Publicado

2023-09-05

Antifungal Resistance: A Growing Concern

Resistencia antifúngica: una creciente preocupación

DOI:

https://doi.org/10.15446/abc.v28n3.104736

Palabras clave:

Antifungal Agents, Drug Resistance, Fungal, Invasive Fungal Infections, Mycoses, Public health (en)
Antifúngicos, Farmacorresistencia Fúngica, Infecciones Fúngicas Invasoras, Micosis, Salud Pública (es)

Descargas

Autores/as

Globally, the increasing number of drug-resistant human pathogens represents a major threat to public health. Among these pathogens, fungi that have acquired resistance to the already scarce arsenal of antifungals are of particular significance, as they present therapeutic challenges that increase morbidity and mortality rates. Particularly, most mycoses are opportunistic since they mainly affect hosts with a weakened immune system, including patients with cancer, hematological malignancies, prolonged neutropenia, solid organ transplants, HIV/AIDS, patients in intensive care units, using central venous catheters or on dialysis, using corticosteroids, among others. In most cases, fungal infections have a significant medical and economic burden that outweighs the burden of the underlying disease alone and changes the outcome. In addition, the treatment for mycoses, which consists of four classes of antifungals described several decades ago, polyenes, flucytosine, azoles, and echinocandins, continues to be a major challenge. With the increase in patients at risk, the incidence of mycoses is therefore a growing concern. Considering as well, the scarcity of drugs, together with toxicity, the high price of some formulations, the low availability in low-resource countries, and the development of resistance, there is an urgent need to discover new antifungals or therapeutic strategies or to modify the existing molecules with antifungal activity. This reflection article reveals that various of the most common human fungal pathogens have had the ability to acquire antifungal resistance as antifungal drugs are developed.

Mundialmente, el creciente número de patógenos humanos resistentes a fármacos representa una importante amenaza para la salud pública. Entre estos patógenos, los hongos que han adquirido resistencia al escaso arsenal de antifúngicos son de particular significancia, porque presentan desafíos terapéuticos que aumentan la morbilidad y mortalidad. Particularmente, la mayoría de las micosis son oportunistas porque afectan especialmente a huéspedes con un sistema inmunológico debilitado, incluyendo pacientes con cáncer, neoplasias hematológicas y neutropenia prolongada, trasplante de órganos sólidos, VIH/SIDA, pacientes en unidades de cuidado intensivo, usando catéteres venosos centrales o en diálisis, usando corticosteroides, entre otros. Generalmente, las infecciones fúngicas tienen una carga médica y económica significativa que supera la carga de la enfermedad subyacente por sí sola y modifica el panorama de su desenlace. Por otro lado, el tratamiento para las micosis, que consiste en cuatro clases de antifúngicos descritos ya hace varias décadas, polienos, flucitosina, azoles y equinocandinas, sigue siendo un desafío importante. Con el incremento de pacientes en riesgo, la incidencia de las micosis es entonces una preocupación creciente. Considerando además la escasez de fármacos, su toxicidad, el alto precio de algunas formulaciones, la poca disponibilidad en países de escasos recursos y el desarrollo de resistencia, existe una necesidad urgente de descubrir nuevos antifúngicos o estrategias terapéuticas o de modificar las moléculas existentes con actividad antimicótica. En este artículo de reflexión se revela que varios de los hongos patógenos humanos más comunes han tenido la capacidad de adquirir resistencia antifúngica a medida que se desarrollan drogas antifúngicas.

