Publicado
Ultrasonic investigation of lacosamide in various alcohols at 298.15 K
Investigación ultrasónica de lacosamida en varios alcoholes a 298,15 K
DOI:
https://doi.org/10.15446/rcciquifa.v49n3.91340Palabras clave:
Lacosamide, ultrasonic velocity, alcohols, acoustical parameters (en)Lacosamida, velocidad ultrasónica, alcoholes, parámetros acústicos (es)
Descargas
Ultrasonic velocity, density and viscosity of Lacosamide were measured in various alcohols at 298.15 K. From these measured experimental data, various acoustical parameters such as Specific acoustical impedance (Z), Adiabatic compressibility (кs), Intermolecular free path length (Lf), Rao’s molar sound function (Rm), Molar compressibility (W), van der Waals constant (b), Solvation number (Sn), Thermal conductivity (Kbm), Relaxation strength (r) have been calculated for understanding the molecular interactions occurring in the solution.
Se midieron la velocidad ultrasónica, la densidad y la viscosidad de soluciones de lacosamida en varios alcoholes a 298,15 K. A partir de estos datos experimentales, se calcularon varios parámetros acústicos para comprender las interacciones moleculares que ocurren en la solución, tales como la impedancia acústica específica (Z), la compresibilidad adiabática (кs), la longitud del camino libre intermolecular (Lf), la función molar de sonido de Rao (Rm), la compresibilidad molar (W), la constante de van der Waals (b), el número de solvatación (Sn), la conductividad térmica (Kbm), y la fuerza de relajación (r).
Referencias
J. Lynn, R. Zwemer, A. Chick, A. Miller, A new method for the generation and use of focused ultrasound in experimental biology, J. Gen. Physiol., 26, 179-193 (1942).
P. Wells, Ultrasonics in medicine and biology, J. Phys. Med. Biol., 22, 629-669 (1977).
F. Fry, Ultrasound: its applications in medicine and biology, Elsevier, Amsterdam, 2013.
S. Nicholls, I. Sipahi, P. Schoenhagen, T. Crowe, T. Murat, S. Nissen, Biomarkers: Application of intravascular ultrasound in anti-atherosclerotic drug development, Nature Rev. Drug Discov., 5, 485-492 (2006).
J. Paulusse, R. Sijbesma, Ultrasound in polymer chemistry: revival of an established technique, J. Polym. Sci. A: Poly. Chem., 44, 5445-5453 (2006).
J. Kost, K. Leong, R. Langer, Ultrasound-enhanced polymer degradation and release of incorporated substances, Proc. Nat. Acad. Sci., 86, 7663-7666 (1989).
B. Han, X. Guan, J. Ou, Application of ultrasound for preparation of carbon fiber cement-based composites, Mater. Sci. Tech., 17, 368-372 (2009).
S. Riffat, M. Xiaoli, Thermoelectrics: a review of present and potential applications, Appl. Thermal Eng., 23, 913-935 (2003).
T.J. Mason, Sonochemistry: The uses of ultrasound in chemistry, Royal Society of Chemistry, London, 1990.
W. Lee, Y. Roh, Ultrasonic transducers for medical diagnostic imaging, Biomed. Eng. Lett., 7, 91-97 (2017).
K. Suslick, G. Price, Applications of ultrasound to materials chemistry, Annu. Rev. Mater. Sci., 29, 295-326 (1999).
H. Yang, W. Ding, K. Chen, Y. Ding, Application of ultrasonic technique in agricultureactuality and prospect, J. Agric. Mech. Res., 1, 365-370 (2004).
D. Aguerrevere, M. Choudhury, A. Barreto, Portable 3D sound/sonar navigation system for blind individuals, Second LACCEI International Latin American and Caribbean Conference for Engineering and Technology (LACCETí2004), Challenges and Opportunities for Engineering Education, Research and Development, Miami, Florida, USA, 2-4 June 2004.
S. Najafi, G. Ebrahimi, S. Behjati, Nondestructive evaluation of wood plastic composites using ultrasonic technique, Dalam Proceeding Ceska Spolecnost Pro Nendestruktivni Zkouseni Material, 38, 87-94 (2008).
C. Leonelli, T. Mason, Microwave and ultrasonic processing: Now a realistic option for industry, Chem. Eng. Process., Process Intensif., 49, 885-900 (2010).
X. Zhang, Y. Guimond, Y. Bellec, Production of complex chalcogenide glass optics by molding for thermal imaging, J. Non-Cryst. Sol., 326, 519-523 (2003).
M. Yuehong, L. Jiangyun, L. Yingjie, Technology and application of water treatment by ultrasonic wave, Ind. Water. Treat. -Tianjin, 26, 10-17 (2006).
T. Mahmood, A. Elliott, A review of secondary sludge reduction technologies for the pulp and paper industry, Water Res., 40, 2093-2112 (2006).
L. Ying, Z. Dezhi, Y. Qiuju, Research, development and application of ultrasound wave in petrochemical industry, Petrochem. Tech., 2, 17-23 (2005).
