Publicado

2025-09-05

Histopathological alterations in the preoptic area of the native fish Piaractus orinoquensis exposed to sublethal concentrations of a glyphosate-based herbicide

Alteraciones histopatológicas en el área preóptica del pez Piaractus orinoquensis expuesto a concentraciones subletales de glifosato

DOI:

https://doi.org/10.15446/abc.v30n2.115683

Palabras clave:

Brain, Herbicide, Inflammation, Mastocyte, Toxicology (en)
Cerebro, Herbicida, Inflamación, Mastocito, Toxicología (es)

Descargas

Autores/as

Glyphosate (GP) is commonly used to control weeds in extensive and transgenic crops, which has generated environmental, ecological, and public health risks. It has been demonstrated that the presence of GP in aquatic ecosystems can affect species such as the Cachama blanca (Piaractus orinoquensis), a native species that has the highest consumption rates in Colombia. Therefore, this work evaluates the effect of a commercial formulation of glyphosate on the preoptic area of P. orinoquensis. Juveniles were exposed to sublethal concentrations (0, 1, 3, and 5 mg/L) of Roundup Activo® for 30 days. Seventy-two fish were sacrificed (per sampling), and their brains were extracted and processed for transmission electron microscopy (TEM) and high-resolution optical microscopy (HROM). Alterations were identified in the anterior zone of the preoptic area, characterized by increased mast cells, vacuolization, and lipid accumulation. A higher number of mast cells was observed in the anterior parvocellular nucleus at 1 mg/L, suggesting a first localized inflammatory response in that region of the brain. This indicates that immune processes in P. orinoquensis may be modulated by xenobiotic exposure, generating different responses. Ultrastructural analysis revealed partial mast cell degranulation at all GP concentrations. The increase of mast cells in certain neuronal nuclei could influence alterations in reproductive behavior, affect homeostasis, and, consequently, modify the dynamics and adaptability of P. orinoquensis in the natural environment.

El glifosato (GP) se utiliza ampliamente para el control de arvenses en cultivos extensivos y transgénicos lo que ha generado problemas medioambientales, ecológicos y de salud pública. Se ha demostrado que la presencia de glifosato en ecosistemas acuáticos puede afectar a especies como la Cachama blanca (Piaractus orinoquensis), una especie nativa que lidera los índices de consumo en Colombia. Por ello, este trabajo evalúa el efecto de una presentación comercial de glifosato sobre el área preóptica de P. orinoquensis. Se expusieron juveniles a concentraciones subletales (0, 1, 3 y 5 mg/L) de Roundup Activo® durante 30 días. Setenta y dos peces fueron sacrificados en cada tiempo de muestreo, y sus cerebros fueron extraídos y procesados para microscopía electrónica de transmisión (MET) y microscopía óptica de alta resolución (MOAR). Se identificaron alteraciones en la zona anterior del área preóptica, caracterizadas por un aumento de mastocitos, vacuolización y acumulación lipídica. Se observó un mayor número de mastocitos en el núcleo parvocelular anterior a 1 mg/L lo que sugiere una primera respuesta inflamatoria localizada en esa región del cerebro. Esto indica que los procesos inmunitarios en P. orinoquensis pueden ser modulados por la exposición al xenobiótico, generando diferentes respuestas. El análisis ultraestructural mostró una degranulación parcial de los mastocitos en todas las concentraciones de GP. El aumento de mastocitos en determinados núcleos neuronales podría influir en alteraciones del comportamiento reproductivo, afectar la homeostasis y, en consecuencia, modificar la dinámica y adaptabilidad de P. orinoquensis en el medio natural.

Referencias

Abdelhalim, M. A. K. and Jarrar, B. M. (2012). Histological alterations in the liver of rats induced by different gold nanoparticle sizes, doses and exposure duration. Journal of Nanobiotechnology, 10(1), 5. https://doi.org/10.1186/1477-3155-10-5

Akter, R., Pervin, M. A., Jahan, H., Rakhi, S. F., Reza, A. M. and Hossain, Z. (2020). Toxic effects of an organophosphate pesticide, Envoy 50 SC on the histopathological, hematological, and brain acetylcholinesterase activities in stinging catfish (Heteropneustes fossilis). The Journal of Basic and Applied Zoology, 81(1), 14. https://doi.org/10.1186/s41936-020-00184-w

