Publicado

2020-01-01

Thermodynamic analysis and applications of the Abraham solvation parameter model in the study of the solubility of some sulfonamides

Análisis termodinámico y aplicaciones del modelo de parámetros de solvatación de Abraham en el estudio de la solubilidad de algunas sulfonamidas.

DOI:

https://doi.org/10.15446/rcciquifa.v49n1.87038

Palabras clave:

Sulfonamides, solubility, van’t Hoff, Abraham model, lethal median molar concentration (en)
Sulfonamidas, solubilidad, van’t Hoff, modelo de Abraham, concentración letal media (es)

Autores/as

  • Joaquín H. Blanco-Márquez Universidad Surcolombiana, Environmental Management and Engineering, Neiva, Huila
  • Yina Andrea Quigua-Medina Universidad Antonio Nariño, Programa de Odontología, Sede Buganviles Calle 19 # 42-98, Neiva, Huila
  • José Darwin García-Murillo Universidad Antonio Nariño, Programa de Odontología, Sede Buganviles Calle 19 # 42-98, Neiva, Huila
  • Jennifer Katiusca Castro-Camacho Universidad Surcolombiana, Faculty of Engineering, Agricultural Engineering Program, Hydro Engineering and Agricultural Development Research Group (GHIDA), Avenida Pastrana Borrero - Carrera 1, Neiva, Huila
  • Claudia Patricia Ortiz Corporación Universitaria Minuto de Dios, Programa de Administración en Seguridad y Salud en el Trabajo, Grupo de Investigación en Seguridad y Salud en el Trabajo, Neiva, Huila
  • Nestor E. Cerquera Universidad Antonio Nariño, Programa de Odontología, Sede Buganviles Calle 19 # 42-98, Neiva, Huila
  • Daniel Ricardo Delgado Universidad Cooperativa de Colombia, Department of Engineering, Industrial Engineering Program, GRIAUCC Research Group, Calle 11 # 1-51, Neiva, Huila

Se investigó la solubilidad de sulfadiazina (SD), sulfamerazina (SMR) y sulfametazina (SMT) en mezclas codisolventes de octanol + metanol a 278,15 K, 298,15 y 313,15 K. En todos los casos, la solubilidad más baja de cada fármaco se obtuvo en octanol puro a 278,15 K. La solubilidad máxima depende de la polaridad del fármaco, por lo que SMR y SMT alcanzaron su máxima solubilidad en mezclas cosolventes ricas en metanol. Las funciones termodinámicas de solución se calcularon a partir de los datos experimentales de solubilidad, utilizando las ecuaciones de van’t Hoff y Gibbs, siguiendo el enfoque propuesto por Krug et al. La entalpía de la solución es positiva en todos los casos, lo cual es una indicación del proceso endotérmico con un marcado favorecimiento entrópico. La solubilidad teórica y la concentración letal media se calcularon utilizando el modelo de Abraham.

 

Referencias

R.J. Henry, The mode of action of sulfonamides, Bacteriol. Rev., 7, 175-262 (1943).

A. Auta, M.A. Hadi, E. Oga, E.O. Adewuyi, S.N. Abdu-Aguye, D. Adeloye, B. Strickland-Hodge, D.J. Morgan, Global access to antibiotics without prescription in community pharmacies: A systematic review and meta-analysis, J. Infect., 78, 8-18 (2018).

A.K. Sarmah, M.T. Meyer, A.B.A. Boxall, A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment, Chemosphere, 65, 725-759 (2006).

M. Lahtinen, J. Kudva, P. Hegde, K. Bhat, E. Kolehmainen, V. Nonappa, D. Naral, Synthesis, characterization, thermal and antimicrobial studies of N-substituted sulfanilamide derivatives, J. Mol. Struct., 1060, 280-290 (2014).

L. Puccetti, G. Fasolis, D. Vullo, Z.H. Chohan, A. Scozzafava, C.T. Supuran, Carbonic anhydrase inhibitors. Inhibition of cytosolic/tumor-associated carbonic anhydrase isozymes I, II, IX, and XII with Schiff’s bases incorporating chromone and aromatic sulfonamide moieties, and their zinc complexes, Bioorg. Med. Chem. Lett., 15, 3096-3101 (2005).

F. Carta, C.T. Supuran. Diuretics with carbonic anhydrase inhibitory action: A patent and literature review (2005-2013), Expert Opin. Ther. Pat., 23, 681-691 (2013).

