Publicado
Variaciones diurnas en la composición química y la fermentescibilidad de pasturas
Diurnal variations on pasture chemical composition and fermentability
DOI:
https://doi.org/10.15446/acag.v72n3.111951Palabras clave:
carbohidratos, forraje, fotosíntesis, fermentación ruminal, producción de gas in vitro (es)carbohydrates, forage, in vitro gras production, photosynthesis, rumen fermentation (en)
Descargas
El objetivo de este trabajo fue estudiar las variaciones diurnas en la composición química y la fermentescibilidad ruminal en una amplia variedad de forrajes (A. sativa, L. multiflorum, L. perenne, L. híbrido, B. auleticus, M. sativa, T. pratense, T. repens, T. alexandrinum, L. corniculatus, L. pedunculatus, L. tenuis, C. intybus, P. dilatatum, P. notatum, P. plicatulum, P. lanceolata, S. sudanense). Se muestrearon treinta parcelas de diferentes especies en estado vegetativo a las 09:00, 13:00 y 17:00 horas del mismo día (tratamientos). Las muestras fueron sometidas a análisis químicos y a una prueba de producción de gas in vitro. Los volúmenes de gas se ajustaron a un modelo logístico de dos compartimentos con una única fase de latencia. Para el análisis estadístico se utilizó un modelo mixto, considerando el momento de corte como efecto fijo y el grupo botánico y la estación como aleatorios. La concentración de azúcares solubles en agua y la relación azúcares solubles/N aumentaron a lo largo del día, mientras que los niveles de fibra en detergente neutro (NDF) y N disminuyeron. Esto provocó una disminución del tiempo de latencia de la mañana a la tarde. El contenido de fibra se asoció con una fase de latencia más larga, un mayor volumen de lenta producción y tasas de fermentación más lentas. Las pasturas cortadas en la tarde mostraron un inicio más temprano de la fermentación ruminal asociado a menor concentración de fibra y mayor concentración de azúcares solubles.
The aim of this work was to study diurnal variations in chemical composition and ruminal fermentability of a wide range of forages (A. sativa, L. multiflorum, L. perenne, L. hybrid, B. auleticus, M. sativa, T. pratense, T. repens, T. alexandrinum, L. corniculatus, L. pedunculatus, L. tenuis, C. intybus, P. dilatatum, P. notatum, P. plicatulum, P. lanceolata, S. sudanense). Thirty paddocks involving different species at vegetative stage were sampled at 09:00, 13:00, and 17:00 h on the same day (treatments). Samples were subjected to chemical analysis and an in vitro gas production trial. Gas volumes were fitted to a dual-pool logistic model with single lag. A mixed model was used for statistical analysis, considering time of cut as fixed effect, and botanical group and season as random effects. The concentration of water-soluble carbohydrates (WSC) and the ratio WSC/N increased along the day, while neutral detergent fibre (NDF) and N contents decreased. This led to a shortening of lag time from the morning to the afternoon. Fibre content was associated with a longer lag time, a higher slow volume and lower fermentation rates. Pastures cut in the afternoon showed earlier onset of ruminal fermentation associated with lower concentrations of fibre and higher concentrations of soluble carbohydrates.
Referencias
AOAC. (2019). Official Methods of Analysis, 21st ed. Latimer, G. W. (Ed.). Gaithersburg: Association of Official Analytical Chemists International (AOAC).