Referencias

Abdul-Samad, S., Arumugham, G., and Yasin, M. S. (1989). Sensitivity of yeasts to amphotericin B and 5-fluorocytosine. Malays J Pathol, 11, 37-42. https://www.ncbi.nlm.nih.gov/pubmed/2632999 DOI: https://doi.org/10.1542/pir.11.2.37

Almeida, F., Wolf, J. M., da Silva, T. A., DeLeon-Rodriguez, C. M., Rezende, C. P., Pessoni, A. M., Fernandes, F. F., Silva-Rocha, R., Martinez, R., Rodrigues, M. L., Roque-Barreira, M. C., and Casadevall, A. (2017). Galectin-3 impacts Cryptococcus neoformans infection through direct antifungal effects. Nat Commun, 8(1968). https://doi.org/10.1038/s41467-017-02126-7 DOI: https://doi.org/10.1038/s41467-017-02126-7

Arias, A., Arevalo, M. P., Andreu, A., Rodriguez, C., and Sierra, A. (1994). In vitro susceptibility of 545 isolates of Candida spp. to four antifungal agents. Mycoses, 37(7-8), 285-289. https://doi.org/10.1111/j.1439-0507.1994.tb00428.x DOI: https://doi.org/10.1111/j.1439-0507.1994.tb00428.x

Baddley, J. W. (2011). Clinical risk factors for invasive aspergillosis. Med Mycol, 49(Suppl 1), S7-S12. https://doi.org/10.3109/13693786.2010.505204 DOI: https://doi.org/10.3109/13693786.2010.505204

Badiee, P., and Hashemizadeh, Z. (2014). Opportunistic invasive fungal infections: diagnosis and clinical management. Indian J Med Res, 139(2), 195-204. https://www.ncbi.nlm.nih.gov/pubmed/24718393

Benedict, K., and Park, B. J. (2014). Invasive fungal infections after natural disasters. Emerg Infect Dis, 20(3), 349-355. https://doi.org/10.3201/eid2003.131230 DOI: https://doi.org/10.3201/eid2003.131230

Block, E. R., Jennings, A. E., and Bennett, J. E. (1973). 5-fluorocytosine resistance in Cryptococcus neoformans. Antimicrob Agents Chemother, 3(6), 649-656. https://doi.org/10.1128/AAC.3.6.649 DOI: https://doi.org/10.1128/AAC.3.6.649

Bongomin, F., Gago, S., Oladele, R. O., and Denning, D. W. (2017). Global and multi-national prevalence of fungal diseases-estimate precision. J Fungi (Basel), 3(4). https://doi.org/10.3390/jof3040057 DOI: https://doi.org/10.3390/jof3040057

Brown, G. D., Denning, D. W., and Levitz, S. M. (2012). Tackling human fungal infections. Science, 336(6082), 647. https://doi.org/10.1126/science.1222236 DOI: https://doi.org/10.1126/science.1222236

CDC. (2019). Antibiotic resistance threats in the United States. Retrieved 10 june 2022 from www.cdc.gov/DrugResistance/Biggest-Threats.html

Chowdhary, A., Anil Kumar, V., Sharma, C., Prakash, A., Agarwal, K., Babu, R., Dinesh, K. R., Karim, S., Singh, S. K., Hagen, F., and Meis, J. F. (2014). Multidrugresistant endemic clonal strain of Candida auris in India. Eur J Clin Microbiol Infect Dis, 33(6), 919-926. https://doi.org/10.1007/s10096-013-2027-1 DOI: https://doi.org/10.1007/s10096-013-2027-1

Cortes, J. A., Jaimes, J. A., and Leal, A. L. (2013). [Incidence and prevalence of candidemia in critically ill patients in Colombia]. Rev Chilena Infectol, 30(6), 599-604. https://doi.org/10.4067/S0716-10182013000600004 DOI: https://doi.org/10.4067/S0716-10182013000600004

Denning, D. W. (2003). Echinocandin antifungal drugs. Lancet, 362(9390), 1142-1151. https://doi.org/10.1016/S0140-6736(03)14472-8 DOI: https://doi.org/10.1016/S0140-6736(03)14472-8

Denning, D. W., Venkateswarlu, K., Oakley, K. L., Anderson, M. J., Manning, N. J., Stevens, D. A., Warnock, D. W., and Kelly, S. L. (1997). Itraconazole resistance in Aspergillus fumigatus. Antimicrob Agents Chemother, 41(6), 1364-1368. https://doi.org/10.1128/AAC.41.6.1364 DOI: https://doi.org/10.1128/AAC.41.6.1364

Duschinsky, R., Pleven, E., and Heidelberger, C. (1957). The synthesis of 5-fluoropyrimidines. J. Am. Chem. Soc, 79(16), 4559-4560. https://doi.org/10.1021/ja01573a087 DOI: https://doi.org/10.1021/ja01573a087

Dutcher, J. D., Gold, W., Pagano, J. F., and Vandeputte, J. (1959). Amphotericin b, its production, and its salts (USA Patent Office No. 2,908,611. Serial No. 478,014).

