Assessment of the anti-inflammatory, antioxidant, and wound-healing effects of methanolic soybean seed extract in an excision wound model in albino rats
Evaluación de los efectos antiinflamatorios, antioxidantes y cicatrizantes del extracto metanólico de semillas de soja en un modelo de herida por escisión en rata albina
DOI:
https://doi.org/10.15446/rfmvz.v72n2.119384Keywords:
antioxidant, oxidative stress, management, ethnopharmacology, ethnoveterinary medicine (en)antioxidante, estrés oxidativo, gestión, etnofarmacología, medicina etnoveterinaria (es)
Downloads
Wound healing is a complex physiological process influenced by oxidative stress and inflammation. This study assessed the antioxidant, anti-inflammatory, and wound-healing effects of a methanolic extract of soybean seeds using a full-thickness excision wound model in male albino rats. Fourteen rats were randomly divided into two groups (n = 7). Under anesthesia, full-thickness skin wounds were aseptically created in the thoraco-abdominal region. Group A received sterile water (placebo) topically, while Group B received the soybean seed extract daily for 21 days. Wound healing was evaluated by macroscopic examination, measurement of wound contraction, and analysis of inflammatory and oxidative stress markers.
By day 7, wound contraction was significantly higher in the control group (60.42 ± 6.65%) compared to the extract-treated group (43.96 ± 11.58%) (p < 0.05). No significant difference was observed in the neutrophil-to-lymphocyte ratio between the two groups. However, biochemical analyses showed elevated levels of serum malondialdehyde (MDA) and superoxide dismutase (SOD) activity in the treated group (MDA: 4.26 ± 0.39 µmol/mg; SOD: 1.43 ± 0.16 mg/mL) versus the control (MDA: 3.18 ± 0.51 µmol/ mg; SOD: 1.01 ± 0.13 mg/mL) (p < 0.05).
In conclusion, topical application of soybean seed methanolic extract did not enhance wound healing but improved antioxidant markers, indicating its potential role in mitigating oxidative stress rather than directly accelerating tissue repair.
La cicatrización de heridas es un proceso fisiológico complejo influenciado por el estrés oxidativo y la inflamación. Este estudio evaluó los efectos antioxidantes, antiinflamatorios y cicatrizantes de un extracto metanólico de semillas de soya utilizando un modelo de herida por escisión de espesor completo en ratas albinas machos. El Grupo A recibió agua estéril tópica, mientras que el Grupo B fue tratado diariamente con el extracto de semillas de soya durante 21 días. La cicatrización fue evaluada mediante examen macroscópico, medición de la contracción de la herida y análisis de marcadores inflamatorios y de estrés oxidativo.
Para el día 7, la contracción de la herida fue significativamente mayor en el grupo control (60.42 ± 6.65%) en comparación con el grupo tratado con el extracto (43.96 ± 11.58%) (p < 0.05). No se observaron diferencias significativas en la relación neutrófilo-linfocito entre los grupos. Sin embargo, los análisis bioquímicos mostraron niveles elevados de malondialdehído (MDA) en suero y actividad de superóxido dismutasa (SOD) en el grupo tratado (MDA: 4.26 ± 0.39 µmol/mg; SOD: 1.43 ± 0.16 mg/mL) frente al control (MDA: 3.18 ± 0.51 µmol/mg; SOD: 1.01 ± 0.13 mg/mL) (p < 0.05).
En conclusión, la aplicación tópica del extracto metanólico de semillas de soya no mejoró la cicatrización de heridas, pero sí incrementó los marcadores antioxidantes, lo que sugiere un posible papel terapéutico en la mitigación del estrés oxidativo más que en la aceleración directa de la reparación tisular.
References
Agyare, C., Asase, A., Lechtenberg, M., Niehues, M., Deters, A., & Hensel, A. (2009). An ethnopharmacological survey and in vitro confirmation of ethnopharmacological use of medicinal plants used for wound healing in Bosomtwi-Atwima-Kwanwoma area, Ghana. Journal of Ethnopharmacology, 125(3), 393–403. https://doi.org/10.1016/j.jep.2009.07.024 DOI: https://doi.org/10.1016/j.jep.2009.07.024
Alwerdt, N., Patterson, N., & Sliwinski, N. (2019). Gender differences in phytoestrogens and the relationship with speed of processing in older adults: A cross-sectional analysis of NHANES, 1999–2002. Nutrients, 11(8), 1780. https://doi.org/10.3390/nu11081780 DOI: https://doi.org/10.3390/nu11081780
Atala, A., Yoo, J. J., & Koh, C. J. (2021). Tissue engineering and regenerative medicine: Principles and applications. Nature Reviews Materials, 6(2), 101–119.