F. Carta, L. Di Cesare Mannelli, M. Pinard, C. Ghelardini, A. Scozzafava, R. McKenna, C.T. Supuran, A class of sulfonamide carbonic anhydrase inhibitors with neuropathic pain modulating effects, Bioorg. Med. Chem., 23, 1828-1840 (2015).

C.T. Supuran, Carbonic anhydrases: Novel therapeutic applications for inhibitors and activators, Nat. Rev. Drug Discov., 7, 168-181 (2008).

J.H. Blanco-Márquez, D.I. Caviedes-Rubio, C.P. Ortiz, N.E. Cerquera, F. Martínez, D.R. Delgado, Thermodynamic analysis and preferential solvation of sulfamethazine in acetonitrile+ water cosolvent mixtures, Fluid Phase Equilib., 505, 112361 (2020).

D.I. Caviedes-Rubio, D.M. Camacho-Feria, D.R. Delgado, Tratamientos para la remoción de antibacteriales y agentes antimicrobiales presentes en aguas residuales. Revista Logos Ciencia & Tecnología, 9, 43-62 (2017).

A.M. Romero-Nieto, N.E. Cerquera, D.R. Delgado, Measurement and correlation of solubility of ethylparaben in pure and binary solvents and thermodynamic properties of solution, Rev. Colomb. Cienc. Quím. Farm., 48, 332-347 (2019).

T. Higuchi, K.A. Connors, Phase-solubility techniques. Advances in Analytical Chemistry and Instrumentation, vol. 4, John Wiley & Sons, Inc, New York, 1965.

D.M. Jiménez, Z.J. Cardenas, D.R. Delgado, M.Á. Peña, F. Martínez, Solubility temperature dependence and preferential solvation of sulfadiazine in 1, 4-dioxane+ water co-solvent mixtures, Fluid Phase Equilib., 397, 26-36 (2015).

D.R. Delgado, E.M. Mogollon-Waltero, C.P. Ortiz, M.Á. Peña, O.A. Almanza, F. Martinez, A. Jouyban, Enthalpy-entropy compensation analysis of the triclocarban dissolution process in some {1, 4-dioxane (1)+ water (2)} mixtures, J. Mol. Liq., 271, 522-529 (2018).

D.R. Delgado, F. Martínez, Solubility and preferential solvation of sulfadiazine in methanol+ water mixtures at several temperatures, Fluid Phase Equilib., 379, 128-138 (2015).

D.R. Delgado, F. Martínez, Solution thermodynamics and preferential solvation of sulfamerazine in methanol+ water mixtures, J. Solution Chem., 44(2), 360-377 (2015).

Y. Marcus, The Properties of solvents, John Wiley & Sons, New York, 1998.

D.R. Delgado, F. Martínez, Preferential solvation of some structurally related sulfonamides in 1-propanol+ water co-solvent mixtures, Phys. Chem. Liq., 53, 293-306 (2015).

A. Kristl, Thermodynamic investigation of the effect of the mutual miscibility of some higher alkanols and water on the partitioning and solubility of some guanine derivatives, J. Chem. Soc., Faraday Trans., 92, 1721-1724 (1996).

R.R. Krug, W.G. Hunter, R.A. Grieger, Enthalpy-entropy compensation. 1. Some fundamental statistical problems associated with the analysis of van’t Hoff and Arrhenius data, J. Phys. Chem., 80, 2335-2341 (1976).

R.R. Krug, W.G. Hunter, R.A. Grieger, Enthalpy-entropy compensation. 2. Separation of the chemical from the statistical effect, J. Phys. Chem., 80, 2341-2351 (1976).

J.H. Blanco-Márquez, C.P. Ortiz, N.E. Cerquera, F. Martínez, A. Jouyban, D.R. Delgado, Thermodynamic analysis of the solubility and preferential solvation of sulfamerazine in (acetonitrile+ water) cosolvent mixtures at different temperatures, J. Mol. Liq., 293, 111507 (2019).

D.R. Delgado, O.A. Almanza, F. Martínez, M.A. Peña, A. Jouyban, W.E. Acree Jr., Solution thermodynamics and preferential solvation of sulfamethazine in (methanol+ water) mixtures, J. Chem. Thermodyn., 97, 264-276 (2016).