Firacative, C. (2020). Invasive fungal disease in humans: are we aware of the real impact? Mem. Inst. Oswaldo. Cruz, 115, e200430. https://doi.org/10.1590/0074-02760200430 DOI: https://doi.org/10.1590/0074-02760200430

Fisher, M. C., Alastruey-Izquierdo, A., Berman, J., Bicanic, T., Bignell, E. M., Bowyer, P., Bromley, M., Bruggemann, R., Garber, G., Cornely, O. A., Gurr, S. J., Harrison, T. S., Kuijper, E., Rhodes, J., Sheppard, D. C., Warris, A., White, P. L., Xu, J., Zwaan, B., and Verweij, P. E. (2022). Tackling the emerging threat of antifungal resistance to human health. Nat Rev Microbiol, 20, 557-571. https://doi.org/10.1038/s41579-022-00720-1 DOI: https://doi.org/10.1038/s41579-022-00720-1

Ghannoum, M. A., and Rice, L. B. (1999). Antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin Microbiol Rev, 12(4), 501-517. https://www.ncbi.nlm.nih.gov/pubmed/10515900 DOI: https://doi.org/10.1128/CMR.12.4.501

Hernandez, S., Lopez-Ribot, J. L., Najvar, L. K., McCarthy, D. I., Bocanegra, R., and Graybill, J. R. (2004). Caspofungin resistance in Candida albicans: correlating clinical outcome with laboratory susceptibility testing of three isogenic isolates serially obtained from a patient with progressive Candida esophagitis. Antimicrob Agents Chemother, 48(4), 1382-1383. https://doi.org/10.1128/AAC.48.4.1382-1383.2004 DOI: https://doi.org/10.1128/AAC.48.4.1382-1383.2004

Howard, S. J., Webster, I., Moore, C. B., Gardiner, R. E., Park, S., Perlin, D. S., and Denning, D. W. (2006). Multiazole resistance in Aspergillus fumigatus. Int J Antimicrob Agents, 28(5), 450-453. https://doi.org/10.1016/j.ijantimicag.2006.08.017 DOI: https://doi.org/10.1016/j.ijantimicag.2006.08.017

Jakab, K., Kelemen, E., Prinz, G., and Torok, I. (1990). Amphotericin-resistant invasive hepatosplenic candidiasis controlled by fluconazole. Lancet, 335(8687), 473-474. https://doi.org/10.1016/0140-6736(90)90706-b DOI: https://doi.org/10.1016/0140-6736(90)90706-B

Kelly, S. L., Lamb, D. C., Taylor, M., Corran, A. J., Baldwin, B. C., and Powderly, W. G. (1994). Resistance to amphotericin B associated with defective sterol delta 8-->7 isomerase in a Cryptococcus neoformans strain from an AIDS patient. FEMS Microbiol Lett, 122(1-2), 39-42. https://doi.org/10.1111/j.1574-6968.1994.tb07140.x DOI: https://doi.org/10.1111/j.1574-6968.1994.tb07140.x

Khan, Z., Ahmad, S., Al-Sweih, N., Joseph, L., Alfouzan, W., and Asadzadeh, M. (2018). Increasing prevalence, molecular characterization and antifungal drug susceptibility of serial Candida auris isolates in Kuwait. PLoS One, 13(4), e0195743. https://doi.org/10.1371/journal.pone.0195743 DOI: https://doi.org/10.1371/journal.pone.0195743

