Publicado
Thermoanaerobacter tengcongensis esterase resists denaturation by urea and sodium dodecyl sulfate
La esterasa de Thermoanaerobacter tengcongensis resiste la desnaturalización por la urea y el dodecilsulfato de sodio
A esterase de Thermoanaerobacter tengcongensis resiste à desnaturação pela uréia e dodecil sulfato de sódio
DOI:
https://doi.org/10.15446/rcciquifa.v52n3.112485Palavras-chave:
Thermoanaerobacter tengcongensis, esterase, thermophiles, protein denaturants, para-nitrophenyl dodecanoate (en)Thermoanaerobacter tengcongensis , esterasa , termófilos, desnaturalizantes de proteínas, para-nitrofenil dodecanoato (es)
Thermoanaerobacter tengcongensis, esterase, termófilos, desnaturantes de proteínas, para-nitrofenil dodecanoato (pt)
Downloads
Introduction: The broad applications of lipolytic enzymes in various industrial processes have led to increased interest in esterases with distinctive features. Thermophiles are promising source of esterases with inherent thermal and chemical stability. Thermoanaerobacter tengcongensis esterase (TTE) is one of such esterases with thermostable potential, however, its resistance to protein denaturants, detergents and molecular docking studies are yet to be fully characterised. Aim: Therefore, this study investigated the in vitro and in silico effects of urea and sodium dodecyl sulfate on TTE activity. Experimental: TTE activity was determined spectrophotometrically at 405 nm. TTE was active over a pH range of 3.0 to 12.0 and its activity was optimal at alkaline range of 9.0 and 12.0. Results: TTE was found to be most active at 60 °C with the highest thermal stability at the same temperature. Urea at 0.1 to 4.0 mM had a concentration dependent activating effect on TTE; SDS (0.5 to 4.0 mM) had similar effect on the enzyme. Urea at 0.5, 1.0 and 2.0 mM increased maximum reaction rate (Vmax), catalytic constant (Kcat) and Michaelis constant (Km) of TTE. All concentrations of SDS (0.5 to 2.0 mM) investigated increased Vmax and Kcat, while the Km value of TTE reduced in the presence of 1.0 and 2.0 mM SDS. Structural characterization of TTE substantiates the in vitro thermostability claim. The molecular docking analysis revealed that donepezil demonstrated optimal binding with TTE. Conclusion: the findings from this study showed that TTE strongly resists denaturation by optimal concentrations of urea and SDS.
Introducción: Las amplias aplicaciones de las enzimas lipolíticas en diversos procesos industriales han llevado a un mayor interés en esterasas con características distintivas. Los termófilos son una fuente prometedora de esterasas con estabilidad térmica y química inherente. La esterasa de Thermoanaerobacter tengcongensis (TTE) es una de esas esterasas con potencial termoestable; sin embargo, su resistencia a los desnaturalizantes de proteínas, los detergentes y los estudios de acoplamiento molecular aún no se han caracterizado por completo. Objetivo: Por lo tanto, este estudio investigó los efectos in vitro e in silico de la urea y el dodecilsulfato de sodio sobre la actividad del TTE. Parte experimental: la actividad TTE se determinó espectrofotométricamente a 405 nm. El TTE estuvo activo en un rango de pH de 3,0 a 12,0 y su actividad fue óptima en un rango alcalino de 9,0 y 12,0. Resultados: Se encontró que el TTE era más activo a 60 °C y tenía la mayor estabilidad térmica a la misma temperatura. La urea de 0,1 a 4,0 mM tuvo un efecto activador dependiente de la concentración sobre el ETT; SDS (0,5 a 4,0 mM) tuvo un efecto similar sobre la enzima. La urea en concentraciones de 0,5, 1,0 y 2,0 mM aumentó la velocidad de reacción máxima (Vmax), la constante catalítica (Kcat) y la constante de Michaelis (Km) de TTE. Todas las concentraciones de SDS (0,5 a 2,0 mM) investigadas aumentaron Vmax y Kcat, mientras que el valor de Km de TTE se redujo en presencia de SDS 1,0 y 2,0 mM. La caracterización estructural de TTE fundamenta la afirmación de termoestabilidad in vitro. El análisis de acoplamiento molecular reveló que donepezilo demostró una unión óptima con TTE. Conclusión: los hallazgos de este estudio mostraron que el TTE resiste fuertemente la desnaturalización por concentraciones óptimas de urea y SDS.
