Publicado
Bioassay-guided isolation of α-glucosidase inhibitors from Byrsonima garcibarrigae Cuatrec.
Aislamiento guiado por bioensayo de inhibidores de α-glucosidasa de Byrsonima garcibarrigae Cuatrec
Isolamento guiado por bioensaio de inibidores de α-glicosidase de Byrsonima garcibarrigae Cuatrec
DOI:
https://doi.org/10.15446/rcciquifa.v51n3.96982Palabras clave:
antidiabetic, oxidative stress, Byrsonima garcibarrigae (en)antidiabético, estrés oxidativo, Byrsonima garcibarrigae (es)
Descargas
Introduction:Byrsonima garcibarrigae is an endemic tree of Amazonas state, Brazil, with pharmacological and chemical knowledge poorly understood. Aim: To investigate the antidiabetic potential of the B. garcibarrigae stem bark. Methods: The stem bark was sequentially extracted by maceration with hexane (EHBG), ethyl acetate (EABG), and methanol (EMBG). The antioxidant capacity, α-glucosidase inhibitory potentials and anti-glycation capacities were evaluated. A bio-guided fractionation gave compounds that were characterized by MS and NMR. Results: 8 compounds were identified by HPLC-MS. EMBG showed the highest α-glucosidase inhibitory activity (1.09±0.32 μg/mL), antioxidant activity (9.2±0.23 μg/mL) and phenolic compounds content (61.43±0.50%), thus was fractionated producing hexane (FHX), chloroform (FCL) and hydromethanolic (FHM) fractions. After additional anti-α-glucosidase assays, FHM (1.02±0.49 μg/mL) was fractionated giving quercitrin and epicatechin. The anti-glycation assay showed that EMBG, FHM and quercitrin presented higher activities in comparison to the positive control, aminoguanidine. Conclusions:B. garcibarrigae displayed antidiabetic potential since inhibited α-glucosidase, as well as presented expressive antioxidant and anti-glycation activities were recorded.
Introducción: Byrsonima garcibarrigae es un árbol endémico del estado de Amazonas, Brasil, con poco conocimiento farmacológico y químico. Objetivo: investigar el potencial antidiabético de la corteza del tallo de B. garcibarrigae. Métodos: la corteza del tallo se extrajo secuencialmente mediante maceración con hexano (EHBG), acetato de etilo (EABG) y metanol (EMBG). Se evaluó la capacidad antioxidante, los potenciales inhibidores de la α-glucosidasa y las capacidades anti-glicación. Un fraccionamiento bioguiado dio compuestos que se caracterizaron por MS y NMR. Resultados: se identificaron 8 compuestos mediante HPLC-MS. EMBG mostró la mayor actividad inhibidora de α-glucosidasa (1,09 ± 0,32 μg/mL), actividad antioxidante (9,2±0.23 μg/mL) y contenido de compuestos fenólicos (61,43 ± 0.50%), por lo que se fraccionó produciendo hexano (FHX), cloroformo (FCL) e hidrometanólicas (FHM). Después de ensayos adicionales de anti-α-glucosidasa, se fraccionó FHM (1,02 ± 0,49 μg/mL) dando quercitrina y epicatequina. El ensayo antiglicación mostró que EMBG, FHM y quercitrina presentaron actividades más altas en comparación con el control positivo, aminoguanidina. Conclusiones: B. garcibarrigae mostró potencial antidiabético ya que se registró una inhibición de la α-glucosidasa, así como también presentó actividades expresivas antioxidantes y antiglicación.
Referencias
M.P. Czech, Insulin action and resistance in obesity and type 2 diabetes, Nat. Med., 23, 804-814 (2017).
M. Saraswat, P.Y. Reddy, P. Muthenna, G.B. Reddy, Prevention of non-enzymic glycation of proteins by dietary agents: prospects for alleviating diabetic complications, Br. J. Nutr., 101, 1714 (2009).
K.A. Adeshara, A.G. Diwan, T.R. Jagtap, K. Advani, A. Siddiqui, R.S. Tupe, Relationship between plasma glycation with membrane modification, oxidative stress and expression of glucose trasporter-1 in type 2 diabetes patients with vascular complications, J. Diabetes Complications, 31, 439-448 (2017).
N. Thomford, D. Senthebane, A. Rowe, D. Munro, P. Seele, A. Maroyi, K. Dzobo, Natural products for drug discovery in the 21st century: Innovations for novel drug discovery, Int. J. Mol. Sci., 19, 1578 (2018).
C.M. Dobson, Chemical space and biology, Nature, 432, 824-828 (2004).
J. Hong, Role of natural product diversity in chemical biology, Curr. Opin. Chem. Biol., 15, 350-354 (2011).
C. Lankatillake, T. Huynh, D.A. Dias, Understanding glycaemic control and current approaches for screening antidiabetic natural products from evidencebased medicinal plants, Plant Methods, 15, 105 (2019).