F.J. Gilbert, R.S. Campbell, A.P. Bayliss, The role of ultrasound in the detection of non-radiopaque foreign bodies, Clin. Radiol., 41, 109-112 (1990).
T. Mason, L. Paniwnyk, J. Lorimer, The uses of ultrasound in food technology, Ultrason. Sonochem., 3, S253-S260 (1996).
S. Muthukumaran, S. Kentish, G. Stevens, A. Muthupandian, R. Mawson, The application of ultrasound to dairy
ultrafiltration: the influence of operating conditions, J. Food Eng., 81, 364-373 (2007).
A. Baltazar, L. Wang, B. Xie, S. Rokhlin, Inverse ultrasonic determination of imperfect interfaces and bulk properties of a layer between two solids, J. Acoust. Soc. Amer., 114, 1424-1434 (2003).
A.K. Dash, R. Paikaray, Molecular interaction studies in ternary liquid mixture of dimethylacetamide using ultrasonic technique at 308 K, Phys. Chem. Liq., 53, 230-241 (2014).
A. Ali, S. Hyder, A.K. Nain, Studies on molecular interactions in binary liquid mixtures by viscosity and ultrasonic velocity measurements at 303.15 K, J. Mol. Liq., 79, 89-99 (1999).
V. Gupta, A.K. Sharma, M. Sharma, Ultrasonic investigation of molecular interaction in aqueous glycerol and aqueous ethylene glycol solution, J. Chem. Pharm. Res., 6, 714-720 (2014).
V. Kannappan, S.C. Vinayagam, Ultrasonic investigation of ion-solvent interactions in aqueous and non-aqueous solutions of transition and inner transition metal ions, Indian J. Pure Appl. Phys., 44, 670-676 (2006).
R. Bodmeier, J. McGinity, Solvent selection in the preparation of poly (DL-lactide) microspheres prepared by the solvent evaporation method, Int. J. Pharm., 43, 179-186 (1988).
J. Chung, M. Yokoyama, M. Yamato, T. Aoyagi, Y. Sakurai, T. Okano, Thermo-responsive drug delivery from polymeric micelles constructed using block copolymers of poly (N-isopropylacrylamide) and poly (butylmethacrylate), J. Control. Rel., 62, 115-127 (1999).
Y. Wang, K. Park, C. Salomé, S. Wilson, J. Stables, R. Liu, R. Khanna, H. Kohn, Development and characterization of novel derivatives of the antiepileptic drug lacosamide that exhibit far greater enhancement in slow inactivation of voltage-gated sodium channels, ACS Chem. Neurosci., 2, 90-106 (2010).
A. Rapacz, J. Obniska, P. Koczurkiewicz, K. Wójcik-Pszczoła, A. Siwek, A. Gryboś, S. Rybka, A. Karcz, E. Pękala, B. Filipek, Antiallodynic and antihyperalgesic activity of new 3,3-diphenyl-propionamides with anticonvulsant activity in models of pain in mice, Eur. J. Pharmacol., 821, 39-48 (2018).
D. Holtkamp, T. Opitz, I. Niespodziany, C. Wolff, H. Beck, Activity of the anticonvulsant lacosamide in experimental and human epilepsy via selective effects on slow Na+ channel inactivation, Epilepsia, 58, 27-41 (2017).
B. Beyreuther, J. Freitag, C. Heers, N. Krebsfänger, U. Scharfenecker, T. Stöhr, Lacosamide: a review of preclinical properties, CNS Drug Rev., 13, 21-42 (2007).
A. LeTiran, J.P. Stables, H. Kohn, Functionalized amino acid anticonvulsants: synthesis and pharmacological evaluation of conformationally restricted analogues, Biorg. Med. Chem., 9, 2693-2708 (2001).
R. Naik, S. Bawankar, S. Kukade, Acoustical studies of molecular interaction in the solution of propranolol hydrochloride drug at different temperatures and concentrations, Russ. J. Phys. Chem., 89, 2149-2154 (2015).
R. Naik, S. Bawankar, V. Ghodki, Acoustical studies of molecular interactions in the solution of anti-malarial drug, J. Polym. Biopolym. Phys. Chem., 3, 1-5 (2015).
S. Baluja, A. Solanki, N. Kachhadia, An ultrasonic study of some drugs in solutions, Russ. J. Phys. Chem., 81, 742-746 (2007).
H.C. Swaisland, M. Ranson, R.P. Smith, J. Leadbetter, A. Laight, D. McKillop, M.J. Wild, Pharmacokinetic drug interactions of gefitinib with rifampicin, itraconazole and metoprolol, Clin. Pharmacokinet., 44, 1067-1081 (2005).
B. González, A. Domínguez, J. Tojo, Dynamic viscosities, densities, and speed of sound and derived properties of the binary systems acetic acid with water, methanol, ethanol, ethyl acetate and methyl acetate at T=(293.15, 298.15, and 303.15) K at atmospheric pressure, J. Chem. Eng. Data, 49, 1590-1596 (2004).
G.W. Willard, Temperature coefficient of ultrasonic velocity in solutions, J. Acoust. Soc. Amer., 19, 235-241 (1947).
