Publicado
Hongos biocontroladores frente a Phytophthora sp. aislados del cogollo de la palma de aceite en Chigorodó Antioquia
Biocontrol fungi against Phytophthora sp. isolated from the bud of the oil palm in Chigorodó Antioquia
Palabras clave:
Biocontrol, Endófitos, Fitopatógeno, Pesticidas, Pudrición de cogollo (es)Biocontrol, Bud rot, Endophytes, Pesticides, Phytopathogen (en)
Descargas
La pudrición de cogollo (PC) es una enfermedad producida por Phytophthora sp., que ha afectado plantaciones enteras en distintos países siendo un limitante en la palmicultura. El uso de pesticidas afecta en gran medida el suelo, reduciendo la fertilidad y favoreciendo el deterioro ambiental. Los hongos endófitos producen compuestos que favorecen a las plantas ejerciendo control biológico. En este estudio se aislaron hongos del cogollo de la palma de aceite con potencial antagónico, con el fin de determinar su capacidad de biocontrol e identificar su género. Para esto, se tomaron 44 muestras de cogollos de palma de aceite en régimen bimodal de lluvia y sequía. Se realizaron pruebas de antagonismo in vitro con los morfotipos aislados, se realizó un análisis estadístico, se calculó la capacidad inhibitoria de estos y posteriormente se realizó la identificación a nivel de género. Se identificó un total de seis cepas de hongos con capacidad antagónica con porcentajes eficientes de inhibición frente a Phytophthora sp. de las cuales se destaca la cepa M3E (96 % de inhibición) y M23E (92 %). Algunos hongos como Aspergillus niger y Mucor hiemalis se encontraron en lluvia y sequía, lo que sugiere que pueden ser usados para el biocontrol en estos dos periodos.
Bud rot (BR) is a disease caused by Phytophthora sp., which has affected entire plantations in various countries, limiting the oil palm industry. Pesticide use significantly impacts the soil, reducing fertility and contributing to environmental degradation. Endophytic fungi produce compounds that benefit plants by exerting biological control. Therefore, this research aims to isolate fungi from oil palm buds with antagonistic potential, determine their biocontrol capacity, and identify their genus. To this end, 44 oil palm bud samples were collected under bimodal rainy and dry conditions. Antagonism tests were performed with the isolated morphotypes, a statistical analysis was conducted, their inhibitory capacity was calculated, and subsequently, identification to the genus level was carried out. A total of six fungal strains with antagonistic capacity were identified, demonstrating efficient inhibition percentages against Phytophthora sp. Of these, the M3E strain (96 % inhibition) and M23E (92 %) stand out. Some fungi, such as Aspergillus niger and Mucor hiemalis, were found in both rainy and dry conditions, suggesting their potential use for biocontrol during these two periods.
Referencias
Acosta, G. E. S. y Redondo, A. R. P. (2021). Antagonismo in vitro de nueve hongos aislados del Caribe colombiano sobre Phytophthora sp. Asociado a palma aceitera. Ingeniería y Desarrollo, 39(2), 205-220. https://doi.org/10.14482/inde.39.2.579.546
Alam, B., Lǐ, J., Gě, Q., Khan, M. A., Gōng, J., Mehmood, S., Yuán, Y. and Gǒng, W. (2021). Endophytic Fungi: From Symbiosis to Secondary Metabolite Communications or Vice Versa? Frontiers in Plant Science, 12, 791033. https://doi.org/10.3389/fpls.2021.791033
Babu, B. K., Mathur, R. K., Anitha, P., Ravichandran, G. and Bhagya, H. P. (2021). Phenomics, genomics of oil palm (Elaeis guineensis Jacq.): Way forward for making sustainable and high yielding quality oil palm. Physiology and Molecular Biology of Plants, 27(3), 587-604. https://doi.org/10.1007/s12298-021-00964-w