D. Giles-Rivas, S. Estrada-Soto, A.B. Aguilar-Guadarrama, J. Almanza-Pérez, S. García-Jiménez, B. Colín-Lozano, G. Navarrete-Vázquez, R. Villalobos-Molina, Antidiabetic effect of Cordia morelosana, chemical and pharmacological studies, J. Ethnopharmacol., 251, 112543 (2020).
F. Guilhon-Simplicio, M.d.M. Pereira, Aspectos químicos e farmacológicos de Byrsonima (Malpighiaceae), Quim. Nova, 34, 1032-1041 (2011).
M.C.d.S. Verdam, F. Guilhon-Simplicio, K.C. de Andrade, K.L.M. Fernandes, T.M. Machado, F.M.A. da Silva, M.P. de Souza, H.H.F. Koolen, C.S. Paula, B.C.K. Hirota, V.B. de Oliveira, C.M.S. Miyazaki, M. Kalegari, M.D. Miguel, P.M. Stuelp-Campelo, O.G. Miguel, et al., Analgesic, anti-inflammatory, and antioxidant activities of Byrsonima duckeana W. R. Anderson (Malpighiaceae), Sci. World J., 2017, 8367042 (2017).
F. Guilhon-Simplicio, T.M. Machado, L.F. do Nascimento, R.D.S. Souza, H.H.F. Koolen, F.M.A. da Silva, L.D.R. Acho, A.R.S. dos Santos, P. Cos, M.d.M. Pereira, E.S. Lima, Chemical composition and antioxidant, antinociceptive, and anti-inflammatory activities of four Amazonian Byrsonima species, Phytother. Res., 31, 1686-1693 (2017).
V.L. Singleton, J.A. Rossi, Colorimetry of total phenolics with phosphomolybdic- phosphotungstic acid reagents, Am. J. Enol. Vitic., 16, 144-158 (1965).
P. Molyneux, The use of the stable free radical diphenylpicryl- hydrazyl (DPPH) for estimating antioxidant activity, Songklanakarin J. Sci. Technol., 26, 211-219 (2004).
A. Andrade-Cetto, J. Becerra-Jiménez, R. Cárdenas-Vázquez, Alfa-glucosidaseinhibiting activity of some Mexican plants used in the treatment of type 2 diabetes, J. Ethnopharmacol., 116, 27-32 (2008).
R.M.P. Gutierrez, L.B.F. Cotera, A.M.N. Gonzalez, Evaluation of the antioxidant and anti-glication effects of the hexane extract from Piper auritum leaves in vitro and beneficial activity on oxidative stress and advanced glycation endproduct- mediated renal injury in streptozotocin-treated diabetic rats, Molecules, 17, 11897-11919 (2012).
O. Trott, A.J. Olson, AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J. Comput. Chem., 31, 455-461 (2010).
B. Zhang, X. Li, W. Sun, Y. Xing, Z. Xiu, C. Zhuang, Y. Dong, Dietary flavonoids and acarbose synergistically inhibit α-glucosidase and lower postprandial blood glucose, J. Agric. Food Chem., 65, 8319-8330 (2017).
U. Asmat, K. Abad, K. Ismail, Diabetes mellitus and oxidative stress-A concise review, Saudi Pharm. J., 24, 547-553 (2016).
S. Felhi, A. Daoud, H. Hajlaoui, K. Mnafgui, N. Gharsallah, A. Kadri, Solvent extraction effects on phytochemical constituents profiles, antioxidant and antimicrobial activities and functional group analysis of Ecballium elaterium seeds and peels fruits, Food Sci. Technol., 37, 483-492 (2017).
A. Thouri, H. Chahdoura, A. El Arem, A.O. Hichri, R.B. Hassin, L. Achour, Effect of solvents extraction on phytochemical components and biological activities of Tunisian date seeds (var. Korkobbi and Arechti), BMC Complement. Altern. Med., 17, 248 (2017).
F. Carmona, A.M.S. Pereira, Herbal medicines: Old and new concepts, truths and misunderstandings, Brazilian J. Pharmacogn., 23, 379-385 (2013).
L.K. Caesar, N.B. Cech, Synergy and antagonism in natural product extracts: When 1 + 1 does not equal 2, Nat. Prod. Rep., 36, 869-888 (2019).
F.A. Ashu, J. Na-Iya, B.E.N. Wamba, J. Kamga, P. Nayim, B. Ngameni, V.P. Beng, B.T. Ngadjui, V. Kuete, Antistaphylococcal activity of extracts, fractions and compounds of Acacia polyacantha wild (Fabaceae), Evidence-Based Complement. Altern. Med., 2020, 2654247 (2020).
J.B.D.F. Tostes, A.J.R. da Silva, R.M. Kuster, Isolation and characterization of polyphenols from Euphorbia heterophylla L. (Euphorbiaceae) leaves, Rev. Fitos, Rio de Janeiro, 13, 49-60 (2019).