Back, P. I., Balestrin, L. A., Fachel, F. N. S., Nemitz, M. C., Falkembach, M., & Soares, G. (2020). Hydrogels containing soybean isoflavone aglycones-rich fraction-loaded nanoemulsions for wound healing treatment – In vitro and in vivo studies. Colloids and Surfaces B: Biointerfaces, 196, 111301. https://doi.org/10.1016/j.colsurfb.2020.111301 DOI: https://doi.org/10.1016/j.colsurfb.2020.111301
Baht, G. S., Vi, L., & Alman, B. A. (2018). The role of immune cells in fracture healing. Current Osteoporosis Reports, 16 (2), 138–145. https://doi.org/10.1007/s11914-018-0423-2 DOI: https://doi.org/10.1007/s11914-018-0423-2
Berman, B., Maderal, A., & Raphael, B. (2017). Keloids and hypertrophic scars: Pathophysiology, classification, and treatment. Dermatologic Surgery, 43(Suppl. 1), S3–S18. https://doi.org/10.1097/DSS.0000000000000819 DOI: https://doi.org/10.1097/DSS.0000000000000819
Chen, L., Mirza, R., Kwon, Y., DiPietro, L. A., & Koh, T. J. (2015). The murine excisional wound model: Contraction revisited. Wound Repair and Regeneration, 23(6), 874–877. https://doi.org/10.1111/wrr.12338 DOI: https://doi.org/10.1111/wrr.12338
Dower, J. I., Geleijnse, J. M., Gijsbers, L., Schalkwijk, C., Kromhout, D., & Hollman, P. C. H. (2015). Supplementation of the pure flavonoids epicatechin and quercetin affects some biomarkers of endothelial dysfunction and inflammation in (pre) hypertensive adults: A randomized double-blind, placebo-controlled, crossover trial. The Journal of Nutrition, 145(7), 1459–1463. https://doi.org/10.3945/jn.115.211888 DOI: https://doi.org/10.3945/jn.115.211888
Dunnill, C., Patton, T. E., Brennan, J. J., Barrett, J. N., Dryden, M., & Cooke, J. (2015). Reactive oxygen species (ROS) and wound healing: The functional role of ROS and emerging ROS‐modulating technologies for augmentation of the healing process. International Wound Journal, 14(1), 89–96. https://doi.org/10.1111/iwj.12557 DOI: https://doi.org/10.1111/iwj.12557
Esposito, D., Chen, A., Grace, M. H., Komarnytsky, S., & Lila, M. A. (2014). Inhibitory effects of wild blueberry anthocyanins and other flavonoids on biomarkers of acute and chronic inflammation in vitro. Journal of Agricultural and Food Chemistry, 62(29), 7022–7028. https://doi.org/10.1021/jf4051599 DOI: https://doi.org/10.1021/jf4051599
Gushiken, L. F. S., Beserra, F. P., Bastos, J. K., Jackson, C. J., & Pellizzon, C. H. (2021). Cutaneous wound healing: An update from physiopathology to current therapies. Life, 11(7), 665. https://doi.org/10.3390/life11070665 DOI: https://doi.org/10.3390/life11070665
Hashmi, H. F., Bibi, S., Anwar, M., & Rashid, K. M. (2021). Qualitative and quantitative analysis of phytochemicals in Lepidium pinnatifidum Ledeb. Scholars International Journal of Traditional and Complementary Medicine, 4(5), 67–75. https://saudijournals.com/media/articles/SIJTCM_45_67-75.pdf
Hidayat, D., & Dwira, S. (2018). Phytochemical analysis and in vitro cytotoxicity test of black soybean (Glycine soja L.) ethanolic extract as a growth inhibitor of the HCT-116 colon carcinoma cell line. Journal of Physics: Conference Series, 1073, 032041. https://doi.org/10.1088/1742-6596/1073/3/032041 DOI: https://doi.org/10.1088/1742-6596/1073/3/032041
Johan, M. P., Putra, L. T., Yurianto, H., Usman, M. A., Arifin, J., & Abidin, M. A. (2024). The role of neutrophil to lymphocyte ratio with wound healing in open tibial fracture grade IIIA. International Journal of Surgery Open, 62(1), 51–56. https://doi.org/10.1097/io9.0000000000000010 DOI: https://doi.org/10.1097/IO9.0000000000000010