Annett, R., Habibi, H. R. and Hontela, A. (2014). Impact of glyphosate and glyphosate‐based herbicides on the freshwater environment. Journal of Applied Toxicology, 34(5), 458–479. https://doi.org/10.1002/jat.2997

Ayoola, R. T., Olujimi, O. O., Bada, B. S. and Dedeke, G. A. (2023). Seasonal variations in the levels of glyphosate in soil, water and crops from three farm settlements in Oyo State, Nigeria. Heliyon, 9(9), e20324. https://doi.org/10.1016/j.heliyon.2023.e20324

Braz-Mota, S., Sadauskas-Henrique, H., Duarte, R. M., Val, A. L. and Almeida-Val, V. M. F. (2015). Roundup® exposure promotes gill and liver impairments, DNA damage, and inhibition of brain cholinergic activity in the Amazon teleost fish Colossoma macropomum. Chemosphere, 135, 53–60. https://doi.org/10.1016/j.chemosphere.2015.03.042

Castañeda, D. C., Ramírez, E. y Giraldo, H. (2016). Alteraciones histopatológicas de los bulbos olfatorios de cachama blanca ante una presentación comercial de glifosato (Roundup® Activo). Revista Facultad de Ciencias Básicas, 11(2), 8–17. https://doi.org/10.18359/rfcb.1294

Cerdá-Reverter, J. M. and Canosa, L. F. (2009). Neuroendocrine systems of the fish brain. In N. J. Bernier, G. Van Der Kraak, A. P. Farrell, & C. J. Brauner (Eds.), Fish neuroendocrinology (pp. 3–47). Academic Press. https://doi.org/10.1016/S1546-5098(09)28001-0

Chen, G., Shaw, M. H., Kim, Y. G. and Nuñez, G. (2009). NOD-like receptors: Role in innate immunity and inflammatory disease. Annual Review of Pathology: Mechanisms of Disease, 4(1), 365–398. https://doi.org/10.1146/annurev.pathol.4.110807.092239

Colt, J. (2007). Water quality requirements for reuse systems. Aquacultural Engineering, 34(3), 143–156. https://doi.org/10.1016/j.aquaeng.2005.08.011

Escobar, L. M. D., Ota, R. P., Machado-Allison, A., Andrade-López, J., Farias, I. P. and Hrbek, T. (2019). A new species of Piaractus (Characiformes: Serrasalmidae) from the Orinoco Basin with a redescription of Piaractus brachypomus. Journal of Fish Biology, 95(2), 411–427. https://doi.org/10.1111/jfb.13990

Eslava-Mocha, P. R., Vargas-Pulido, A. L., León-Pinzón, A. L., Velasco-Santamaría, Y. M. and Baldisserotto, B. (2019). Pathological effects and lethal concentration of two nonionic, tallowamine-polyethoxylate surfactants in white cachama Piaractus brachypomus. Water, Air, & Soil Pollution, 230(286). https://doi.org/10.1007/s11270-019-4340-5

Faria, M., Bedrossiantz, J., Ramírez, J. R. R., Mayol, M., García, G. H., Bellot, M. and Raldúa, D. (2021). Glyphosate targets fish monoaminergic systems leading to oxidative stress and anxiety. Environment International, 146, 106253. https://doi.org/10.1016/j.envint.2020.106253

Gómez, Y., Vargas, J., Portavella, M. and López, J. (2006). Spatial learning and goldfish telencephalon NMDA receptors. Neurobiology of Learning and Memory, 85(3), 252–262. https://doi.org/10.1016/j.nlm.2005.11.006

Gómez-Ramírez, E. (2013). Efecto de una presentación comercial de glifosato en alevinos de cachama blanca (Piaractus brachypomus) [Master’s dissertation, Universidad de los Llanos]. Universidad del Magdalena Repositorio. https://repositorio.unimagdalena.edu.co/items/2e6691bb-0878-4b97-8b18-aa132effa595

Grunewald, K., Schmidt, W., Unger, C. and Hanschmann, G. (2001). Behavior of glyphosate and aminomethylphosphonic acid (AMPA) in soils and water of reservoir Radeburg II catchment (Saxony/Germany). Journal of Plant Nutrition and Soil Science, 164(1), 65–70. https://doi.org/10.1002/1522-2624(200102)164:1<65::AID-JPLN65>3.0.CO;2-G