J. Canosa, A. Rodriguez, J. Tojo, Dynamic viscosities of (methyl acetate or methanol) with (ethanol, 1-propanol, 2-propanol, 1-butanol, and 2-butanol) at 298.15 K, J. Chem. Eng. Data, 43, 417-421 (1998).
U.B. Kadam, A.P. Hiray, A.B. Sawant, M. Hasan, Densities, viscosities, and ultrasonic velocity studies of binary mixtures of trichloromethane with methanol, ethanol, propan-1-ol, and butan-1-ol at T=(298.15 and 308.15) K, J. Chem. Thermodyn., 38, 1675-1683 (2006).
S.S. Bittencourt, H.E. Hoga, R.B. Torres, J.V.H. d’Angelo, Thermodynamic and spectroscopic properties of binary mixtures of n-butylammonium butanoate ionic liquid with alcohols at T=(293.15–313.15) K, J. Chem. Thermodyn., 105, 238-252 (2017).
K. Anil-Kumar, C.H. Srinivasu, K.T.S.S. Raju, Theoretical evaluation of ultrasonic velocity in 1,4-dioxane with 1-butanol at temperatures range 298.15-318.15 K, Int. J. Pharm. Chem. Sci., 2, 1993-1996 (2013).
M. Hasan, A.P. Hiray, U.B. Kadam, D.F. Shirude, K.J. Kurhe, A.B. Sawant, Densities, viscosities, speeds of sound, FT-IR and 1 H-NMR studies of binary mixtures of n-butyl acetate with ethanol, propan-1-ol, butan-1-ol and pentan-1-ol at 298.15, 303.15, 308.15 and 313.15 K, J. Solution Chem., 40, 415-429 (2011).
H. Kumar, S. Sharma, Acoustical studies of binary liquid mixtures of cyclopentane with 1-alkanol at different temperatures and different approaches for ideal mixing laws, J. Solution Chem., 39, 967-986 (2010).
X. Wang, X. Wang, B. Song, Densities and viscosities of binary mixtures of 2, 2, 4-trimethylpentane + 1-propanol, + 1-pentanol, + 1-hexanol, and + 1-heptanol from (298.15 to 323.15) K, J. Chem. Eng. Data, 60, 1664-1673 (2015).
V. Gibbs, D. Cole, A. Sassano, Ultrasound Physics and Technology: How, Why and When, Elsevier, Amsterdam, 2009, p. 21-23.
M. Roy, V. Dakua, B. Sinha, Partial molar volumes, viscosity B-coefficients, and adiabatic compressibilities of sodium molybdate in aqueous 1, 3-dioxolane mixtures from 303.15 to 323.15 K, Int. J. Thermophys., 28, 1275-1284 (2007).
S. Oswal, P. Oswal, R. Phalak, Speed of sound, isentropic compressibilities, and excess molar volumes of binary mixtures containing p-dioxane, J. Solution Chem., 27, 507-520 (1998).
M. Rashin, J. Hemalatha, A novel ultrasonic approach to determine thermal conductivity in CuO–ethylene glycol nanofluids, J. Mol. Liq., 197, 257-262 (2014).
S. Kant, D. Singh, S. Kumar, Molar volume and ultrasonic studies of some alkaline earth metal chlorides in water + NaCl + fructose system, Arch. Appl. Sci. Res., 3, 70-84 (2011).
G. Jones, M. Dole, The viscosity of aqueous solutions of strong electrolytes with special reference to barium chloride, J. Am. Chem. Soc., 51, 2950-2964 (1929).
H. Shekaari, M. Taghi, N. Seyyedeh, Density, viscosity, speed of sound, and refractive index of a ternary solution of aspirin, 1-butyl-3-methylimidazolium bromide, and acetonitrile at different temperatures T=(288.15 to 318.15K), J. Chem. Eng. Data, 60, 1572-1583 (2015).
Y. Litaiem, M. Dhahbi, Physicochemical properties of hydrophobic ionic liquid (Aliquat 336) in polar protic solvent (Formamide) at different temperatures, J. Dispers. Sci. Tech., 36, 641-651 (2013).
Z. Hai-Lang, H. Shi-Jun, Viscosity and density of water + sodium chloride + potassium chloride solutions at 298.15 K, J. Chem. Eng. Data, 41, 516-520 (1996).
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
CrossRef Cited-by
1. R.G. Bindu, Iype Lilly. (2022). Molecular interaction studies in binary mixtures of bromobenzene with 1-alkanols using thermo – Optical analysis on its specific optic impedance. Materials Today: Proceedings, 62, p.5125. https://doi.org/10.1016/j.matpr.2022.02.464.
Dimensions
PlumX
Visitas a la página del resumen del artículo
Descargas
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
El Departamento de Farmacia de la Facultad de Ciencias de la Universidad Nacional de Colombia autoriza la fotocopia de artículos y textos para fines de uso académico o interno de las instituciones citando la fuente. Las ideas emitidas por los autores son responsabilidad expresa de estos y no de la revista.
Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons de Atribución 4.0 aprobada en Colombia. Consulte la normativa en: http://co.creativecommons.org/?page_id=13