Introdução: As amplas aplicações de enzimas lipolíticas em diversos processos industriais têm levado ao aumento do interesse em esterases com características distintivas. Os termófilos são fontes promissoras de esterases com estabilidade térmica e química inerente. A esterase de Thermoanaerobacter tengcongensis (TTE) é uma dessas esterases com potencial termoestável, no entanto, sua resistência a desnaturantes de proteínas, detergentes e estudos de acoplamento molecular ainda não foram totalmente caracterizadas. Objetivo: Portanto, este estudo investigou os efeitos in vitro e in silico da uréia e dodecilsulfato de sódio na atividade do TTE. Parte experimental: A atividade do TTE foi determinada espectrofotometricamente a 405 nm. O TTE foi ativo em uma faixa de pH de 3,0 a 12,0 e sua atividade foi ótima na faixa alcalina de 9,0 e 12,0. Resultados: Descobriu-se que o TTE é mais ativo a 60 °C, com maior estabilidade térmica à mesma temperatura. A uréia em concentrações de 0,1 a 4,0 mM teve um efeito ativador dependente da concentração no ETT; SDS (0,5 a 4,0 mM) teve efeito semelhante na enzima. A uréia a 0,5, 1,0 e 2,0 mM aumentou a taxa máxima de reação (Vmax), a constante catalítica (Kcat) e a constante de Michaelis (Km) do TTE. Todas as concentrações de SDS (0,5 a 2,0 mM) investigadas aumentaram Vmax e Kcat, enquanto o valor de Km de TTE reduziu na presença de 1,0 e 2,0 mM de SDS. A caracterização estrutural do TTE fundamenta a alegação de termoestabilidade in vitro. A análise de acoplamento molecular revelou que o donepezil demonstrou ligação ideal ao TTE. Conclusão: os resultados deste estudo mostraram que o TTE resiste fortemente à desnaturação por concentrações ótimas de uréia e SDS.
Referências
C. W. Lee, S. Kwon, S. Park, B. Y. Kim, W. Yoo, B. H. Ryu, H. W. Kim, S. C. Shin, S. Kim, H. Park, T. D. Kim, J. H. Lee, Crystal structure and functional characterization of an esterase (EaEST) from Exiguobacterium antarcticum, PLoS One, 12(1), e0169540 (2017).
C. Oh, T. D. Kim, K. K. Kim, Carboxylic ester hydrolases in bacteria: Active site, structure, function and application, Crystals, 9, 597 (2019).
L. Rao, Y. Xue, C. Zhou, J. Tao, G. Li, J. R. Lu, Y. Ma, The thermostable esterase from Thermoanaerobacter tengcongensis opening up a new family of bacterial lipolytic enzymes, Biochimica et Biophysica Acta, 1814, 1695–1702 (2011).
E. Borchert, J. Selvin, S.G. Kiran, S.A. Jackson, F. O’Gara, A.D.W. Dobson, A novel cold active esterase from a deep sea sponge Stelletta normani metagenomic library, Frontiers in Marine Science, 4, 287 (2017).
J. Zhang, J. Liu, J. Zhou, Y. Ren, X. Dai, H. Xiang, Thermostable esterase from Thermoanaerobacter tengcongensis: High-level expression, purification and characterization, Biotechnology Letters, 25, 1463–1467 (2003).