Kilani, M. A., Oladimeji, L. O., Oyenekan, I. O., Binhambali, A., Audu, H. A., Obalowu, A. M., Aliyu, A., Hassan, A. Z., & Fadason, S. T. Significance of Croton lobatus L. leaf extract on the healing of surgically created wounds in laboratory rats. Mediterranean Journal of Pharmacy and Pharmeceutical Sciences. 2025;5(2):141–151. https://doi.org/10.5281/zenodo.15741778
Kim, I. S., Hwang, C. W., Yang, W. S., & Kim, C. H. (2021). Current perspectives on the physiological activities of fermented soybeanderived cheonggukjang. International Journal of Molecular Sciences, 22(11), 5746. https://doi.org/10.3390/ijms22115746 DOI: https://doi.org/10.3390/ijms22115746
Kuiper, G. G., Lemmen, J. G., Carlsson, B., Corton, J. C., Safe, S. H., & van der Saag, P. T. (1998). Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor β. Endocrinology, 139(10), 4252–4263. https://doi.org/10.1210/endo.139.10.6216 DOI: https://doi.org/10.1210/endo.139.10.6216
Kumaran, T., & Citarasu, T. (2015). Phytochemical screening, bioautography and antibacterial evaluation of the methanolic extract of Glycine max (soybean). Global Journal of Medicine and Public Health, 4(3), 1–7. https://nicpd.ac.in/ojs-/index.php/gjmedph/article/view/3968
Kurniawan, I. A., Dwiastuti, R., & Yuliani, S. H. (2020). The effect of tempeh extract gel on wound healing in diabetes rat: Overview of tissue collagen, wound closure, epithelialization and capillarization. Jurnal Farmasi Sains dan Komunitas, 17(1), 51–58. http://dx.doi.org/10.24071/jpsc.002357 DOI: https://doi.org/10.24071/jpsc.002357
Lee, S. J., Kim, J. J., Moon, H. I., Ahn, J. K., Chun, S. C., Jung, W. S., et al. (2008). Analysis of isoflavones and phenolic compounds in Korean soybean Glycine max (L.) seeds of different seed weights. Journal of Agricultural and Food Chemistry, 56(8), 2751–2758. https://doi.org/10.1021/jf073153f DOI: https://doi.org/10.1021/jf073153f
Liu, Y., Min, D., Bolton, T., Nube, V., Twigg, S. M., Yue, D. K., & McLennan, S. V. (2020). Increased matrix metalloproteinase-9 predicts poor wound healing in diabetic foot ulcers. Diabetes Care, 43(2), e14–e15.
Messina, M. (2010). Soybean isoflavone exposure does not have feminizing effects on men: A critical examination of the clinical evidence. Fertility and Sterility, 93(7), 2095–2104. https://doi.org/10.1016/j.fertnstert.2010.03.002 DOI: https://doi.org/10.1016/j.fertnstert.2010.03.002
Mohsin, S., Basha, S., Khatoon, S., et al. (2022). Role of natural antioxidants in wound healing: A review. Journal of Applied Biomedicine, 20(2), 123–134.
Plikus, M. V., Guerrero-Juarez, C. F., Ito, M., Li, Y. R., Dedhia, P. H., Zheng, Y., et al. (2017). Regeneration of fat cells from myofibroblasts during wound healing. Science, 355(6326), 748–752. https://doi.org/10.1126/science.aai8792 DOI: https://doi.org/10.1126/science.aai8792
Posnett, J., Gottrup, F., Lundgren, H., & Saal, G. (2009). The resource impact of wounds on health-care providers in Europe. Journal of Wound Care, 18(1), 54–61. https://doi.org/10.12968/jowc.2009.18.4.41607 DOI: https://doi.org/10.12968/jowc.2009.18.4.41607
Prahastuti, S., Hidayat, M., Hasianna, S. T., Widowati, W., Amalia, A., Yusepany, D. T., et al. (2019). Antioxidant potential of ethanolic extract of Glycine max (L.) Merr. var. Detam and daidzein. Journal of Physics: Conference Series, 1374(1), 012020. https://doi.org/10.1088/1742-6596/1374/1/012020 DOI: https://doi.org/10.1088/1742-6596/1374/1/012020
Rahman, M. M., Lee, S. H., & Bae, J. H. (2023). Emerging bioactive peptides from plant seeds: Potential role in wound healing. Frontiers in Nutrition, 10, 1087645.