Kohler, J. R., Hube, B., Puccia, R., Casadevall, A., and Perfect, J. R. (2017). Fungi that infect humans. Microbiol Spectr, 5(3). https://doi.org/10.1128/microbiolspec.FUNK-0014-2016 DOI: https://doi.org/10.1128/microbiolspec.FUNK-0014-2016

Kwon-Chung, K. J., Fraser, J. A., Doering, T. L., Wang, Z. A., Janbon, G., Idnurm, A., and Bahn, Y. S. (2014). Cryptococcus neoformans and Cryptococcus gattii, the etiologic agents of cryptococcosis. Cold Spring Harb Perspect Med, 4(7), a019760. https://doi.org/10.1101/cshperspect.a019760 DOI: https://doi.org/10.1101/cshperspect.a019760

Law, D., Moore, C. B., Wardle, H. M., Ganguli, L. A., Keaney, M. G. L., and Denning, D. W. (1994). High prevalence of antifungal resistance in Candida spp. from patients with AIDS. J Antimicrob Chemother, 34(5), 659-668. https://doi.org/10.1093/jac/34.5.659 DOI: https://doi.org/10.1093/jac/34.5.659

LiverTox (2012a): Clinical and Research Information on Drug-Induced Liver Injury. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases. 2012 - Antifungal Agents. 2017 May 18. PMID: 31643715. https://www.ncbi.nlm.nih.gov/pubmed/31643715

LiverTox (2012b): Clinical and Research Information on Drug-Induced Liver Injury. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases; 2012 - Flucytosine, 2018 Feb 2. PMDI 31643936. https://www.ncbi.nlm.nih.gov/pubmed/31643936

McCarty, T. P., and Pappas, P. G. (2016). Invasive candidiasis. Infect Dis Clin North Am, 30(1), 103-124. https://doi.org/10.1016/j.idc.2015.10.013 DOI: https://doi.org/10.1016/j.idc.2015.10.013

Morris, M. I., and Villmann, M. (2006). Echinocandins in the management of invasive fungal infections, part 1. Am J Health Syst Pharm, 63(18), 1693-1703. https://doi.org/10.2146/ajhp050464.p1 DOI: https://doi.org/10.2146/ajhp050464.p1

Mourad, A., and Perfect, J. R. (2018). The war on cryptococcosis: a review of the antifungal arsenal. Mem Inst Oswaldo Cruz, 113(7), e170391. https://doi.org/10.1590/0074-02760170391 DOI: https://doi.org/10.1590/0074-02760170391

Niimi, K., Monk, B. C., Hirai, A., Hatakenaka, K., Umeyama, T., Lamping, E., Maki, K., Tanabe, K., Kamimura, T., Ikeda, F., Uehara, Y., Kano, R., Hasegawa, A., Cannon, R. D., and Niimi, M. (2010). Clinically significant micafungin resistance in Candida albicans involves modification of a glucan synthase catalytic subunit GSC1 (FKS1) allele followed by loss of heterozygosity. J Antimicrob Chemother, 65(5), 842-852. https://doi.org/10.1093/jac/dkq073 DOI: https://doi.org/10.1093/jac/dkq073

Niimi, K., Woods, M. A., Maki, K., Nakayama, H., Hatakenaka, K., Chibana, H., Ikeda, F., Ueno, K., Niimi, M., Cannon, R. D., and Monk, B. C. (2012). Reconstitution of highlevel micafungin resistance detected in a clinical isolate of Candida glabrata identifies functional homozygosity in glucan synthase gene expression. J Antimicrob Chemother, 67(7), 1666-1676. https://doi.org/10.1093/jac/dks112 DOI: https://doi.org/10.1093/jac/dks112

Ostrosky-Zeichner, L., Casadevall, A., Galgiani, J. N., Odds, F. C., and Rex, J. H. (2010). An insight into the antifungal pipeline: selected new molecules and beyond. Nat Rev Drug Discov, 9(9), 719-727. https://doi.org/10.1038/nrd3074 DOI: https://doi.org/10.1038/nrd3074

