Publicado
Vegetative growth of sorghum cultivars under increasing air temperature
Crecimiento vegetativo de cultivares de sorgo en condiciones de aumento de la temperatura del aire
DOI:
https://doi.org/10.15446/abc.v30n2.109430Palabras clave:
Enzymatic activity, Heat stress, Production, Sorghum bicolor (en)Actividad enzimática, Estrés por calor, Producción, Sorghum bicolor (es)
Descargas
The impact of climate on sorghum cultivation is generated mainly by scenarios of increased temperature which can affect plant development and cause losses in crop yield. Thus, this work aimed to evaluate sorghum cultivars tolerant to high temperatures through the evaluation of biometric, enzymatic, and productive parameters. The experiment was carried out in growth chambers, with seven sorghum cultivars (AGRI 002E, BRS 506, BRS 716, SF 15, IAC Santa Elisa, BRS Ponta Negra, and Volumax) and four temperature regimes (20.0 - 26.0 - 33.0 °C; 24.8 - 30.8 - 37.8 °C; 26.3 -32.3 - 39.3 °C and 27.8 - 33.8 - 40.8 °C), in a completely randomized design, with four replications. The biometric, biochemical, and productive parameters were evaluated. The cultivars AGRI-002E, BRS 506, BRS Ponta Negra, and Volumax showed better defense of the antioxidant system with increasing air temperature, with less accumulation of reactive oxygen species and greater biomass production. These cultivars can be classified as tolerant to an increase of up to 6.3 °C in air temperature, with emphasis on cultivar BRS 506, which showed higher production of stem dry mass.
El impacto del clima en el cultivo del sorgo, generado principalmente por escenarios de aumento de temperatura, puede afectar el desarrollo de las plantas y ocasionar pérdidas en el rendimiento de los cultivos. Así, el objetivo de este trabajo fue seleccionar cultivares de sorgo tolerantes a altas temperaturas, mediante la evaluación de parámetros biométricos, enzimáticos y productivos. El experimento se realizó en cámaras de crecimiento, con siete cultivares de sorgo (AGRI-002E, BRS 506, BRS 716, SF 15, IAC Santa Elisa, BRS Ponta Negra y Volumax) y cuatro regímenes de temperatura (20.0 - 26.0 - 33.0 °C; 24.8 - 30.8 -37.8 °C; 26.3 - 32.3 - 39.3 °C y 27.8 - 33.8 - 40.8 °C), en un diseño completamente al azar, con cuatro repeticiones. Se evaluaron los parámetros biométricos, bioquímicos y productivos. Los cultivares AGRI-002E, BRS 506, BRS Ponta Negra y Volumax mostraron una mejor defensa del sistema antioxidante con el aumento de la temperatura del aire, con menor acumulación de especies reactivas de oxígeno y mayor producción de biomasa. Estos cultivares pueden clasificarse como tolerantes a un aumento de hasta 6.3 °C en la temperatura del aire, con énfasis en el cultivar BRS 506, que mostró mayor producción de masa seca de tallo.
Referencias
Almeselmani, M., Deshmukh, P. S. and Sairam R. K. (2009). High temperature stress tolerance in wheat genotypes: Role of antioxidant defence enzymes. Acta Agronomica Hungarica, 57(1), 1–14. https://doi.org/10.1556/AAgr.57.2009.1.1
Angelotti, F. and Giongo, V. (2019). Ações de mitigação e adaptação frente às mudanças climáticas. In: Melo, R. F. and Voltolini, T. V. (Org.), Agricultura familiar dependente de chuva no semiárido (pp. 446-468). Embrapa: Brasília.