T.E. Rao, M. Imchen, R. Kumavath, Marine enzymes: Production and applications for human health, Advances in Food Nutrition Research, 80, 149–163 (2017).
L.F. Godinh, C.R. Reis, P.G. Tepper, G.J. Poelarends, W.J. Quax, Discovery of an Escherichia coli esterase with high activity and enantioselectivity towards 1,2-O-isopropylideneglycerol esters, Application Environment Microbiology, 77(17), 6094–6099 (2011).
L. Ramnath, B. Sithole, R. Govinden, Classification of lipolytic enzymes and their biotechnological applications in the pulping industry, Canadian Journal of Microbiology, 63, 179–192 (2017).
F. Sasso, A. Natalello, S. Castoldi, M. Lotti, C. Santambrogio, R. Grandori, Burkholderia cepacia lipase is a promising biocatalyst for biofuel production, Biotechnology Journal, 11, 954–960 (2016).
M. Levisson, J.V. Oost, S.W.M. Kengen, Characterization and structural modeling of a new type of thermostable esterase from Thermotoga maritime, FEBS Journal, 274, 2832–2842 (2007).
D.R. Canchi, A.E. Garcia, Cosolvent effects on protein stability, The Annual Review of Physical Chemistry, 64, 273–293 (2013).
H. Wang, K.K. Andersen, P. Sehgal, J. Hagedorn, P. Westh, K. Borch, D.E. Otzen, pH regulation of the kinetic stability of the lipase from Thermomyces lanuginosus, Biochemistry, 52(1), 264–276 (2013).
H. Monhemi, R.M. Housaindokht, A.A. Moosavi-Movahedi, M.R. Bozorgmehr, How a protein can remain stable in a solvent with high content of urea: insights from molecular dynamics simulation of Candida antartica lipase B in urea: Choline chloride deep eutectic solvent, Physical Chemistry Chemical Physics, 16(28), 14882–14893 (2014).
R. Fernandez-Lafuente, Lipase from Thermomyces lanuginosus: Uses and prospects as an industrial biocatalyst, Journal of Molecular Catalalysis B: Enzymatic, 62, 197–212 (2010).
F.J. Olorunniji, A.L. McPherson, S.J. Rosser, M.C.M. Smith, S.D. Colloms, W.M. Stark, Control of serine integrase recombination directionality by fusion with the directionality factor, Nucleic Acids Research, 45(14), 8635–8645 (2017).
S.C.B. Gopinath, Extracellular enzymatic activity profiles in fungi isolated from oil-rich environments, Mycoscience, 46(2), 119–126 (2005).
O. Trott, A.J. Olson, AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading, Journal of Computational Chemistry, 31(2), 455–461 (2010).
S. Kim, J. Chen, T. Cheng, A. Gindulyte, J. He, S. He, Q. Li, B.A. Shoemaker, P.A. Thiessen, B. Yu, L. Zaslavsky, J. Zhang, E.E. Bolton, PubChem 2019 update: Improved access to chemical data, Nucleic Acids Research, 47(1), 1102–1109 (2019).
The UniProt Consortium, UniProt: The universal protein knowledgebase in 2021, Nucleic Acids Research, 49(D1), D480–D489 (2021).
A. Waterhouse, M. Bertoni, S. Bienert, G. Studer, G. Tauriello, R. Gumienny F.T. Heer, T.A.P. de Beer, C. Rempfer, L. Bordoli, R. Lepore, T. Schwede, SWISSMODEL: Homology modelling of protein structures and complexes, Nucleic Acids Research, 46(W1), W296–W303 (2018).
R.A. Laskowski, M.W. MacArthur, D.S. Moss, J.M. Thornton, PROCHECK: A program to check the stereochemical quality of protein structures, Journal of Applied Crystallography, 26(2), 283–291 (1993).