Barbosa, L. O., Lima, J. S., Magalhães, V. C., Gava, C. A. T., Soares, A. C. F., Marbach, P. A. S. and de Souza, J. T. (2018). Compatibility and combination of selected bacterial antagonists in the biocontrol of sisal bole rot disease. BioControl, 63(4), 595-605. https://doi.org/10.1007/s10526-018-9872-x
Behera, B. C., Mishra, R. and Mohapatra, S. (2021). Microbial citric acid: Production, properties, application, and future perspectives. Food Frontiers, 2(1), 62-76. https://doi.org/10.1002/fft2.66
Bind, S., Bind, S., Sharma, A. K. and Chaturvedi, P. (2022). Epigenetic Modification: A Key Tool for Secondary Metabolite Production in Microorganisms. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.784109
Binder, U., Chu, M., Read, N. D. and Marx, F. (2010). The Antifungal Activity of the Penicillium chrysogenum Protein PAF Disrupts Calcium Homeostasis in Neurospora crassa. Eukaryotic Cell, 9(9), 1374-1382. https://doi.org/10.1128/EC.00050-10
Bizuneh, G. K. (2021). The chemical diversity and biological activities of phytoalexins. Advances in Traditional Medicine, 21(1), 31-43. https://doi.org/10.1007/s13596-020-00442-w
Bonner, J. T. (2018). A Study of the Temperature and Humidity Requirements of Aspergillus niger. Mycologia, 40(6), 728-738. https://doi.org/10.1080/00275514.1948.12017741
Chepsergon, J., Motaung, T. E., Bellieny-Rabelo, D. and Moleleki, L. N. (2020). Organize, Don’t Agonize: Strategic Success of Phytophthora Species. Microorganisms, 8(6), 917. https://doi.org/10.3390/microorganisms8060917
Cortesão, M., de Haas, A., Unterbusch, R., Fujimori, A., Schütze, T., Meyer, V. and Moeller, R. (2020). Aspergillus niger Spores Are Highly Resistant to Space Radiation. Frontiers in Microbiology, 11, 560. https://doi.org/10.3389/fmicb.2020.00560
Gavrin, A., Rey, T., Torode, T. A., Toulotte, J. Chatterjee, A., Kaplan, J. L., Evangelista, E., Takagi, H., Charoensawan, V., Rengel, D., Journet, E. P., Debellé, F., de Carvalho-Niebel, F., Terauchi, R., Braybrook, S. and Schornack, S. (2021). Developmental Modulation of Root Cell Wall Architecture Confers Resistance to an Oomycete Pathogen. Current Biology, 30(21), 4165-4176.e5. https://doi.org/10.1016/j.cub.2020.08.011
Erabi, M. and Goshadrou, A. (2020). Bioconversion of Glycyrrhiza glabra residue to ethanol by sodium carbonate pretreatment and separate hydrolysis and fermentation using Mucor hiemalis. Industrial Crops and Products, 152, 112537. https://doi.org/10.1016/j.indcrop.2020.112537
Ferreira, A. A. S. N. D. C., Dourado, L. R. B., Biagiotti, D., Santos, N. P. D. S., Nascimento, D. C. N. and Sousa, K. R. S. (2019). Methods for classifying coefficients of variation in experimentation with poultrys. Comunicata Scientiae, 9(4), 565-574. https://doi.org/10.14295/cs.v9i4.2619
Ferreira, I. N. S., Rodríguez, D. M., Campos-Takaki, G. M. and Andrade, R. F. da S. (2020). Biosurfactant and bioemulsifier as promising molecules produced by Mucor hiemalis isolated from Caatinga soil. Electronic Journal of Biotechnology, 47, 51-58. https://doi.org/10.1016/j.ejbt.2020.06.006
Fontana, D. C., de Paula, S., Torres, A. G., de Souza, V. H. M., Pascholati, S. F., Schmidt, D. and Dourado Neto, D. (2021). Endophytic Fungi: Biological Control and Induced Resistance to Phytopathogens and Abiotic Stresses. Pathogens, 10(5), 570. https://doi.org/10.3390/pathogens10050570
Franco, A., Vasco, A., López C. y Boekhout, T. (2005). Macrohongos de la región de medio Caquetá-Colombia. 47, 112.