Awasthi, R., Gaur, P., Turner, N. C., Vadez, V., Siddique, K. H. M. and Nayyar, H. (2017). Effects of individual and combined heat and drought stress during seed filling on the oxidative metabolism and yield of chickpea (Cicer arietinum) genotypes differing in heat and drought tolerance. Crop and Pasture Science, 68(9), 823-841. https://doi.org/10.1071/CP17028
Barros, J. R. A., Guimarães, M. J. M., Silva, R. M., Rêgo, M. T. C., Melo, N. F., Chaves, A. R. M. and Angelotti, F. (2021). Selection of cowpea cultivars for high temperatura tolerance: physiological, biochemical and yield aspects. Physiology and Molecular Biology of Plants, 27(1), 1-10. https://doi.org/10.1007/s12298-020-00919-7
Baxter, A., Mittler, R. and Suzuki, N. (2014). ROS as key players in plant stress signalling. Journal of Experimental Botany, 65(5), 1229-1240. https://doi.org/10.1093/jxb/ert375
Bergamashi, H. and Bergonci J. I. (2017) As plantas e o clima: Princípios e aplicações. Agrolivros, Guaíba, pp. 352.
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. AnalyticalBiochemistry, 72(1-2), 248-254. https://doi.org/10.1006/abio.1976.9999
Butt, T. A., McCarl, B. A., Angerer, J., Dyke, P. T. and Stuth, J. W. (2005). The economic and food security implications for climate change in Mali. Climate Change, 68(1), 355-378. https://doi.org/10.1007/s10584-005-6014-0
Chalmers, R. A., Cervin, M. and Medvedev, O. N. (2022). Network Analysis. In: Medvedev, O. N., Krägeloh, C. U., Siegert, R. J.and Singh, N. N. (Eds.), Handbook of Assessment in Mindfulness Research. Springer, Cham. https://doi.org/10.1007/978-3-030-77644-2_70-1
Cheah, B. H., Jadhao, S., Vasudevan, M., Wickneswari, R. and Nadarajah, K. (2017). Identification of functionally important microRNAs from rice inflorescence at heading stage of a qdty4.1-QTL bearing near isogenic line under drought conditions. PLOS One, 12(1), 1-24. https://doi.org/10.1371/journal.pone.0186382
Choudhury, F. K., Rivero, R. M., Blumwald, E. and Mittler, R. (2017). Reactive oxygen species, abiotic stress and stress combination. The Plant Journal, 90(5), 856-867. https://doi.org/10.1111/tpj.13299
Das, K. and Roychoudhury, A. (2014). Reactive oxygen species (ROS) and response of antioxidants as ROSscavengers during environmental stress in plants. Frontiers in Environmental Science, 2(1), 1-13. https://doi.org/10.3389/fenvs.2014.00053
Ding, X., Jiang, Y., He, L., Zhou, Q., Yu, J., Hui, D. and Huang, D. (2016). Exogenous glutathione improves high root-zone temperature tolerance by modulating photosynthesis, antioxidant and osmolytes systems in cucumber seedlings. Scientific Report, 6(1), 1-12. https://doi.org/10.1038/srep35424
Djanaguiraman, M., Prasad, P. V. V., Murugan, M., Perumal, R. and Reddy, U. K. (2014). Physiological differences among sorghum (Sorghum bicolor L. Moench) genotypes under high temperature stress. Environmental and Experimental Botany, 100(1), 43-54. https://doi.org/10.1016/j.envexpbot.2013.11.013
Giannopolitis, C. N. and Ries, S. K. (1977). Superoxide Dismutases: I. Occurrence in Higher Plants. Plant Physiology, 59(2), 309-314. https://doi.org/10.1104/pp.59.2.309
Gill, S. S. and Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem, 48(12), 909-930. https://doi.org/10.1016/j.plaphy.2010.08.016
Guimarães, M. J. M., Simões, W. L., Tabosa, J. N., Camara, T. R. and Willadino, L. G. (2020). Gas exchange and enzymatic metabolism in grain sorghum varieties irrigated with saline water. Revista Brasileira de Milho e Sorgo, 19(1), 1-14. https://doi.org/10.18512/rbms2020v19e1188
Guimarães, M. J. M., Simões, W. L., Camara, T. J. R., Silva, C. U. C. and Willadino, L. G. (2018). Antioxidant defenses of irrigated forage sorghum with saline aquaculture effluent. Revista Caatinga, 31(1), 135-142. https://doi.org/10.1590/1983-21252018v31n116rc
Hasanuzzaman, M., Hossain, M. A., Silva, J. A. T. and Fujita, M. (2012). Plant responses and tolerance to abiotic oxidative stress: Antioxidant defense is a key factor. In: Venkateswarlu, B., Shanker, A., Shanker, C. and Maheswari, M. (Eds.), Crop Stress and its Management: Perspectives and Strategies (pp. 261-316). Springer, Berlin.