D.R. Delgado, E.F. Vargas, F. Martínez, Thermodynamic study of the solubility of procaine HCl in some ethanol+ water cosolvent mixtures, J. Chem. Eng. Data, 55, 2900-2904 (2010).

I.P. Osorio, F. Martínez, D.R. Delgado, A. Jouyban, W.E Acree Jr., Solubility of sulfacetamide in aqueous propylene glycol mixtures: Measurement, correlation, dissolution thermodynamics, preferential solvation, and solute volumetric contribution at saturation, J. Mol. Liq., 297, 1118891 (2020).

D.R. Delgado, D.I. Caviedes-Rubio, C. Patricia Ortiz, Y.L. Parra-Pava, M.A. Peña, A. Jouyban, S.N. Mirheydari, F. Martínez, W.E. Acree Jr., Solubility of sulphadiazine in (acetonitrile+ water) mixtures: measurement, correlation, thermodynamics and preferential solvation, Phys. Chem. Liq., DOI: 10.1080/00319104.2019.1594227

R.A. Gutiérrez, D.R. Delgado, F. Martínez, Solution thermodynamics of lysine clonixinate in some ethanol+ water mixtures, Lat. Am. J. Pharm., 31, 226-234 (2012).

J.L. Gómez, G.A. Rodríguez, D.M. Cristancho, D.R. Delgado, F. Martínez, Solution thermodynamics of nimodipine in some PEG 400+ ethanol mixtures, Phys. Chem. Liq., 51, 651-662 (2013).

A.R. Holguín, D.R. Delgado, F. Martínez, Thermodynamic study of the solubility of triclocarban in ethanol+ propylene glycol mixtures, Quím. Nova, 35, 280-285 (2012).

D.I. Caviedes-Rubio, G.A. Rodríguez-Rodríguez, D.R. Delgado, Thermodynamic study of the solubility of naproxen in some 2-propanol+ water mixtures, Revista Facultad de Ciencias Básicas, 12, 45-55 (2016).

G.L. Perlovich, S.V. Kurkov, A.N. Kinchin, A. Bauer-Brandl, Thermodynamics of solutions III: Comparison of the solvation of (+)-naproxen with other NSAIDs, Eur. J. Pharm. Biopharm., 57, 411-420 (2004).

E.A. Cantillo, D.R. Delgado, F. Martinez, Solution thermodynamics of indomethacin in ethanol+ propylene glycol mixtures, J. Mol. Liq., 181, 62-67 (2013).

D.R. Delgado, F. Martínez, Thermodynamic analysis of the solubility of propranolol-HCl in ethanol+ water mixtures, Lat. Am. J. Pharm., 30, 89-95 (2011).

D.R. Delgado, A.R. Holguin, F. Martinez, Solution thermodynamics of triclosan and triclocarban in some volatile organic solvents, Vitae, 19, 79-92 (2012).

K.C. Mercado, G.A. Rodríguez, D.R Delgado, F. Martínez, A. Romdhani, Solution thermodynamics of methocarbamol in some ethanol+ water mixtures. Quím. Nova, 35, 1967-1972 (2012).

L.S. Bigman, Y. Levy, Entropy-enthalpy compensation in conjugated proteins, Chem. Phys., 514, 95-105 (2018).

P. Bustamante, S. Romero, M.A. Peña, M. Escalera, A. Reillo, Nonlinear enthalpy-entropy compensation for the solubility of drugs in solvent mixtures: Paracetamol, acetanilide and nalidixic acid in dioxane-water, J. Pharm. Sci., 87, 1590-1596 (1998).

F. Martínez, M.Á. Peña, P. Bustamante, Thermodynamic analysis and enthalpy-entropy compensation for the solubility of indomethacin in aqueous and non-aqueous mixtures, Fluid Phase Equilib., 308, 98-106 (2011).

E. Tomlinson, Enthalpy-entropy compensation analysis of pharmaceutical, biochemical, and biological systems, Int. J. Pharm., 13, 115-144 (1983).

A.M. Romero-Nieto, N.E. Cerquera, F. Martínez, D.R. Delgado, Thermodynamic study of the solubility of ethylparaben in acetonitrile + water cosolvent mixtures at different temperatures, J. Mol. Liq., 287, 110894 (2019).