Geisseler, D. and Horwath, W. R. (2016). Muestreo de Prueba de Suelo. http://geisseler.ucdavis.edu/Guidelines/Muestreo_de_prueba_de_suelo_PK.pdf
Giraldo, V. S. (2018). Agroindustria del cultivo de palma de aceite: Fenómeno en la estructura agraria del Urabá Antioqueño. https://bibliotecadigital.udea.edu.co/bitstream/10495/15750/1/SierraVanessa_2018_AgroindustriaCultivoPalma.pdf
Goudarzi, A., Bagheri, A. and Hajebi, A. (2022). Aspergillus niger causes black mould disease on Piarom dates, the most economically valuable export date cultivar in southern Iran. Crop Protection, 160, 106047. https://doi.org/10.1016/j.cropro.2022.106047
Jogaiah, S., Abdelrahman, M., Tran, L.-S. P. and Shin-ichi, I. (2013). Characterization of rhizosphere fungi that mediate resistance in tomato against bacterial wilt disease. Journal of Experimental Botany, 64(12), 3829-3842. https://doi.org/10.1093/jxb/ert212
Kornerup, A. and Wanscher, J. H. (1978). Methuen Handbook of Colour. E. Methuen.https://books.google.com.co/books/about/Methuen_Handbook_of_Colour.html?id=hI2hQgAACAAJ&redir_esc=y
Kőszegi, T. and Poór, M. (2016). Ochratoxin A: Molecular Interactions, Mechanisms of Toxicity and Prevention at the Molecular Level. Toxins, 8(4), 111. https://doi.org/10.3390/toxins8040111
Lubna, Asaf, S., Hamayun, M., Gul, H., Lee, I.-J. and Hussain, A. (2018). Aspergillus niger CSR3 regulates plant endogenous hormones and secondary metabolites by producing gibberellins and indoleacetic acid. Journal of Plant Interactions, 13(1), 100-111. https://doi.org/10.1080/17429145.2018.1436199
MacArthur, R. L., Teye, E. and Darkwa, S. (2021). Microbial contamination in palm oil selected from markets in major cities of Ghana. Heliyon, 7(7), e07681. https://doi.org/10.1016/j.heliyon.2021.e07681
Masitah, T. H., Setiawan, M., Indiastuti, R. and Wardhana, A. (2023). Determinants of the palm oil industry productivity in Indonesia. Cogent Economics & Finance, 11(1), 2154002. https://doi.org/10.1080/23322039.2022.2154002
Méndez, K. Á., Ortiz, G. P., Díaz-Granados, R. Á., Villa, G. A. S. y Angulo, H. M. R. (2018). Identificación de estructuras de infección de Phytophthora palmivora en hojas de clones de palma de aceite (Elaeis guineensis Jacq.). Palmas, 39(1), Article 1.
Montoya, S. H. (2019). Evaluación in vitro de la capacidad antagónica de hongos endófitos aislados de moringa oleífera (l) en el control de Pestalotia palmarum (Q). https://repositorio.udes.edu.co/entities/publication/777e10d0-2b6b-4a32-a862-2294cffba7ca
Nair, K. P. (2021). Oil Palm (Elaeis guineensis Jacquin). En K. P. Nair (Ed.), Tree Crops: Harvesting Cash from the World’s Important Cash Crops (pp. 249-285). Springer International Publishing. https://doi.org/10.1007/978-3-030-62140-7_7
NIH. (2012). Encontrar y utilizar estadísticas de salud. https://www.nlm.nih.gov/oet/ed/stats/02-900.html
Özdemi̇r, F. G. G. and Arici, Ş. E. (2023). Control of Fusarium oxysporum f. sp. radicis lycopersici Jarvis & Shoemaker (Ascomycota: Hypocreales) and Meloidogyne incognita (Kofoid & White, 1919) Chitwood, 1949 (Nemata: Meloidogynidae) with Aspergillus niger Tiegh. (Ascomycota: Eurotiales) culture filtrate on tomato. Turkish Journal of Entomology.
Pinilla, A. M. G. (2017). Evaluación de aislamientos de Trichoderma ssp. Para el control de Phytophthora palmivora agente causante de la producción del cogollo de la palma de aceite. https://repository.uniminuto.edu/bitstream/10656/4882/1/T.AIG_GarciaPinillaAlejandraMilena_2017.pdf
Núnez Polo, A. (2020). La palmicultura en la subzona de Urabá. Boletín El Palmicultor; 583, 31-34. https://repositorio.fedepalma.org/handle/123456789/141090
Promwee, A., Yenjit, P., Issarakraisila, M., Intana, W. and Chamswarng, C. (2017). Efficacy of indigenous Trichoderma harzianum in controlling Phytophthora leaf fall (Phytophthora palmivora) in Thai rubber trees. Journal of Plant Diseases and Protection, 124(1), 41-50. https://doi.org/10.1007/s41348-016-0051-y
Rodríguez Cordero, T. A. y Ávila Villalobos, D. A. (2023). Estudio comparativo de indicadores físicos, químicos y microbiológicos de calidad de suelo en plantaciones de palma aceitera con uso de enmiendas orgánicas y manejo convencional en Quepos, Costa Rica. http://repositorio.sibdi.ucr.ac.cr:8080/jspui/handle/123456789/19248
Sare, A. R., Jijakli, M. H. and Massart, S. (2021). Microbial ecology to support integrative efficacy improvement of biocontrol agents for postharvest diseases management. Postharvest Biology and Technology, 179, 111572. https://doi.org/10.1016/j.postharvbio.2021.111572