Hatfield, J. L. and Prueger, J. H. (2015). Temperature extremes: effect on plant growth and development. Weather and Climate Extremes, 10(1), 4-10. https://doi.org/10.1016/j.wace.2015.08.001
Havir, E. A. and Mchale, N. A. (1987). Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves. Plant Physiology, 84(2), 450- 455. https://doi.org/10.1104/pp.84.2.450
Hongyu, K., Sandanielo, V. L. M. and Oliveira Junior, G. J. (2015). Análise de Componentes Principais: resumo teórico, aplicação e interpretação. Engineering Science, 5(1), 83-90. https://doi.org/10.18607/ES201653398
IPCC. Intergovernmental Panel on Climate Change. Climate Change (2013): the physical science basis. Cambridge: University Press, (pp 1535).
IPCC. Summary for Policymakers. In: Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (Ed.), Climate Change (2021): The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge (UK): Cambridge University Press, (pp 42). https://doi.org/10.1017/9781009157896.001
Jolliffe, I. T. and Cadima, J. (2016). Principal component analysis: a review and recent developments. Philosophical Transactions A, 374(2065), 20150202. https://dx.doi.org/10.1098/rsta.2015.0202
Lobell, D. B. and Gourdji, S. M. (2012). The Influence of Climate Change on Global Crop Productivity. Plant Physiology, 160(4), 1686-1697. https://doi.org/10.1104/pp.112.208298
Mansoor, S. and Naqvi, F. N. (2013). Effect of heat stress on lipid peroxidation and antioxidant enzymes in mung vean (Vigna radiata L.) Seedlings. African Journal of Biotechnology, 12(21), 3196-3203. https://doi.org/10.5897/AJB12.2808
Matsuoka, M., Furbank, R. T., Fukayama, H. and Miyao, M. (2001). Molecular engineering of C4 photosynthesis. Annual Review of Plant and Physiology and Plant Molecular Biology, 52(1), 297–314. https://doi.org/10.1146/annurev.arplant.52.1.297
Mohammed, A. R. and Tarpley, L. (2010). Effects of high night temperature and spikelet position on yield-related parameters of rice (Oryza sativa L.) plants. European Journal of Agronomy, 33(2), 117–123. https://doi.org/10.1016/j.eja.2009.11.006
Mundia, C. W., Secchi, S., Akamani, K. and Wang, G. (2019). A Regional Comparison of Factors Affecting Global Sorghum Production: The Case of North America, Asia and Africa’s Sahel. Sustainability, 11(7), 2135. https://doi.org/10.3390/su11072135
Nakano, Y. and Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplast. Plant Cell Physiology, 22(5), 867-880. https://doi.org/10.1093/oxfordjournals.pcp.a076232
Naudts, K., Berge, J. V., Farfan, E., Rose, P., Abdelgawad, H., Ceulemans, R., Janssens, I. A., Asard, H. and Nijs, I. (2014). Future climate alleviates stress impact on grassland productivity through altered antioxidant capacity. Environmental and Experimental Botany, 99(1), 150-158. https://doi.org/10.1016/j.envexpbot.2013.11.003
Nouman, W., Basra, S. M. A., Yasmeen, A., Gull, T., Hussain, S. B., Zubair, M. and Gul, R. (2014). Seed priming improves the emergence potential, growth and antioxidant system of Moringa oleifera under saline conditions. Plant Growth Regulator, 73(1), 267-278. https://doi.org/10.1007/s10725-014-9887-y
Sage, R. F. (2004). The evolution of C4 photosynthesis. New Phytologist, 161(2), 341-370. https://doi.org/10.1111/j.1469-8137.2004.00974.x
Sage, R. F. and Kubien, D. S. (2007). The temperatura response of C3 and C4 photosynthesis. Plant, Cell & Environment, 30(9), 1086-1106. https://doi.org/10.1111/j.1365-3040.2007.01682.x