Berthiaume, R.; Tremblay, G.; Castonguay, Y.; Bertrand, A.; Bélanger, G.; Lafrenière, C. and Michaud, R. (2006). Length of the daylight period before cutting improves rumen fermentation of alfalfa assessed by in vitro gas production. Journal of Animal Science, 84(1), 102. https://www.jtmtg.org/JAM/2006/abstracts/100.pdf
Britos, A.; Repetto, J. L.; Garciarena, D. and Cajarville, C. (2007). Efecto del suero de queso como aditivo de ensilajes de pastura sobre la conservación, los azúcares solubles y la producción de gas in vitro. Agrociencia, 11(2), 72-77. https://www.academia.edu/79438584/Efecto_del_suero_de_queso_como_aditivo_de_ensilajes_de_pastura_sobre_la_conservaci%C3%B3n_los_az%C3%BAcares_solubles_y_la_producci%C3%B3n_de_gas_in_vitro DOI: https://doi.org/10.31285/AGRO.11.760
Burns, J. C.; Mayland, H. F. and Fisher D. S. (2005). Dry matter intake and digestion of alfalfa harvested at sunset and sunrise. Journal of Animal Science, 83(1), 262-270. https://doi.org/10.2527/2005.831262x DOI: https://doi.org/10.2527/2005.831262x
Cajarville, C.; Britos, A.; Errandonea, N.; Gutiérrez, L.; Cozzolino, D. and Repetto J. L. (2015). Diurnal changes in water-soluble carbohydrate concentration in lucerne and tall fescue in autumn and the effects on in vitro fermentation. New Zealand Journal of Agricultural Research, 58(3), 281-291. https://doi.org/10.1080/00288233.2015.1018391 DOI: https://doi.org/10.1080/00288233.2015.1018391
Chen, L.; Wang, Y.; Li, X.; MacAdam J. W. and Zhang, Y. (2023). Interaction between plants and epiphytic lactic acid bacteria that affect plant silage fermentation. Frontiers in Microbiology, 14, 1164904. https://doi.org/10.3389/fmicb.2023.1164904 DOI: https://doi.org/10.3389/fmicb.2023.1164904
Coblentz, W. K.; Akins, M. S.; Kalscheur, K. F.; Brink, G. E. and Cavadini, J. S. (2018). Effects of growth stage and growing degree day accumulations on triticale forages: 2. In vitro disappearance of neutral detergent fiber. Journal of Dairy Science, 101(10), 8986-9003. https://doi.org/10.3168/jds.2018-14867 DOI: https://doi.org/10.3168/jds.2018-14867
Delagarde, R.; Peyraud, J. L.; Delaby, L. and Faverdin, P. (2000). Vertical distribution of biomass, chemical composition and pepsin-cellulase digestibility in a perennial ryegrass sward: Interaction with month of year, regrowth age and time of day. Animal Feed Science and Technology, 84(1-2), 49-68. https://doi.org/10.1016/S0377-8401(00)00114-0 DOI: https://doi.org/10.1016/S0377-8401(00)00114-0
Dini, Y.; Gere, J. I.; Cajarville, C. and Ciganda, V. S. (2017). Using highly nutritious pastures to mitigate enteric methane emissions from cattle grazing systems in South America. Animal Production Science, 58(12), 2329-2334. https://doi.org/10.1071/AN16803 DOI: https://doi.org/10.1071/AN16803
Esen, S. (2023). Optimizing ruminant nutrition: Insights from a comprehensive analysis of silage composition and in vitro gas production dynamics using nonlinear models. Biosystems, 234, 105062. https://doi.org/10.1016/j.biosystems.2023.105062 DOI: https://doi.org/10.1016/j.biosystems.2023.105062
Fernández-Turren, G.; Repetto, J. L.; Arroyo, J. M.; Pérez-Ruchel, A. and Cajarville, C. (2020) Lamb fattening under intensive pasture-based systems: a review. Animals, 10(3), 382. https://doi.org/10.3390/ani10030382 DOI: https://doi.org/10.3390/ani10030382
Hall, M. B. and Mertens, D. R. (2023). Comparison of alternative neutral detergent fiber methods to the AOAC definitive method. Journal of Dairy Science, 106(8), 5364-5378. https://doi.org/10.3168/jds.2022-22847 DOI: https://doi.org/10.3168/jds.2022-22847
Huhtanen, P.; Seppälä, A.; Ahvenjärvi, S. and Rinne, M. (2008). Prediction of in vivo neutral detergent fiber digestibility and digestion rate of potentially digestible neutral detergent fiber: Comparison of models. Journal of Animal Science, 86(10), 2657-2669. https://doi.org/10.2527/jas.2008-0894 DOI: https://doi.org/10.2527/jas.2008-0894
Huntington, G. B. and Burns, J. C. (2008). The interaction of harvesting time of day of switchgrass hay and ruminal degradability of supplemental protein offered to beef steers. Journal of Animal Science, 86(1), 159-166. https://doi.org/10.2527/jas.2006-701 DOI: https://doi.org/10.2527/jas.2006-701