Ima, I. B., Boëchat, I. G., Fernandes, M. D., Monteiro, J. A F. Rivaroli, L. and Gücker, B. (2023). Glyphosate pollution of surface runoff, stream water, and drinking water resources in Southeast Brazil. Environmental Science and Pollution Research, 30(22), 27030–27040. https://doi.org/10.1007/s11356-022-24167-2

Lajmanovich, R., Attademo, A., Peltzer, P., Junges, C. and Cabagna, M. (2011). Toxicity of four herbicide formulations with glyphosate on Rhinella arenarum (Anura: Bufonidae) tadpoles: B-esterases and glutathione S-transferase inhibitors. Archives of Environmental Contamination and Toxicology, 60(4), 681–689. https://doi.org/10.1007/s00244-010-9622-9

Lakshmaiah, G. (2017). Brain histopathology of the fish Cyprinus carpio exposed to lethal concentrations of an organophosphate insecticide phorate. International Journal of Agricultural Research and Development, 2(5), 668–672. ISSN: 2455-4030

Lopes, A. R., Moraes, J. S. and Martins, C. D. M. G. (2022). Effects of the herbicide glyphosate on fish from embryos to adults: A review addressing behavior patterns and mechanisms behind them. Aquatic Toxicology, 251, 106281. https://doi.org/10.1016/j.aquatox.2022.106281

López-Flórez, C., Ruíz, M. A. O. and Gómez-Ramírez, E. (2023). Effect of sublethal concentrations of glyphosate-based herbicides (Roundup Active®) on skin of the tropical frog (Dendropsophus molitor). Environmental Science and Pollution Research, 30(50), 109618–109626. https://doi.org/10.1007/s11356-023-29816-8

Lupi, L., Bedmar, F., Puricelli, M., Marino, D., Aparicio, V. C., Wunderlin, D. and Miglioranza, K. S. B. (2019). Glyphosate runoff and its occurrence in rainwater and subsurface soil in the nearby area of agricultural fields in Argentina. Chemosphere, 225, 906–914. https://doi.org/10.1016/j.chemosphere.2019.03.090

Matsuyama, T. and Iida, T. (1999). Degranulation of eosinophilic granular cells with possible involvement in neutrophil migration to site of inflammation in tilapia. Developmental & Comparative Immunology, 23(6), 451–457. https://doi.org/10.1016/S0145-305X(99)00027-0

Merino, M. C., Bonilla, S. P. y Bages, F. (2013). Diagnóstico del estado de la acuicultura en Colombia. Bogotá, Colombia: Ministerio de Agricultura. https://repository.agrosavia.co/bitstream/handle/20.500.12324/36592/Ver_Documento_36592.pdf?sequence=4

Mesnage, R., Benbrook, C. and Antoniou, M. N. (2019). Insight into the confusion over surfactant co-formulants in glyphosate-based herbicides. Food and Chemical Toxicology, 128, 137–145. https://doi.org/10.1016/j.fct.2019.03.053

Ministerio de Agricultura y Desarrollo Sostenible. (2018). Sistema de información de gestión y desempeño de organizaciones de cadena. Bogotá, Colombia. https://www.minagricultura.gov.co/planeacion-control-gestion/Gestin/PLANEACION/Informe_de_Gesti%C3%B3n_(Metas_Objetivos_Indicadores_Gestion)/INFORME%20DE%20%20GESTION%202018.pdf

Ministerio de Salud. (1993). Resolución número 8430 de 1993: Por la cual se establecen las normas científicas, técnicas y administrativas para la investigación en salud. https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/DIJ/RESOLUCION-8430-DE-1993.PDF

Moná-Nieto, J. P., Cortés-Pedraza, S. B. y Hincapié-García, J. A. (2018). Impactos ambientales y efectos en la salud humana generados a partir del uso de glifosato. Revista CES Salud Pública, 9(2), 36–50.

