Estudio computacional de la reactividad y propiedades fisicoquímicas del eugenol, 2-metoxi-4-oxiranilmetilfenol y quinona metilada
Computational study of the reactivity and physicochemical properties of eugenol, 2-methoxy-4-oxiranylmethylphenol and methylated quinone
DOI:
https://doi.org/10.15446/rcciquifa.v48n2.82695Palabras clave:
Eugenol, potencial farmacológico, propiedades fisicoquímicas, reactividad (es)Eugenol, pharmacological potential, physicochemical properties, reactivity (en)
Descargas
Referencias
J.P. Noel, M.B. Austin, E.K. Bomati, Structure-function relationships in plant phenylpropanoid biosynthesis, Curr. Opin. Plant. Biol., 8, 249-253 (2005).
U.K. Sharma, A.K. Sharma, A.K. Pandey, Medicinal attributes of major phenylpropanoids present in cinnamon, BMC Complement. Altern. Med., 16, 156 (2016).
A.K. Pandey, A.K. Mishra, A. Mishra, Antifungal and antioxidative potential of oil and extracts derived from leaves of Indian spice plant Cinnamomum tamala, Cell Mol. Biol., 58, 142-147 (2012).
M.R. Charan-Raja, V. Srinivasan, S. Selvaraj, S.K. Mahapatra, Versatile and synergistc potential of eugenol: A Review, Pharm. Anal. Acta, 6, 367-372 (2015).
X. Kong, X. Liu, J. Li, Y. Yang, Advances in pharmacological research of eugenol, Curr. Opin. Complement. Alternat. Med., 1, 8-11 (2014).
A. Cherkasov, E.N. Muratov, D. Fourches et al., QSAR Modeling: Where have you been? Where are you going to? J. Med. Chem., 57, 4977-5010 (2014).
A. Absalan, S.A. Mesbah-Namin, T. Tiraihi, T. Taheri, The effects of cinnamaldehyde and eugenol on human adipose-derived mesenchymal stem cells viability, growth and differentiation: a cheminformatics and in vitro study, Avicenna J. Phytomed., 6, 643-657 (2016).
J.L. Bolton, Quinone methide bioactivation Pathway: Contribution to toxicity and/or cytoprotection? Curr. Org. Chem., 18, 61-69 (2014).
G. Luo, T.M. Guenthner, Investigation of the role of the 2,3-epoxidation pathway in the bioactivation and genotoxicity of dietary allylbenzene analogs, Toxicology, 160, 47-58 (2001).
C. Southan, A. Stracz, Extracting and connecting chemical structures from text sources using chemicalize.org, J. Cheminform., 5, 20 (2013).
D. Fourches, E. Muratov, A. Tropsha, Trust, but verify: On the importance of chemical structure curation in cheminformatics and QSAR modeling research, J. Chem. Inf. Model., 50, 1189-1204 (2010).
D. Banfi, L. Patiny, Resurrecting and Processing NMR Spectra On-line, Chimia, 62, 280-281(2008).
L.N. Fierro, C.A. Faúndez, J.O. Valderrama, Método de contribución de grupos: una herramienta fundamental en cursos avanzados de termodinámica y física de fluidos para la estimación de propiedades de sustancias, Formación Universitaria, 9, 99-108 (2016).
L. Constantinou, R. Gani, New group contribution method for estimating properties of pure compounds, AIChE J., 40, 1697-1710 (1994).
J.L. Kingsley, G.L. Wilson, E.M. Essex, A.L. Markus, Combining structure and ligand based approaches to improve site of metabolism prediction in CYP2C9 substrates, Pharm. Res., 32, 986-1001 (2015).
S. Sivakumar, P. Anitha, B. Ramesh, G. Suresh, Analysis of EAWAG-BBD pathway prediction system for the identification of malathion degrading microbes, Bioinformation, 13, 73-77 (2017).
R. Chang, Fisicoquímica, México, Mc Graw Hill, 3a ed., 2008.
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2019 Revista Colombiana de Ciencias Químico-Farmacéuticas
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
El Departamento de Farmacia de la Facultad de Ciencias de la Universidad Nacional de Colombia autoriza la fotocopia de artículos y textos para fines de uso académico o interno de las instituciones citando la fuente. Las ideas emitidas por los autores son responsabilidad expresa de estos y no de la revista.
Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons de Atribución 4.0 aprobada en Colombia. Consulte la normativa en: http://co.creativecommons.org/?page_id=13