Influence of A1/A2 allelic variants of the CSN2 gene on milk composition and production in Holstein cows from Nariño, Colombia
Influencia de las variantes alélicas A1/A2 del gen CSN2 sobre la composición y producción lechera en vacas Holstein en Nariño, Colombia
DOI:
https://doi.org/10.15446/rfmvz.v72n2.118078Keywords:
β-casomorphin, β-casein, milk composition, molecular marker (en)β-casomorfina, β-caseína, composición láctea, marcador molecular (es)
Alergia ao leite, Betacaseína, composição do leite, Frísio Holstein (pt)
Downloads
This study aimed to determine the allelic frequency and the effects of the A1 and A2 variants of the CSN2 gene on milk production and quality in Holstein cows from
five municipalities in Nariño, Colombia. Productive and compositional milk data
were collected from 200 cows across 10 herds located in Pupiales, Pasto, Gualmatán,
Guachucal, and Túquerres. The A1 and A2 variants of the CSN2 gene were identified through allele-specific PCR using DNA extracted from blood samples. Associations
between genotypes and milk production and composition traits were assessed using analysis of variance (ANOVA). The results showed allele frequencies of 0.46 for A1 and 0.54 for A2, and genotype frequencies of 0.23 (A1A1), 0.46 (A1A2), and 0.31 (A2A2). Observed heterozygosity (Ho) was 0.46, expected heterozygosity (He) was 0.47, and
the polymorphic information content (PIC) was 0.37. Cows with the A1A1 genotype produced significantly more milk and total solids than A2A2 cows (p < 0.05). The A1 allele was associated with significantly higher yields of milk, fat, and protein (p < 0.05). A discriminant analysis revealed differentiation by municipality, suggesting that environmental factors influence variability in milk production and composition. It is concluded that the A1 allele is present at a moderately high frequency and is associated with enhanced productive traits in Holstein cows in the Department of Nariño. Therefore, the use of A2A2 genotype bulls with high genetic merit for productive traits is recommended, with the additional aim of promoting potential health benefits for milk consumers.
El objetivo de este estudio fue determinar la frecuencia alélica y el efecto de las variantes A1/A2 del gen CSN2 sobre producción y calidad de la leche en vacas Holstein provenientes de cinco municipios de Nariño, Colombia. Se analizaron datos productivos y composicionales de la leche de 200 vacas de 10 hatos ubicados en Pupiales, Pasto, Gualmatán, Guachucal y Túquerres. Las variantes A1 y A2 del gen CSN2 se identificaron mediante PCR alelo-específico a partir del ADN extraído de sangre. La asociación entre los genotipos y las características productivas y composicionales de la leche se evaluó mediante ANOVA. Los resultados mostraron frecuencias alélicas de 0,46 para A1 y 0,54 para A2, y genotípicas de 0,23 (A1A1), 0.46 (A1A2) y 0,31 (A2A2), con valores de heterocigosidad observada (Ho) de 0,46, heterocigosidad esperada (He) de 0,47 y un contenido de información polimorfico (CIP) de 0,37. Las vacas con genotipo A1A1 produjeron significativamente más leche y sólidos totales que las vacas A2A2 (p < 0,05). El alelo A1 se asoció con mayores rendimientos (p < 0,05) de leche, grasa y proteína. Según un análisis discriminante, se observó diferenciación por municipio, sugiriendo que factores ambientales influyen en la variabilidad de la producción y composición de la leche. Se concluye que el alelo A1 está presente en una frecuencia moderadamente alta y además está asociado con aumento en las características productivas evaluadas en vacas Holstein del Departamento de Nariño, por lo que se sugiere usar toros con genotipo A2A2 de alto valor genético.