Instituto Nacional de Investigación Agropecuaria. (2023). Banco de datos agroclimático. Montevideo, Uruguay. http://www.inia.uy/gras/Clima/Banco-datos-agroclimatico
Kagan, I. A. (2022). Water- and ethanol-soluble carbohydrates of temperate grass pastures: a review of factors affecting concentration and composition. Journal of Equine Veterinary Science, 110, 103866. https://doi.org/10.1016/j.jevs.2022.103866 DOI: https://doi.org/10.1016/j.jevs.2022.103866
Moorby, J. M. and Fraser, M. D. (2021). Review: New feeds and new feeding systems in intensive and semi-intensive forage-fed ruminant livestock systems. Animal, 15(S1), 100297. https://doi.org/10.1016/j.animal.2021.100297 DOI: https://doi.org/10.1016/j.animal.2021.100297
Pozo, C. A.; Kozloski, G. V.; Cuffia, M.; Repetto, J. L. and Cajarville, C. (2022). Changing the grazing session from morning to afternoon or including tannins in the diet was effective in decreasing the urinary nitrogen of dairy cows fed a total mixed ration and herbage. Journal of Dairy Science, 105(6), 4987-5003. https://doi.org/10.3168/jds.2021-21149 DOI: https://doi.org/10.3168/jds.2021-21149
Rose, M. F.; Waldron, B. L.; Isom, S. C.; Peel, M. D.; Thornton, K. J.; Miller, R. L.; Rood, K. A.; Hadfield, J. A.; Long, J.; Henderson, B. and Creech, J. E. (2021). The effects of organic grass and grass-birdsfoot trefoil pastures on Jersey heifer development: Herbage characteristics affecting intake. Journal of Dairy Science, 104(10), 10879-10895. https://doi.org/10.3168/jds.2020-19563 DOI: https://doi.org/10.3168/jds.2020-19563
Sakiroglu, M.; Dong, C.; Hall, M. B.; Jungers, J. and Picasso, V. (2020). How does nitrogen and forage harvest affect belowground biomass and nonstructural carbohydrates in dual-use Kernza intermediate wheatgrass? Crop Science, 60(5), 2562-2573. https://doi.org/10.1002/csc2.20239 DOI: https://doi.org/10.1002/csc2.20239
Smith, W. B.; Miller, M. D.; Crossland, W. L.; Callaway, T. R.; Tedeschi, L. O. and Rouquette Jr., F. M. (2019). In vitro gas production including methane from bermudagrasses supplemented with dried distillers grains with solubles. Applied Animal Science, 36(2), 172-182. https://doi.org/10.15232/aas.2019-01916 DOI: https://doi.org/10.15232/aas.2019-01916
Soil Survey Staff. (2022). Keys to soil taxonomy - 13th edition. United States Department of Agriculture, Natural Resources Conservation Service. https://nrcspad.sc.egov.usda.gov/DistributionCenter/product.aspx?ProductID=1709#:~:text=Natural%20Resources%20Conservation%20Service&text=Keys%20to%20Soil%20Taxonomy%2D13th%20Edition%20provides%20the%20taxonomic%20keys,is%20available%20in%20PDF%20format.
Tebot, I.; Cajarville, C.; Repetto, J. L. and Cirio, A. (2012). Supplementation with non-fibrous carbohydrates reduced fiber digestibility and did not improve microbial protein synthesis in sheep fed fresh forage of two nutritive values. Animal, 6(4), 617-623. https://doi.org/10.1017/S1751731111002011 DOI: https://doi.org/10.1017/S1751731111002011
Torres, R. de N. S.; Bertoco, J. P. A.; de Arruda, M. C. G.; Coelho, L. M.; Paschoaloto, J. R.; Júnior, G. A. A.; Ezequiel, J. M. B. and Almeida, M. T. C. (2021). Meta-analysis to evaluate the effect of including molasses in the diet for dairy cows on performance, milk fat synthesis and milk fatty acid. Livestock Science, 250, 104551. https://doi.org/10.1016/j.livsci.2021.104551 DOI: https://doi.org/10.1016/j.livsci.2021.104551
Williams, B. A.; Bosch, M. W.; Boer, H.; Verstegen, M. W. A. and Tamminga, S. (2005). An in vitro batch culture method to assess potential fermentability of feed ingredients for monogastric diets. Animal Feed Science and Technology, 123-124(P1), 445-462. https://doi.org/10.1016/j.anifeedsci.2005.04.031 DOI: https://doi.org/10.1016/j.anifeedsci.2005.04.031
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Política sobre Derechos de autor:Los autores que publican en la revista se acogen al código de licencia creative commons 4.0 de atribución, no comercial, sin derivados.
Es decir, que aún siendo la Revista Acta Agronómica de acceso libre, los usuarios pueden descargar la información contenida en ella, pero deben darle atribución o reconocimiento de propiedad intelectual, deben usarlo tal como está, sin derivación alguna y no debe ser usado con fines comerciales.