Pappas, P. G., Kauffman, C. A., Andes, D. R., Clancy, C. J., Marr, K. A., Ostrosky-Zeichner, L., Reboli, A. C., Schuster, M. G., Vazquez, J. A., Walsh, T. J., Zaoutis, T. E., and Sobel, J. D. (2016). Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clin Infect Dis, 62(4), 1-50. https://doi.org/10.1093/cid/civ933 DOI: https://doi.org/10.1093/cid/civ933

Pawlik, B., and Filip, E. (1993). [Candida parapsilosis in reproductive organ infections]. Med Dosw Mikrobiol, 45(2), 249-252. https://www.ncbi.nlm.nih.gov/pubmed/8309308

Peetermans, W., Bobbaers, H., Verhaegen, J., and Vandepitte, J. (1993). Fluconazole-resistant Cryptococcus neoformans var gattii in an AIDS patient. Acta Clin Belg, 48(6), 405-409. https://doi.org/10.1080/17843286.1993.11718338 DOI: https://doi.org/10.1080/17843286.1993.11718338

Perfect, J. R. (2017). The antifungal pipeline: a reality check. Nat Rev Drug Discov, 16(9), 603-616. https://doi.org/10.1038/nrd.2017.46 DOI: https://doi.org/10.1038/nrd.2017.46

Perfect, J. R., and Ghannoum, M. (2020). Emerging issues in antifungal resistance. Infect Dis Clin North Am, 34(4), 921-943. https://doi.org/10.1016/j.idc.2020.05.003 DOI: https://doi.org/10.1016/j.idc.2020.05.003

Pfaller, M. A., Boyken, L., Hollis, R. J., Kroeger, J., Messer, S. A., Tendolkar, S., and Diekema, D. J. (2008). In vitro susceptibility of invasive isolates of Candida spp. to anidulafungin, caspofungin, and micafungin: six years of global surveillance. J Clin Microbiol, 46(1), 150-156. https://doi.org/10.1128/JCM.01901-07 DOI: https://doi.org/10.1128/JCM.01901-07

Pfaller, M. A., Diekema, D. J., Messer, S. A., Hollis, R. J., and Jones, R. N. (2003a). In vitro activities of caspofungin compared with those of fluconazole and itraconazole against 3,959 clinical isolates of Candida spp., including 157 fluconazole-resistant isolates. Antimicrob Agents Chemother, 47(3), 1068-1071. https://doi.org/10.1128/AAC.47.3.1068-1071.2003 DOI: https://doi.org/10.1128/AAC.47.3.1068-1071.2003

Pfaller, M. A., Messer, S. A., Boyken, L., Rice, C., Tendolkar, S., Hollis, R. J., and Diekema, D. J. (2003b). Caspofungin activity against clinical isolates of fluconazole-resistant Candida. J Clin Microbiol, 41(12), 5729-5731. https://doi.org/10.1128/JCM.41.12.5729-5731.2003 DOI: https://doi.org/10.1128/JCM.41.12.5729-5731.2003

PubChem. (2004a). Compound Summary for CID 71616, Voriconazole. National Library of Medicine (US), National Center for Biotechnology Information. Retrieved 13 june 2022 from https://pubchem.ncbi.nlm.nih.gov/compound/Voriconazole

PubChem. (2004b). Substance Record for SID 135107231, F0XDI6ZL63. National Library of Medicine (US), National Center for Biotechnology Information. Retrieved 13 june 2022from https://pubchem.ncbi.nlm.nih.gov/substance/135107231

Rajasingham, R., Govender, N. P., Jordan, A., Loyse, A., Shroufi, A., Denning, D. W., Meya, D. B., Chiller, T. M., and Boulware, D. R. (2022). The global burden of HIV-associated cryptococcal infection in adults in 2020: a modelling analysis. The Lancet Infectious Diseases, 22(12), 1748-1755. https://doi.org/10.1016/S1473-3099(22)00499-6 DOI: https://doi.org/10.1016/S1473-3099(22)00499-6