References
AlSuwaiegh, S. B., Almotham, A. M., Alyousef, Y. M., Mansour, A. T., & Al-Sagheer, A. A. (2022). Influence of functional feed supplements on the milk production efficiency, feed utilization, blood metabolites, and health of Holstein cows during mid-lactation. Sustainability, 14(14), 8444. https://doi.org/10.3390/su14148444 DOI: https://doi.org/10.3390/su14148444
Ardicli, S., Aldevir, Ö., Aksu, E., Kucuk, K., & Gümen, A. (2024). Associations of bovine beta-casein and kappa-casein genotypes with genomic merit in Holstein Friesian cattle. Archives Animal Breeding, 67(1), 61–71. https://doi.org/10.5194/aab-67-61-2024 DOI: https://doi.org/10.5194/aab-67-61-2024
Ayaz, S., Suhail, S. M., Ahmad, I., Zeb, M. T., Khan, R., Ijaz, A., Iftikhar, A., Riaz, M. H., Ali, F., Khan, K., & ... (2023). Detection of A2A2 genotype of beta casein protein (CSN2) gene in local, exotic and cross bred cattle in Pakistan. Animal Biotechnology, 34(4), 1462–1473. https://doi.org/10.1080/10495398.2022.2031204 DOI: https://doi.org/10.1080/10495398.2022.2031204
Barłowska, J., Sawicka-Zugaj, W., Ślaska, B., Król, J., Brodziak, A., Teter, A., & Chabuz, W. (2022). Genetic analysis of CSN2 in local and international cattle breeds raised in Poland. Animal Science Papers and Reports, 40, 411–422.
Borş, A., Borş, S.-I., & Floriștean, V.-C. (2024). Health-related outcomes and molecular methods for the characterization of A1 and A2 cow’s milk: Review and update. Veterinary Sciences, 11(4), 172. https://doi.org/10.3390/vetsci11040172 DOI: https://doi.org/10.3390/vetsci11040172
Brooke-Taylor, S., Dwyer, K., Woodford, K., & Kost, N. (2017). Systematic review of the gastrointestinal effects of A1 compared with A2 β-casein. Advances in Nutrition, 8(5), 739–748. https://doi.org/10.3945/an.116.013953 DOI: https://doi.org/10.3945/an.116.013953
Chaves Manrique, R. H. (2023). Determinación de las frecuencias genotípicas y alélicas de los genes CSN2 y LGB asociados a la calidad de la leche en ganado bovino Holstein en la provincia de Caylloma, Arequipa [Tesis de licenciatura, Universidad Católica de Santa María]. Repositorio UCSM.
Dai, R., Fang, Y., Zhao, W., Liu, S., Ding, J., Xu, K., Yang, L., He, C., Ding, F., & Meng, H. (2016). Identification of alleles and genotypes of beta-casein with DNA sequencing analysis in Chinese Holstein cow. Journal of Dairy Research, 83(3), 312–316. https://doi.org/10.1017/S0022029916000303 DOI: https://doi.org/10.1017/S0022029916000303
Dantas, A., Kumar, H., Prudencio, E. S., de Avila, L. B., Orellana-Palma, P., Dosoky, N. S., Nepovimova, E., Kuča, K., Cruz-Martins, N., Verma, R., & ... (2023). An approach on detection, quantification, technological properties, and trends market of A2 cow milk. Food Research International, 167, 112690. https://doi.org/10.1016/j.foodres.2023.112690 DOI: https://doi.org/10.1016/j.foodres.2023.112690
Duifhuis-Rivera, T., Ayala, M., Sanchez-Chipres, D., Galindo-García, J., Mejía-Martínez, K., González-Covarrubias, E., & Lemus-Flores, C. (2014). Polymorphisms in beta and kappa-casein are not associated with milk production in two highly technified populations of Holstein cattle in Mexico. Journal of Animal and Plant Sciences, 24, 1316.
Gareli, S., Mendoza, A., Bello, N. M., Lattanzi, F. A., Fariña, S. R., & Savian, J. V. (2023). Effects of grazing management and concentrate supplementation on intake and milk production of dairy cows grazing orchardgrass. Animal Feed Science and Technology, 301, 115668. https://doi.org/10.1016/j.anifeedsci.2023.115668 DOI: https://doi.org/10.1016/j.anifeedsci.2023.115668
Jawane, V. B., Ali, S. S., Kuralkar, S. V., & Bankar, P. S. (2018). Genetic polymorphism of β-casein (CSN2) in Indian Zebu and HF crossbreds. Indian Journal of Dairy Science, 530–533.