Rahman, N., Rahman, H., Haris, M., & Mahmood, R. (2017). Wound healing potentials of Thevetia peruviana: Antioxidants and inflammatory markers criteria. Journal of Traditional and Complementary Medicine, 7(4), 519–525. https://doi.org/10.1016/j.jtcme.2017.01.005 DOI: https://doi.org/10.1016/j.jtcme.2017.01.005
Rodrigues, M., Kosaric, N., Bonham, C. A., & Gurtner, G. C. (2019). Wound healing: A cellular perspective. Physiological Reviews, 99(1), 665–706. https://doi.org/10.1152/physrev.00067.2017 DOI: https://doi.org/10.1152/physrev.00067.2017
Sagili, H., & Rajan, S. (2021). Cutaneous manifestations of estrogen excess and deficiency. Gynecology and Reproductive Endocrinology and Metabolism, 2(3), 162–167. https://doi.org/10.53260/GREM.212035
Sami, D. G., Heiba, H. H., & Abdellatif, A. (2019). Wound healing models: A systematic review of animal and non-animal models. Wound Medicine, 24(1), 8–17. https://doi.org/10.1016/j.wndm.2018.12.001 DOI: https://doi.org/10.1016/j.wndm.2018.12.001
Sanchez, M. C., Lancel, S., Boulanger, E., & Neviere, R. (2018). Targeting oxidative stress and mitochondrial dysfunction in the treatment of impaired wound healing: A systematic review. Antioxidants, 7(8), 98. https://doi.org/10.3390/antiox7080098 Shen, P., Lin, W., Ba, X., & Huang, Y. (2020). Soy isoflavones: A promising natural agent for prevention and treatment of chronic diseases. Journal of Functional Foods, 74, 104169. https://doi.org/10.1016/j.jff.2020.104169 DOI: https://doi.org/10.3390/antiox7080098
Tottoli, E. M., Dorati, R., Genta, I., Chiesa, E., Pisani, S., & Conti, B. (2020). Skin wound healing process and new emerging technologies for skin wound care and regeneration. Pharmaceutics, 12(8), 735. https://doi.org/10.3390/pharmaceutics12080735 DOI: https://doi.org/10.3390/pharmaceutics12080735
Verma, R., Gupta, P. P., Satapathy, T., & Roy, A. (2019). A review of wound healing activity on different wound models. Journal of Applied Pharmaceutical Research, 7(1), 1–7. https://doi.org/10.18231/2348-0335.2018.0013
Vitale, D. C., Piazza, C., Melilli, B., Drago, F., & Salomone, S. (2012). Isoflavones: Estrogenic activity, biological effect and bioavailability. European Journal of Drug Metabolism and Pharmacokinetics, 38(1), 15–25. https://doi.org/10.1007/s13318-012-0112-y DOI: https://doi.org/10.1007/s13318-012-0112-y
Zhang, J., Li, W., Ying, Z., Zhao, D., Yi, G., Li, H., & Liu, X. (2020). Soybean protein-derived peptide nutriment increases negative nitrogen balance in burn injury-induced inflammatory stress response in aged rats through the modulation of white blood cells and immune factors. Food & Nutrition Research, 64, Article 3677. DOI: 10.29219/fnr.v64.3677 DOI: https://doi.org/10.29219/fnr.v64.3677
Zhao, F., Yu, Y., Liu, W., Zhang, J., Liu, X., Liu, L., & Yin, H. (2018). Small molecular weight soybean protein-derived peptides nutriment attenuates rat burn injury-induced muscle atrophy by modulation of ubiquitin-proteasome system and autophagy signaling pathway. Journal of Agricultural and Food Chemistry, 66(11), 2724–2734. DOI: 10.29219/fnr.v64.3677 DOI: https://doi.org/10.1021/acs.jafc.7b05387
Zhao, F., Liu, W., Yu, Y., Liu, X., Yin, H., Liu, L., & Yi, G. (2019). Effect of small molecular weight soybean protein-derived peptide supplementation on attenuating burn injury-induced inflammation and accelerating wound healing in a rat model. RSC Advances, 9(3), 1247–1259. https://doi.org/10.1039/C8RA09036J DOI: https://doi.org/10.1039/C8RA09036J
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Haolat Yusuf, Abdulhakeem Binhambali, Mutiu Olawale Rahmon, Ridwan Bolaji Yusuf, Suleiman Garba Salihu, Barnabas Jarumi Musa. (2025). Trypanocidal potentials of Jatropha curcas L. 1753 leaf extracts and fractions in vivo. Pharmacological Research - Modern Chinese Medicine, 16, p.100670. https://doi.org/10.1016/j.prmcm.2025.100670.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2025 Iskiil Oladehinde Oyenekan, Abdulhakeem Binhambali, Oluwatodimu Adewole Adekoya, Yusirat Olabisi Akinniyi, Damilola Popoola

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This article is published under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).
The authors retain copyright of their work and grant the journal the right of first publication.
Readers are free to copy and redistribute the material in any medium or format under the license terms, provided proper attribution is given, the work is not used for commercial purposes, and no modifications or derivatives are made.