Sarria, G., García, A., Mestizo, Y., Medina, C., Varón, F., Mesa, E. and Hernández, S. (2021). Antagonistic interactions between Trichoderma spp. And Phytophthora palmivora (Blutler) from oil palm in Colombia. European Journal of Plant Pathology, 161(4), 751-768. https://doi.org/10.1007/s10658-021-02363-z
Sikandar, A., Zhang, M., Wang, Y., Zhu, X., Liu, X., Fan, H., Xuan, Y., Chen, L. and Duan, Y. (2020). In vitro evaluation of Penicillium chrysogenum Snef1216 against Meloidogyne incognita (root-knot nematode). Scientific Reports, 10(1), Article 1. https://doi.org/10.1038/s41598-020-65262-z
Souza, B. dos S. and Santos, T. T. dos. (2017). Endophytic fungi in economically important plants: Ecological aspects, diversity and potential biotechnological applications. Journal of Bioenergy and Food Science, 4(2), Article 2. https://doi.org/10.18067/jbfs.v4i2.121
Suman, J., Rakshit, A., Ogireddy, S. D., Singh, S., Gupta, C. and Chandrakala, J. (2022). Microbiome as a Key Player in Sustainable Agriculture and Human Health. Frontiers in Soil Science, 2. https://www.frontiersin.org/articles/10.3389/fsoil.2022.821589
Sundram, S. (2018). The Use of Indigenous Trichoderma in Controlling Phytophthora palmivora – An In Vitro Investigation. http://palmoilis.mpob.gov.my/publications/OPB/opb76-sundram.pdf
Torres, G. A., Sarria, G. A., Martinez, G., Varon, F., Drenth, A. and Guest, D. I. (2016). Bud Rot Caused by Phytophthora palmivora: A Destructive Emerging Disease of Oil Palm. Phytopathology®, 106(4), 320-329. https://doi.org/10.1094/PHYTO-09-15-0243-RVW
Tupaz-Vera, A., Ayala-Diaz, I. M., Rincon, V., Sarria, G. and Romero, H. M. (2021). An Integrated Disease Management of Oil Palms Affected by Bud Rot Results in Shorter Recovery Times. Agronomy, 11(10), Article 10. https://doi.org/10.3390/agronomy11101995
Tyśkiewicz, R., Nowak, A., Ozimek, E. and Jaroszuk-Ściseł, J. (2022). Trichoderma: The Current Status of Its Application in Agriculture for the Biocontrol of Fungal Phytopathogens and Stimulation of Plant Growth. International Journal of Molecular Sciences, 23(4), Article 4. https://doi.org/10.3390/ijms23042329
Vargas Manotas, J. E., Vélez Ascanio, J. F. y Chalela Blanco, N. A. (2021). Aspergillus, un asesino desconocido. Acta Neurológica Colombiana, 37(1), 112-116. https://doi.org/10.22379/24224022342
Wang, J.-L., Chen, Y.-C., Deng, J.-J., Mo, Z.-Q., Zhang, M.-S., Yang, Z.-D., Zhang, J.-R., Li, Y.-W., Dan, X.-M. and Luo, X.-C. (2023). Synergic chitin degradation by Streptomyces sp. SCUT-3 chitinases and their applications in chitinous waste recycling and pathogenic fungi biocontrol. International Journal of Biological Macromolecules, 225, 987-996. https://doi.org/10.1016/j.ijbiomac.2022.11.161
Zhu, G., Ding, W., Zhao, H., Xue, M., Chu, P. and Jiang, L. (2023). Effects of the Entomopathogenic Fungus Mucor hiemalis BO-1 on the Physical Functions and Transcriptional Signatures of Bradysia odoriphaga Larvae. Insects, 14(2), Article 2. https://doi.org/10.3390/insects14020162
Ziedan, E.-S. H. E., Farrag, E. S. H. and Sahab, A. F. (2013). First record and preliminary evaluation of Mucor hiemalis as biocontrol agent on inflorescence brown rot incidence of date palm. Archives of Phytopathology and Plant Protection, 46(5), 617-626. https://doi.org/10.1080/03235408.2012.749695
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Visitas a la página del resumen del artículo
Descargas
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
1. La aceptación de manuscritos por parte de la revista implicará, además de su edición electrónica de acceso abierto bajo licencia Attribution-NonCommercial-ShareAlike 4.0 (CC BY NC SA), la inclusión y difusión del texto completo a través del repositorio institucional de la Universidad Nacional de Colombia y en todas aquellas bases de datos especializadas que el editor considere adecuadas para su indización con miras a incrementar la visibilidad de la revista.
2. Acta Biológica Colombiana permite a los autores archivar, descargar y compartir, la versión final publicada, así como las versiones pre-print y post-print incluyendo un encabezado con la referencia bibliográfica del articulo publicado.
3. Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
4. Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos institucionales, en su página web o en redes sociales cientificas como Academia, Researchgate; Mendelay) lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).