M.C.d.S. Verdam, F. Guilhon-Simplicio, K.C. de Andrade, K.L.M. Fernandes, T.M. Machado, F.M.A. da Silva, M.P. de Souza, H.H.F. Koolen, C.S. Paula, B.C.K. Hirota, V.B. de Oliveira, C.M.S. Miyazaki, M. Kalegari, M.D. Miguel, P.M. Stuelp-Campelo, O.G. Miguel, Analgesic, Anti-inflammatory, and antioxidant activities of Byrsonima duckeana W. R. Anderson (Malpighiaceae), Sci. World J., 2017, 8367042 (2017).
P.A. Rodrigues, S.M. de Morais, L.A. Aguiar, N.S. Vila-Nova, S.R. Benjamin, Effect of Byrsonima sericea DC. leaf extracts on mice gastrointestinal tract, Toxicol. Reports, 6, 1182-1187 (2019).
K. Nowotny, T. Jung, A. Höhn, D. Weber, T. Grune, Advanced glycation end products and oxidative stress in type 2 Diabetes Mellitus, Biomolecules, 5, 194- 222 (2015).
R. Testa, A.R. Bonfigli, F. Prattichizzo, L.L. Sala, V. de Nigris, A. Ceriello, The “Metabolic Memory” theory and the early treatment of hyperglycemia in prevention of diabetic complications, Nutrients, 9, 437 (2017).
J. Uribarri, M.D. del Castillo, M.P. de la Maza, R. Filip, A. Gugliucci, C. Luevano-Contreras, M.H. Macías-Cervantes, D.H.M. Bastos, A. Medrano, T. Menini, M. Portero-Otin, A. Rojas, G.R. Sampaio, K. Wrobel, K. Wrobel, M.E. Garay-Sevilla, Dietary advanced glycation end products and their role in health and disease, Adv. Nutr., 6, 461-473 (2015).
S. Meng, J. Cao, Q. Feng, J. Peng, Y. Hu, Roles of chlorogenic acid on regulating glucose and lipids metabolism: A review, Evidence-Based Complement. Altern. Med., 2013, 801457 (2013).
J. Santana-Gálvez, L. Cisneros-Zevallos, D.A. Jacobo-Velázquez, Chlorogenic acid: Recent advances on its dual role as a food additive and a nutraceutical against metabolic syndrome, Molecules, 22, 358 (2017).
Y. Yamashita, L. Wang, F. Nanba, C. Ito, T. Toda, H. Ashida, Procyanidin promotes translocation of glucose transporter 4 in muscle of mice through activation of insulin and AMPK signaling pathways, PLoS One, 11, e0161704 (2016).
D.K. Choudhary, N. Chaturvedi, A. Singh, A. Mishra, Characterization, inhibitory activity and mechanism of polyphenols from faba bean (gallic-acid and catechin) on α-glucosidase: insights from molecular docking and simulation study, Prep. Biochem. Biotechnol., 50, 123-132 (2020).
N. Pujirahayu, D.K. Bhattacharjya, T. Suzuki, T. Katayama, α-Glucosidase inhibitory activity of cycloartane-type triterpenes isolated from Indonesian stingless bee propolis and their structure–activity relationship, Pharmaceuticals (Basel), 12, 102 (2019).
S. Chen, H. Jiang, X. Wu, J. Fang, Therapeutic effects of quercetin on inflammation, obesity, and type 2 diabetes, Mediators Inflamm., 2016, 9340637 (2016).
G.J. Shi, Y. Li, Q.H. Cao, H.X. Wu, X.Y. Tang, X.H. Gao, J. Yu, Z. Chen , Y. Yang, In vitro and in vivo evidence that quercetin protects against diabetes and its complications: A systematic review of the literature, Biomed. Pharmacother., 109, 1085-1099 (2019).
S.B. Nimse, D. Pal, Free radicals, natural antioxidants, and their reaction mechanisms, RSC Adv., 5, 27986-28006 (2015).
E.B. Kurutas, The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state, Nutr. J., 15, 71 (2016).
B.F. García, A. Torres, F.A. Macías, Synergy and other interactions between polymethoxyflavones from citrus byproducts, Molecules, 20, 20079-20106 (2015).
L. Sanhueza, R. Melo, R. Montero, K. Maisey, L. Mendoza, M. Wilkens, Synergistic interactions between phenolic compounds identified in grape pomace extract with antibiotics of different classes against Staphylococcus aureus and Escherichia coli, PLoS One, 12, e0172273 (2017).
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
El Departamento de Farmacia de la Facultad de Ciencias de la Universidad Nacional de Colombia autoriza la fotocopia de artículos y textos para fines de uso académico o interno de las instituciones citando la fuente. Las ideas emitidas por los autores son responsabilidad expresa de estos y no de la revista.
Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons de Atribución 4.0 aprobada en Colombia. Consulte la normativa en: http://co.creativecommons.org/?page_id=13