Sachs, M. K., Paluzzi, R. G., Moore, J. H., Jr., Fraimow, H. S., and Ost, D. (1990). Amphotericin-resistant Aspergillus osteomyelitis controlled by itraconazole. Lancet, 335(8703), 1475. https://doi.org/10.1016/0140-6736(90)91513-a DOI: https://doi.org/10.1016/0140-6736(90)91513-A

Safe, L. M., Safe, S. H., Subden, R. E., and Morris, D. C. (1977). Sterol content and polyene antibiotic resistance in isolates of Candida krusei, Candida parakrusei, and Candida tropicalis. Can. J. Microbiol, 23(4), 398-401. https://doi.org/10.1139/m77-058 DOI: https://doi.org/10.1139/m77-058

Sarma, S., Kumar, N., Sharma, S., Govil, D., Ali, T., Mehta, Y., and Rattan, A. (2013). Candidemia caused by amphotericin B and fluconazole resistant Candida auris. Indian. J. Med. Microbiol, 31(1), 90-91. https://doi.org/10.4103/0255-0857.108746 DOI: https://doi.org/10.4103/0255-0857.108746

Schmiedel, Y., and Zimmerli, S. (2016). Common invasive fungal diseases: an overview of invasive candidiasis, aspergillosis, cryptococcosis, and Pneumocystis pneumonia. Swiss Med Wkly, 146, 14281. https://doi.org/10.4414/smw.2016.14281 DOI: https://doi.org/10.4414/smw.2016.14281

Seidenfeld, S. M., Cooper, B. H., Smith, J. W., Luby, J. P., and Mackowiak, P. A. (1983). Amphotericin B tolerance: a characteristic of Candida parapsilosis not shared by other Candida species. J. Infect. Dis, 147(1), 116-119. https://doi.org/10.1093/infdis/147.1.116 DOI: https://doi.org/10.1093/infdis/147.1.116

Sionov, E., Chang, Y. C., Garraffo, H. M., and Kwon-Chung, K. J. (2009). Heteroresistance to fluconazole in Cryptococcus neoformans is intrinsic and associated with virulence. Antimicrob Agents Chemother, 53(7), 2804-2815. https://doi.org/10.1128/AAC.00295-09 DOI: https://doi.org/10.1128/AAC.00295-09

Szymański, M., Chmielewska, S., Czyżewska, U., Malinowska, M., and Tylicki, A. (2022). Echinocandins - structure, mechanism of action and use in antifungal therapy. J. Enzyme. Inhib. Med. Chem, 37(1), 876-894. https://doi.org/10.1080/14756366.2022.2050224 DOI: https://doi.org/10.1080/14756366.2022.2050224

Tanaka, K., Kohno, S., Maesaki, S., Mitsutake, K., Miyazaki, H., Miyazaki, T., Tomono, K., Kaku, M., Koga, H., and Hara, K. (1993). [Pulmonary cryptococcosis treated by combination therapy of fluconazole plus flucytosine]. Nihon Kyobu Shikkan Gakkai Zasshi, 31(12), 1528-1533. https://www.ncbi.nlm.nih.gov/pubmed/8121088

von Lilienfeld-Toal, M., Wagener, J., Einsele, H., Cornely, O. A., and Kurzai, O. (2019). Invasive fungal infection. Dtsch Arztebl Int, 116(16), 271-278. https://doi.org/10.3238/arztebl.2019.0271 DOI: https://doi.org/10.3238/arztebl.2019.0271

Warnock, D. W., Burke, J., Cope, N. J., Johnson, E. M., von Fraunhofer, N. A., and Williams, E. W. (1988). Fluconazole resistance in Candida glabrata. Lancet, 332(8623), 1310. https://doi.org/10.1016/s0140-6736(88)92919-4 DOI: https://doi.org/10.1016/S0140-6736(88)92919-4

White, A., and Goetz, M. B. (1994). Azole-resistant Candida albicans: report of two cases of resistance to fluconazole and review. Clin Infect Dis, 19(4), 687-692. https://doi.org/10.1093/clinids/19.4.687 DOI: https://doi.org/10.1093/clinids/19.4.687

WHO. (2022a). Guidelines for diagnosing, preventing and managing cryptococcal disease among adults, adolescents and children living with HIV. (W. H. Organization, Ed.). Licence: CC BY-NC-SA 3.0 IGO.