Northcutt, R. (2008). Forebrain evolution in bony fishes. Brain Research Bulletin, 75(2–4), 191–205. https://doi.org/10.1016/j.brainresbull.2007.10.058

O’Connell, L. A., Fontenot, M. R. and Hofmann, H. A. (2013). Neurochemical profiling of dopaminergic neurons in the forebrain of a cichlid fish, Astatotilapia burtoni. Journal of Chemical Neuroanatomy, 47, 106–115. https://doi.org/10.1016/j.jchemneu.2012.12.007

Obando-Bulla, M., Gómez, E., Tovar, M., Rincón, L., Caldas, M. y Hurtado, H. (2013). Estudio morfométrico y topológico del cerebro del pez neón cardenal, Paracheirodon axelrodi (Characiformes: Characidae). Actualidades Biológicas, 35(98), 45–61. https://doi.org/10.17533/udea.acbi.329216

Petersen, B. D., Bertoncello, K. T. and Bonan, C. D. (2022). Standardizing zebrafish behavioral paradigms across life stages: An effort towards translational pharmacology. Frontiers in Pharmacology, 13, 833227. https://doi.org/10.3389/fphar.2022.833227

Poleo, G., Aranbarrio, J., Mendoza, L. y Romero, O. (2011). Cultivo de cachama blanca en altas densidades y en dos sistemas cerrados. Pesquisa Agropecuária Brasileira, 46(4), 429–437. https://doi.org/10.1590/S0100-204X2011000400013

Reite, O. and Evensen, O. (2006). Inflammatory cells of teleostean fish: A review focusing on mast cells/eosinophilic granule cells and rodlet cells. Fish & Shellfish Immunology, 20(2), 192–208. https://doi.org/10.1016/j.fsi.2005.01.012

Riaño, C., Gómez, E. and Hurtado, H. (2019). Glyphosate commercial formulation effects on preoptic area and hypothalamus of Cardinal Neon Paracheirodon axelrodi (Characiformes: Characidae). Neotropical Ichthyology, 17(4), e190025. https://doi.org/10.1590/1982-0224-20190025

Sandig, H. and Bulfone-Paus, S. (2012). TLR signaling in mast cells: Common and unique features. Frontiers in Immunology, 3, 185. https://doi.org/10.3389/fimmu.2012.00185

Schmale, M., Vicha, D. and Cacal, S. (2004). Degranulation of eosinophilic granule cells in neurofibromas and gastrointestinal tract in the bicolor damselfish. Fish & Shellfish Immunology, 17(1), 53–63. https://doi.org/10.1016/j.fsi.2003.12.002

Sun, M., Li, H. and Jaisi, D. P. (2019). Degradation of glyphosate and bioavailability of phosphorus derived from glyphosate in a soil-water system. Water Research, 163, 114840. https://doi.org/10.1016/j.watres.2019.07.007

Theoharides, T. C., Alysandratos, K. D., Angelidou, A., Delivanis, D. A., Sismanopoulos, N., Zhang, B., Asadi, S., Vasiadi, M., Weng, Z., Miniati, A. and Kalogeromitros, D. (2012). Mast cells and inflammation. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1822(1), 21–33. https://doi.org/10.1016/j.bbadis.2010.12.014

Theoharides, T. and Cochrane, D. (2004). Critical role of mast cells in inflammatory diseases and the effect of acute stress. Journal of Neuroimmunology, 146(1–2), 1–12. https://doi.org/10.1016/j.jneuroim.2003.10.04

Thomas, R. S., Bahadori, T., Buckley, T. J., Cowden, J., Deisenroth, C., Dionisio, K. L. and Williams, A. J. (2019). The next generation blueprint of computational toxicology at the US Environmental Protection Agency. Toxicological Sciences, 169(2), 317–332. https://doi.org/10.1093/toxsci/kfz058

Tresnakova, N., Stara, A. and Velisek, J. (2021). Efectos del glifosato y su metabolito AMPA en los organismos acuáticos. Applied Sciences, 11(19), 9004. https://doi.org/10.3390/app11199004

Underwood, W. and Anthony, R. (2020). AVMA guidelines for the euthanasia of animals. American Veterinary Medical Association.

Uren-Webster, T. and Santos, E. (2015). Global transcriptomic profiling demonstrates induction of oxidative stress and of compensatory cellular stress responses in brown trout exposed to glyphosate and Roundup. BMC Genomics, 16(1), 32. https://doi.org/10.1186/s12864-015-1254-5

Valbuena, D., Cely-Santos, M. and Obregón, D. (2021). Agrochemical pesticide production, trade, and hazard: Narrowing the information gap in Colombia. Journal of Environmental Management, 286, 112141. https://doi.org/10.1016/j.jenvman.2021.112141

Wullimann, M., Rupp, B. and Reichert, H. (1996). Neuroanatomy of the zebrafish brain: A topological atlas. Birkhäuser.