R.A. Laskowski, J.A. Rullmannn, M.W. MacArthur, R. Kaptein, J.M. Thornton, AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR, Journal of Biomolecule NMR, 8(4), 477–486 (1996).
M.A. Salameh, J. Wiegel, Effects of detergents on activity, thermostability and aggregation of two alkalithermophilic lipases from Thermosyntropha lipolytica, The Open Biochemistry Journal, 4, 22–28 (2010).
R. Singh, M. Kumar, A. Mittal, P.K. Mehta, Microbial enzymes: Industrial process in 21st century, 3 Biotech, 6, 174 (2016).
Y. Zhu, W. Zheng, H. Ni, H. Liu, A. Xiao, H. Cai, Molecular cloning and scharacterization of a new and highly thermostable esterase from Geobacillus sp. JM6, Journal of Basic Microbiology, 55, 1219–1231 (2015).
A.K. Singh, M. Mukhopadhyay, Overview of fungal lipase: A review, Applied Biochemistry and Biotechnology, 166, 486–520 (2012).
Z. Qian, J. Zhao, X. Bai, W. Tong, Z. Chen, H. Wei, Q. Wang, S. Liu, Thermastability of glucokinases in Thermoanaerobacter tengcongensis, BioMed Research International, 2013, 646539 (2013).
J.H. Meessen, H. Petersen, Urea, Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2010.
A. Igunnu, A. Aberuagba, S.O. Oyeyipo, B.T. Bakare, E.E. Onwurah, S.O. Malomo, Effects of urea and sodium dodecyl sulphate on stability profile of Thermomyces lanuginosus lipase, Bioscience Research Journal, 33(2), 55–67 (2020).
X. Gao, X. Mao, P. Lu, F. Secundo, C. Xue, J. Sun, Cloning, Expression, and characterization of a novel thermostable and alkaline-stable esterase from Stenotrophomonas maltophilia OUC_Est10 catalytically active in organic solvents, Catalysts, 9(5), 401 (2019).
J.E. Mogensen, P. Sehgal, D.E. Otzen, Activation, inhibition, and destabilization of Thermomyces lanuginosus lipase by detergents, Biochemistry, 44, 1719–1730 (2005).
M. Alcaide, P.J. Stogios, A. Lafraya, Á. Tchigvintsev, R. Flick, R. Bargiela, Pressure adaptation is linked to thermal adaptation in salt-saturated marine habitats, Environmental Microbiology, 17, 332–345 (2015).
J.M. Cardoso, L. Fonseca, C. Egas, I. Abrantes, Cysteine proteases secreted by the pinewood nematode, Bursaphelenchus xylophilus: In silico analysis, Computational Biology and Chemistry, 77, 291–296 (2018).
B. Patel, V. Singh, D. Patel, Essentials of Bioinformatics, vol. I., Springer, Cham, Switzerland, 2019, pp. 169–199.
H. Yamaguchi, T. Akitaya, Y. Kidachi, K. Kamiie, H. Umetsu, Homology modeling and structural analysis of human γ-glutamylcysteine ligase catalytic subunit for antitumor drug development, Journal of Biophysical Chemistry, 3(3), 238– 248 (2012).
I. Olaoye, B. Oso, A. Aberuagba, Molecular insights into the binding mechanisms of human and mouse Glutamate-cysteine ligases, Revista Colombiana de Ciencias Químico Farmacéuticas, 52(1), 311–336 (2023).
Como Citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Baixar Citação
Licença
Copyright (c) 2024 Revista Colombiana de Ciencias Químico-Farmacéuticas
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
El Departamento de Farmacia de la Facultad de Ciencias de la Universidad Nacional de Colombia autoriza la fotocopia de artículos y textos para fines de uso académico o interno de las instituciones citando la fuente. Las ideas emitidas por los autores son responsabilidad expresa de estos y no de la revista.
Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons de Atribución 4.0 aprobada en Colombia. Consulte la normativa en: http://co.creativecommons.org/?page_id=13