, Germán Guerrero-Pino. (2021). Fenomenotecnia y sistemas experimentales en la comprensión de la práctica científica: el caso de la célula viviente. Trilogía Ciencia Tecnología Sociedad, 13(25), p.e1761. https://doi.org/10.22430/21457778.1761.

2. Juan Carlos Gallego-Gómez, Germán Guerrero-Pino. (2021). Phénoménotechnique et systèmes expérimentaux dans la compréhension de la pratique scientifique. Revue d'anthropologie des connaissances, 15(2) https://doi.org/10.4000/rac.22887.

Dimensions

PlumX

Visitas a la página del resumen del artículo

814

Descargas

Los datos de descargas todavía no están disponibles.