Zhang, B., Asadi, S., Vasiadi, M., Weng, Z., Miniati, A. and Kalogeromitros, D. (2012). Mast cells and inflammation. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1822(1), 21–33. https://doi.org/10.1016/j.bbadis.2010.12.014

Cómo citar

APA

Gomez-Ramirez, E., Riaño-Quintero, C. A. & Baldisserotto, B. (2025). Histopathological alterations in the preoptic area of the native fish Piaractus orinoquensis exposed to sublethal concentrations of a glyphosate-based herbicide . Acta Biológica Colombiana, 30(2), 116–126. https://doi.org/10.15446/abc.v30n2.115683

ACM

[1]
Gomez-Ramirez, E., Riaño-Quintero, C.A. y Baldisserotto, B. 2025. Histopathological alterations in the preoptic area of the native fish Piaractus orinoquensis exposed to sublethal concentrations of a glyphosate-based herbicide . Acta Biológica Colombiana. 30, 2 (abr. 2025), 116–126. DOI:https://doi.org/10.15446/abc.v30n2.115683.

ACS

(1)
Gomez-Ramirez, E.; Riaño-Quintero, C. A.; Baldisserotto, B. Histopathological alterations in the preoptic area of the native fish Piaractus orinoquensis exposed to sublethal concentrations of a glyphosate-based herbicide . Acta biol. Colomb. 2025, 30, 116-126.

ABNT

GOMEZ-RAMIREZ, E.; RIAÑO-QUINTERO, C. A.; BALDISSEROTTO, B. Histopathological alterations in the preoptic area of the native fish Piaractus orinoquensis exposed to sublethal concentrations of a glyphosate-based herbicide . Acta Biológica Colombiana, [S. l.], v. 30, n. 2, p. 116–126, 2025. DOI: 10.15446/abc.v30n2.115683. Disponível em: https://revistas.unal.edu.co/index.php/actabiol/article/view/115683. Acesso em: 26 dic. 2025.

Chicago

Gomez-Ramirez, Edwin, Camilo Andres Riaño-Quintero, y Bernardo Baldisserotto. 2025. «Histopathological alterations in the preoptic area of the native fish Piaractus orinoquensis exposed to sublethal concentrations of a glyphosate-based herbicide ». Acta Biológica Colombiana 30 (2):116-26. https://doi.org/10.15446/abc.v30n2.115683.

Harvard

Gomez-Ramirez, E., Riaño-Quintero, C. A. y Baldisserotto, B. (2025) «Histopathological alterations in the preoptic area of the native fish Piaractus orinoquensis exposed to sublethal concentrations of a glyphosate-based herbicide », Acta Biológica Colombiana, 30(2), pp. 116–126. doi: 10.15446/abc.v30n2.115683.

IEEE

[1]
E. Gomez-Ramirez, C. A. Riaño-Quintero, y B. Baldisserotto, «Histopathological alterations in the preoptic area of the native fish Piaractus orinoquensis exposed to sublethal concentrations of a glyphosate-based herbicide », Acta biol. Colomb., vol. 30, n.º 2, pp. 116–126, abr. 2025.

MLA

Gomez-Ramirez, E., C. A. Riaño-Quintero, y B. Baldisserotto. «Histopathological alterations in the preoptic area of the native fish Piaractus orinoquensis exposed to sublethal concentrations of a glyphosate-based herbicide ». Acta Biológica Colombiana, vol. 30, n.º 2, abril de 2025, pp. 116-2, doi:10.15446/abc.v30n2.115683.

Turabian

Gomez-Ramirez, Edwin, Camilo Andres Riaño-Quintero, y Bernardo Baldisserotto. «Histopathological alterations in the preoptic area of the native fish Piaractus orinoquensis exposed to sublethal concentrations of a glyphosate-based herbicide ». Acta Biológica Colombiana 30, no. 2 (abril 9, 2025): 116–126. Accedido diciembre 26, 2025. https://revistas.unal.edu.co/index.php/actabiol/article/view/115683.

Vancouver

1.
Gomez-Ramirez E, Riaño-Quintero CA, Baldisserotto B. Histopathological alterations in the preoptic area of the native fish Piaractus orinoquensis exposed to sublethal concentrations of a glyphosate-based herbicide . Acta biol. Colomb. [Internet]. 9 de abril de 2025 [citado 26 de diciembre de 2025];30(2):116-2. Disponible en: https://revistas.unal.edu.co/index.php/actabiol/article/view/115683

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

185

Descargas

Los datos de descargas todavía no están disponibles.