N. Ulrich, S. Endo, T.N. Brown, N. Watanabe, G. Bronner, M.H. Abraham, K.-U. Goss, UFZ-LSER database v 3.2.1 [Internet], Leipzig, Germany, Helmholtz Centre for Environmental Research-UFZ. 2017 [accessed on 09.04.2020], available from http://www.ufz.de/lserd

D. Yue, W.E. Acree Jr., M.H. Abraham, Applications of Abraham solvation parameter model: Estimation of the lethal median molar concentration of the antiepileptic drug levetiracetam towards aquatic organisms from measured solubility data, Phys. Chem. Liq., DOI: 10.1080/00319104.2019.1584801.

F. Martínez, A. Gómez, Thermodynamic study of the solubility of some sulfonamides in octanol, water, and the mutually saturated solvents, J. Solution Chem., 30, 909-923 (2001).

K.R. Hoover, W.E. Acree Jr, M.H. Abraham. Chemical toxicity correlations for several fish species based on the Abraham solvation parameter model, Chem. Res. Toxicol., 18, 1497-1505 (2005).

K.R. Hoover, K.B. Flanagan, W.E. Acree, Jr., M.H. Abraham, Chemical

toxicity correlations for several protozoas, bacteria, and water fleas based on the Abraham solvation parameter model, J. Environ. Eng. Sci., 6, 165-174 (2007).

Cómo citar

APA

Blanco-Márquez, J. H., Quigua-Medina, Y. A., García-Murillo, J. D., Castro-Camacho, J. K., Ortiz, C. P., Cerquera, N. E. y Delgado, D. R. (2020). Thermodynamic analysis and applications of the Abraham solvation parameter model in the study of the solubility of some sulfonamides. Revista Colombiana de Ciencias Químico-Farmacéuticas, 49(1). https://doi.org/10.15446/rcciquifa.v49n1.87038

ACM

[1]
Blanco-Márquez, J.H., Quigua-Medina, Y.A., García-Murillo, J.D., Castro-Camacho, J.K., Ortiz, C.P., Cerquera, N.E. y Delgado, D.R. 2020. Thermodynamic analysis and applications of the Abraham solvation parameter model in the study of the solubility of some sulfonamides. Revista Colombiana de Ciencias Químico-Farmacéuticas. 49, 1 (ene. 2020). DOI:https://doi.org/10.15446/rcciquifa.v49n1.87038.

ACS

(1)
Blanco-Márquez, J. H.; Quigua-Medina, Y. A.; García-Murillo, J. D.; Castro-Camacho, J. K.; Ortiz, C. P.; Cerquera, N. E.; Delgado, D. R. Thermodynamic analysis and applications of the Abraham solvation parameter model in the study of the solubility of some sulfonamides. Rev. Colomb. Cienc. Quím. Farm. 2020, 49.

ABNT

BLANCO-MÁRQUEZ, J. H.; QUIGUA-MEDINA, Y. A.; GARCÍA-MURILLO, J. D.; CASTRO-CAMACHO, J. K.; ORTIZ, C. P.; CERQUERA, N. E.; DELGADO, D. R. Thermodynamic analysis and applications of the Abraham solvation parameter model in the study of the solubility of some sulfonamides. Revista Colombiana de Ciencias Químico-Farmacéuticas, [S. l.], v. 49, n. 1, 2020. DOI: 10.15446/rcciquifa.v49n1.87038. Disponível em: https://revistas.unal.edu.co/index.php/rccquifa/article/view/87038. Acesso em: 23 abr. 2024.

Chicago

Blanco-Márquez, Joaquín H., Yina Andrea Quigua-Medina, José Darwin García-Murillo, Jennifer Katiusca Castro-Camacho, Claudia Patricia Ortiz, Nestor E. Cerquera, y Daniel Ricardo Delgado. 2020. «Thermodynamic analysis and applications of the Abraham solvation parameter model in the study of the solubility of some sulfonamides». Revista Colombiana De Ciencias Químico-Farmacéuticas 49 (1). https://doi.org/10.15446/rcciquifa.v49n1.87038.

Harvard

Blanco-Márquez, J. H., Quigua-Medina, Y. A., García-Murillo, J. D., Castro-Camacho, J. K., Ortiz, C. P., Cerquera, N. E. y Delgado, D. R. (2020) «Thermodynamic analysis and applications of the Abraham solvation parameter model in the study of the solubility of some sulfonamides», Revista Colombiana de Ciencias Químico-Farmacéuticas, 49(1). doi: 10.15446/rcciquifa.v49n1.87038.