Kamiński, S., Cieślińska, A., & Kostyra, E. (2007). Polymorphism of bovine beta-casein and its potential effect on human health. Journal of Applied Genetics, 48(3), 189–198. https://doi.org/10.1007/BF03195213 DOI: https://doi.org/10.1007/BF03195213
Küllenberg de Gaudry, D., Lohner, S., Schmucker, C., Kapp, P., Motschall, E., Hörrlein, S., Röger, C., & Meerpohl, J. J. (2019). Milk A1 β-casein and health-related outcomes in humans: A systematic review. Nutrition Reviews, 77(5), 278–306. https://doi.org/10.1093/nutrit/nuy063 DOI: https://doi.org/10.1093/nutrit/nuy063
Ladyka, V., Drevytska, T., Pavlenko, J., Skliarenko, Y., Lahuta, T., Drevytsky, O., & Dosenko, V. (2023). Identification of polymorphism of the CSN2 gene encoding beta-casein in Ukrainian black and white breeds of cattle. Acta Fytotechnica et Zootechnica, 16(1), 39–45. https://doi.org/10.15414/afz.2023.26.01.39-45 DOI: https://doi.org/10.15414/afz.2023.26.01.39-45
Laugesen, M., & Elliott, R. (2003). Ischaemic heart disease, type 1 diabetes, and cow milk A1 beta-casein. New Zealand Medical Journal, 116(1168), 295.
Manga, I., & Dvorak, J. (2010). TaqMan allelic discrimination assay for A1 and A2 alleles of the bovine CSN2 gene. Czech Journal of Animal Science, 55(8), 307–312. https://cjas.agriculturejournals.cz/artkey/cjs-201008-0001.php DOI: https://doi.org/10.17221/89/2009-CJAS
Manzano Reyes, E. de J. (2017). Identificación de las frecuencias alélicas A1 y A2 del gen CSN2 en bovinos de la región del Papaloapan, mediante qPCR [Tesis de licenciatura, Universidad del Papaloapan, Campus Tuxtepec].
Miluchová, M., Gábor, M., & Candrák, J. (2023). The effect of the genotypes of the CSN2 gene on test-day milk yields in the Slovak Holstein cow. Agriculture, 13(1), 154. https://doi.org/10.3390/agriculture13010154 DOI: https://doi.org/10.3390/agriculture13010154
Miluchová, M., Gábor, M., & Trakovická, A. (2014). Analysis of beta-casein gene (CSN2) polymorphism in different breeds of cattle. Semanticscholar. https://api.semanticscholar.org/CorpusID:84112775
Ministerio de Comercio, Industria y Turismo. (2021). Producto 2: Identificación, mapeo y segmentación estratégica del cluster. Iniciativa Lactis Nariño. Entregable 4. Red Cluster Colombia. https://redclustercolombia.gov.co/storage/initiatives/documents/Iniciativa-lactis_2.pdf
Olenski, K., Kamiński, S., Szyda, J., & Cieslinska, A. (2010). Polymorphism of the beta-casein gene and its associations with breeding value for production traits of Holstein-Friesian bulls. Livestock Science, 131, 137–140. DOI: https://doi.org/10.1016/j.livsci.2010.02.023
Padilla, J., & Zambrano, J. C. (2021). Estructura, propiedades y genética de las caseínas de la leche: una revisión. CES Medicina Veterinaria y Zootecnia, 16(3), 62–95. https://doi.org/10.21615/cesmvz.5231 DOI: https://doi.org/10.21615/cesmvz.5231
Peakall, R., & Smouse, P. E. (2012). GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics, 28(19), 2537–2539. https://doi.org/10.1093/bioinformatics/bts460 DOI: https://doi.org/10.1093/bioinformatics/bts460
Riaño, J. Y., & Narváez, S. P. (2015). Composición, beneficios y enfermedades asociadas al consumo de leche de vaca. Revista Sthetic & Academy. https://revia.areandina.edu.co/index.php/RSA/article/view/352