Sarkar, J., Chakraborty, B. and Chakraborty, U. (2016). Temperature stress induced antioxidative and biochemical changes in wheat (Triticum aestivum L.) Cultivars. Journal of Plant Stress Physiology, 2(1), 22-30. https://doi.org/10.19071/jpsp.2016.v2.3076
Sena, F. H. de., Lustosa, B. M., Silva, S. R. S., Falcão, H. M. and Almeida, J. S. (2021). Herbivory and leaf traits of two tree species from different successional stages in a tropical dry forest. Neotropical Biodiversity, 7(1), 66-75. https://doi.org/10.1080/23766808.2021.1953893
Schober, P., Boer, C. and Schwarte, L. A. (2018). Correlation Coefficients: Appropriate Use and Interpretation. Anesthesia & Analgesia, 126(5), 1763-1768. https://doi.org/10.1213/ANE.0000000000002864
Silva, M. J., Carneiro, P. C. S., Carneiro, J. E. S., Damasceno, C. M. B., Parrella, N. N. L. D., Pastina, M. M., Simeone, M. L. F., Schaffert, R. E. and Parrella, R. A. C. (2018). Evaluation of the potential of lines and hybrids of biomass sorghum. Industrial Crops and Products, 125(1), 379-385. https://doi.org/10.1016/j.indcrop.2018.08.022
Singh, J., Pandey, P., James, D., Chandrasekhar, K., Achary, V. M. M., Kaul, T., Tripathy, B. C. and Reddy, M. K., (2014). Enhancing C3 photosynthesis: an outlook on feasible interventions for crop improvement. Plant Biotechnology Journal, 12(9), 1217–1230. https://doi.org/110.1111/pbi.12246
Sultan, B., Roudier, P., Quirion, P., Alhassane, A., Muller, B., Dingkuhn, M., Ciais, P., Guimberteau, M., Traore, S. and Baron, C. (2013). Assessing climate change impacts on sorghum and millet yields in West Africa. Environmental Research Letters, 8(1), 1-10. http://doi.org.10.1088/1748-9326/8/1/014040
Tabosa, J. N. (2020). Sorgo: Cadernos do Semiárido – riquezas e oportunidades (pp. 84- 115). CREA-PE, Editora UFRPE, Recife.
Tack, J., Lingenfelser, J. and Jagadish, S. V. K. (2017). Disaggregating sorghum yield reductions under warming scenarios exposes narrow genetic diversity in US breeding programs. Proceedings of the National Academy of Science, 114(35), 9296-9301. https://doi.org/10.1073/pnas.1706383114
Thorpe, G. W., Reodica, M., Davies, M. J., Heeren, G., Jarolim, S., Pillay, B., Breitenbach, M., Higgins, V. J. and Dawes, L. (2013). Superoxide radicals have a protective role during H2O2 stress. Molecular Biology of the Cell, 24(18), 2876–2884. https://doi.org/10.1091/mbc.E13-01-0052
Wang, Q. L., Chen, J., He, N. and Guo, F. (2018). Metabolic Reprogramming in Chloroplasts under Heat Stress in Plants. International Journal of Molecular Sciences, 19(3), 849. https://doi.org/10.3390/ijms19030849
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
1. La aceptación de manuscritos por parte de la revista implicará, además de su edición electrónica de acceso abierto bajo licencia Attribution-NonCommercial-ShareAlike 4.0 (CC BY NC SA), la inclusión y difusión del texto completo a través del repositorio institucional de la Universidad Nacional de Colombia y en todas aquellas bases de datos especializadas que el editor considere adecuadas para su indización con miras a incrementar la visibilidad de la revista.
2. Acta Biológica Colombiana permite a los autores archivar, descargar y compartir, la versión final publicada, así como las versiones pre-print y post-print incluyendo un encabezado con la referencia bibliográfica del articulo publicado.
3. Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
4. Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos institucionales, en su página web o en redes sociales cientificas como Academia, Researchgate; Mendelay) lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).