IEEE

[1]
J. H. Blanco-Márquez, «Thermodynamic analysis and applications of the Abraham solvation parameter model in the study of the solubility of some sulfonamides», Rev. Colomb. Cienc. Quím. Farm., vol. 49, n.º 1, ene. 2020.

MLA

Blanco-Márquez, J. H., Y. A. Quigua-Medina, J. D. García-Murillo, J. K. Castro-Camacho, C. P. Ortiz, N. E. Cerquera, y D. R. Delgado. «Thermodynamic analysis and applications of the Abraham solvation parameter model in the study of the solubility of some sulfonamides». Revista Colombiana de Ciencias Químico-Farmacéuticas, vol. 49, n.º 1, enero de 2020, doi:10.15446/rcciquifa.v49n1.87038.

Turabian

Blanco-Márquez, Joaquín H., Yina Andrea Quigua-Medina, José Darwin García-Murillo, Jennifer Katiusca Castro-Camacho, Claudia Patricia Ortiz, Nestor E. Cerquera, y Daniel Ricardo Delgado. «Thermodynamic analysis and applications of the Abraham solvation parameter model in the study of the solubility of some sulfonamides». Revista Colombiana de Ciencias Químico-Farmacéuticas 49, no. 1 (enero 1, 2020). Accedido abril 23, 2024. https://revistas.unal.edu.co/index.php/rccquifa/article/view/87038.

Vancouver

1.
Blanco-Márquez JH, Quigua-Medina YA, García-Murillo JD, Castro-Camacho JK, Ortiz CP, Cerquera NE, Delgado DR. Thermodynamic analysis and applications of the Abraham solvation parameter model in the study of the solubility of some sulfonamides. Rev. Colomb. Cienc. Quím. Farm. [Internet]. 1 de enero de 2020 [citado 23 de abril de 2024];49(1). Disponible en: https://revistas.unal.edu.co/index.php/rccquifa/article/view/87038

Descargar cita

CrossRef Cited-by

CrossRef citations6

1. Dafne A. Rivas-Ozuna, Claudia Patricia Ortiz, Daniel Ricardo Delgado, Fleming Martínez. (2024). Solubility and Preferential Solvation of Pyrazinamide in Some Aqueous-Cosolvent Mixtures at 298.15 K. International Journal of Thermophysics, 45(3) https://doi.org/10.1007/s10765-023-03318-8.

2. Claudia Patricia Ortíz, Rossember E. Cardenas-Torres, Diego Ivan Caviedes-Rubio, Sebastian De Jesus Polania-Orozco, Daniel Ricardo Delgado. (2022). Thermodynamic analysis and preferential solvation of sulfanilamide in different cosolvent mixtures. Physics and Chemistry of Liquids, 60(1), p.9. https://doi.org/10.1080/00319104.2021.1888382.

3. Elaheh Rahimpour, William E. Acree, Abolghasem Jouyban. (2021). Prediction of sulfonamides’ solubilities in the mixed solvents using solvation parameters. Journal of Molecular Liquids, 339, p.116269. https://doi.org/10.1016/j.molliq.2021.116269.

4. Ana María Cruz-González, Martha Sofía Vargas-Santana, Sebastian de Jesus Polania-Orozco, Claudia Patricia Ortiz, Nestor Enrique Cerquera, Fleming Martínez, Daniel Ricardo Delgado, Abolghasem Jouyban, William E. Acree. (2021). Thermodynamic analysis of the solubility of triclocarban in ethylene glycol + water mixtures. Journal of Molecular Liquids, 325, p.115222. https://doi.org/10.1016/j.molliq.2020.115222.

5. Piotr Cysewski, Maciej Przybyłek, Rafal Rozalski. (2021). Experimental and Theoretical Screening for Green Solvents Improving Sulfamethizole Solubility. Materials, 14(20), p.5915. https://doi.org/10.3390/ma14205915.

6. Abdelkarim Aydi, Claudia Patricia Ortiz, Diego Ivan Caviedes-Rubio, Cherifa Ayadi, Souhaira Hbaieb, Daniel Ricardo Delgado. (2021). Solution thermodynamics and preferential solvation of sulfamethazine in ethylene glycol + water mixtures. Journal of the Taiwan Institute of Chemical Engineers, 118, p.68. https://doi.org/10.1016/j.jtice.2020.12.031.

Dimensions

PlumX

Visitas a la página del resumen del artículo

524

Descargas

Los datos de descargas todavía no están disponibles.