Ristanić, M., Niksic, A., Niketic, M., Jelisić, S., Rajković, M., Glavinic, U., & Stanimirovic, Z. (2022). Use of allele specific PCR to investigate the presence of β-casein polymorphism in Holstein-Friesian cows. Veterinarski Glasnik, 76, 17–24. https://doi.org/10.2298/VETGL211125004R DOI: https://doi.org/10.2298/VETGL211125004R
RStudio. (2024). [RStudio]. Entorno de Desarrollo Integrado para R. http://www.rstudio.com/
Scott, B. A., Haile-Mariam, M., MacLeod, I. M., Xiang, R., & Pryce, J. E. (2023). Evaluating the potential impact of selection for the A2 milk allele on inbreeding and performance in Australian Holstein cattle. Frontiers in Animal Science, 4. https://doi.org/10.3389/fanim.2023.1142673 DOI: https://doi.org/10.3389/fanim.2023.1142673
Semwal, R., Joshi, S. K., Semwal, R. B., Sodhi, M., Upadhyaya, K., & Semwal, D. K. (2022). Effects of A1 and A2 variants of β-casein on human health—Is β-casomorphin-7 really a harmful peptide in cow milk? Nutrire, 47(1), 8. https://doi.org/10.1186/s41110-022-00159-7 DOI: https://doi.org/10.1186/s41110-022-00159-7
Sokolov, O., Kost, N., Andreeva, O., Korneeva, E., Meshavkin, V., Tarakanova, Y., Dadayan, A., Zolotarev, Y., Grachev, S., Mikheeva, I., & ... (2014). Autistic children display elevated urine levels of bovine casomorphin-7 immunoreactivity. Peptides, 56, 68–71. https://doi.org/10.1016/j.peptides.2014.03.007 DOI: https://doi.org/10.1016/j.peptides.2014.03.007
Vigolo, V., Visentin, E., Ballancin, E., Lopez-Villalobos, N., Penasa, M., & De Marchi, M. (2023). β-casein A1 and A2: Effects of polymorphism on the cheese-making process. Journal of Dairy Science, 106(8), 5276–5287. https://doi.org/10.3168/jds.2022-23072 DOI: https://doi.org/10.3168/jds.2022-23072
Wasilewska, J., Sienkiewicz-Szłapka, E., Kuźbida, E., Jarmołowska, B., Kaczmarski, M., & Kostyra, E. (2011). The exogenous opioid peptides and DPPIV serum activity in infants with apnoea expressed as apparent life-threatening events (ALTE). Neuropeptides, 45(3), 189–195. https://doi.org/10.1016/j.npep.2011.01.005 DOI: https://doi.org/10.1016/j.npep.2011.01.005
Winkelman, A. M., & Wickham, B. W. (1996). Associations between milk protein genetic variants and production traits in New Zealand dairy cattle. Semanticscholar. https://api.semanticscholar.org/CorpusID:86221639
Żbik, K., Onopiuk, A., Górska-Horczyczak, E., & Wierzbicka, A. (2024). Trends and opportunities in the dairy industry: A2 milk and processing methods. Applied Sciences, 14(15), 6513. https://doi.org/10.3390/app14156513 DOI: https://doi.org/10.3390/app14156513
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2025 Abel de Jesús Rivera Córdoba, Juan Carlos Zambrano Arteaga, Yaneth Gabriela Misnaza Rodriguez, Kelly Johana Oliva Oliva, Angie Vanesa Muñoz Cano, Pedro Alexander Velasquez Vasconez, Jesús Adriano Romo Ramos

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This article is published under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).
The authors retain copyright of their work and grant the journal the right of first publication.
Readers are free to copy and redistribute the material in any medium or format under the license terms, provided proper attribution is given, the work is not used for commercial purposes, and no modifications or derivatives are made.