WHO. (2022b). WHO fungal priority pathogens list to guide research, development and public health action (W. H. Organization, Ed.). World Health Organization.

Woods, R. A., Bard, M., Jackson, I. E., and Drutz, D. J. (1974). Resistance to polyene antibiotics and correlated sterol changes in two isolates of Candida tropicalis from a patient with an amphotericin B-resistant funguria. J. Infect. Dis, 129(1), 53-58. https://doi.org/10.1093/infdis/129.1.53 DOI: https://doi.org/10.1093/infdis/129.1.53

Cómo citar

APA

Firacative, C. (2023). Antifungal Resistance: A Growing Concern. Acta Biológica Colombiana, 28(3), 368–375. https://doi.org/10.15446/abc.v28n3.104736

ACM

[1]
Firacative, C. 2023. Antifungal Resistance: A Growing Concern. Acta Biológica Colombiana. 28, 3 (sep. 2023), 368–375. DOI:https://doi.org/10.15446/abc.v28n3.104736.

ACS

(1)
Firacative, C. Antifungal Resistance: A Growing Concern. Acta biol. Colomb. 2023, 28, 368-375.

ABNT

FIRACATIVE, C. Antifungal Resistance: A Growing Concern. Acta Biológica Colombiana, [S. l.], v. 28, n. 3, p. 368–375, 2023. DOI: 10.15446/abc.v28n3.104736. Disponível em: https://revistas.unal.edu.co/index.php/actabiol/article/view/104736. Acesso em: 14 nov. 2025.

Chicago

Firacative, Carolina. 2023. «Antifungal Resistance: A Growing Concern». Acta Biológica Colombiana 28 (3):368-75. https://doi.org/10.15446/abc.v28n3.104736.

Harvard

Firacative, C. (2023) «Antifungal Resistance: A Growing Concern», Acta Biológica Colombiana, 28(3), pp. 368–375. doi: 10.15446/abc.v28n3.104736.

IEEE

[1]
C. Firacative, «Antifungal Resistance: A Growing Concern», Acta biol. Colomb., vol. 28, n.º 3, pp. 368–375, sep. 2023.

MLA

Firacative, C. «Antifungal Resistance: A Growing Concern». Acta Biológica Colombiana, vol. 28, n.º 3, septiembre de 2023, pp. 368-75, doi:10.15446/abc.v28n3.104736.

Turabian

Firacative, Carolina. «Antifungal Resistance: A Growing Concern». Acta Biológica Colombiana 28, no. 3 (septiembre 5, 2023): 368–375. Accedido noviembre 14, 2025. https://revistas.unal.edu.co/index.php/actabiol/article/view/104736.

Vancouver

1.
Firacative C. Antifungal Resistance: A Growing Concern. Acta biol. Colomb. [Internet]. 5 de septiembre de 2023 [citado 14 de noviembre de 2025];28(3):368-75. Disponible en: https://revistas.unal.edu.co/index.php/actabiol/article/view/104736

Descargar cita

CrossRef Cited-by

CrossRef citations1

1. Silvia Katherine Carvajal, Javier Melendres, Patricia Escandón, Carolina Firacative, Alexandre Alanio. (2023). Reduced Susceptibility to Azoles in Cryptococcus gattii Correlates with the Substitution R258L in a Substrate Recognition Site of the Lanosterol 14-α-Demethylase. Microbiology Spectrum, 11(4) https://doi.org/10.1128/spectrum.01403-23.

Dimensions

PlumX

Visitas a la página del resumen del artículo

424

Descargas

Los datos de descargas todavía no están disponibles.