Publicado

2025-11-18

Antifungal activity of Nigella sativa (Ranunculaceae) extracts against dermatophytes and Candida species

Actividad antifúngica de los extractos de Nigella sativa (Ranunculaceae) contra dermatófitos y especies de Candida

Palabras clave:

Antifungals, Black seed, Candidiasis, Dermatomycoses (en)
Antifúngicos, Candidiasis, Dermatomicosis, Semilla negra (es)

Autores/as

Dermatophytoses and candidiasis are widespread fungal infections in both humans and animals. However, they can be life-threatening in individuals with compromised immune systems. Moreover, emerging drug resistance has led to treatment failure. It is therefore necessary to explore natural therapeutic alternatives capable of counteracting growing antifungal resistance and offering an effective complement to conventional treatments. Nigella sativa was selected for this study due to its well-known beneficial effects, particularly in dermatology, making it an excellent candidate for skincare applications. The antifungal activity of its vegetable oil, ethanolic, and methanolic extracts was evaluated through both in vitro and in vivo methods. Their in vitro efficacy was tested against five common pathogenic fungi, followed by in vivo assessment using mouse models. Microsporum canis was the most susceptible species, inhibited at an exceptionally low minimum inhibitory concentration (MIC) of 0.005 µl/mL of the vegetable oil. In vivo, only 60 µL of this oil was required to achieve full recovery within three days, highlighting its rapid and effective therapeutic potential. The methanolic extract also showed notable in vivo activity against Candida species, notably C. albicans, showing 0 % mortality rate after five days of treatment. In contrast, the ethanolic extract exhibited comparatively lower efficacy against all species. The outcomes of our study highlighted that M. canis was the most susceptible and that C. glabrata presented greater resistance, requiring higher MICs than other fungi for all the extracts, emphasizing variability in susceptibility among fungal pathogens.

Las dermatofitosis y la candidiasis son infecciones fúngicas muy extendidas tanto en humanos como en animales. Sin embargo, pueden poner en peligro la vida de las personas con sistemas inmunitarios comprometidos. Además, la resistencia emergente a los medicamentos ha provocado el fracaso de los tratamientos. Por lo tanto, es necesario explorar alternativas terapéuticas naturales capaces de contrarrestar la creciente resistencia a los antifúngicos y ofrecer un complemento eficaz a los tratamientos convencionales. Se seleccionó la Nigella sativa para este estudio debido a sus conocidos efectos beneficiosos, especialmente en dermatología, lo que la convierte en una excelente candidata para aplicaciones en el cuidado de la piel. Se evaluó la actividad antifúngica de su aceite vegetal y de sus extractos etanólicos y metanólicos mediante métodos in vitro e in vivo. Se probó su eficacia in vitro frente a cinco hongos patógenos comunes, seguida de una evaluación in vivo utilizando modelos de ratón. Microsporum canis fue la especie más vulnerable, inhibida a una concentración mínima inhibitoria (CMI) excepcionalmente baja de 0.005 µl/mL del aceite vegetal. In vivo, solo se necesitaron 60 µL de este aceite para lograr la recuperación completa en tres días, lo que destaca su rápido y eficaz potencial terapéutico. El extracto metanólico también mostró una notable actividad in vivo contra las especies de Candida, en particular C. albicans, con una tasa de mortalidad del 0 % tras cinco días de tratamiento. Por su parte, el extracto etanólico mostró una eficacia comparativamente menor contra todas las especies. Los resultados de nuestro estudio pusieron de relieve que M. canis era el más susceptible y que C. glabrata presentaba una mayor resistencia, requiriendo CMI más altas que otros hongos para todos los extractos, lo que pone de relieve la variabilidad en la susceptibilidad entre los hongos patógenos.

Referencias

Akroum, S. (2021). Activité antimicrobienne des extraits de Rosmarinus officinalis et Zingiber officinale sur les espèces du genre Candida et sur Streptococcus pneumoniae [Anti-microbial activity of Rosmarinus officinalis and Zingiber officinale extracts on the species of the genus Candida and on Streptococcus pneumonia]. Annales Pharmaceutiques françaises, 79(1), 62–69. https://doi.org/10.1016/j.pharma.2020.06.003

Akroum, S. (2018). Antifungal activity of Camellia sinensis crude extracts against four species of Candida and Microsporum persicolor. Journal de mycologie medicale, 28(3), 424-427. https://doi.org/10.1016/j.mycmed.2018.06.003

Ali-Shtayeh, M. S., Jamous, R. M., Abu-Zaitoun, S. Y., Khasati, A. I. and Kalbouneh, S. R. (2019). Biological Properties and Bioactive Components of Mentha spicata L. Essential Oil: Focus on Potential Benefits in the Treatment of Obesity, Alzheimer's Disease, Dermatophytosis, and Drug-Resistant Infections. Evidence-based complementary and alternative medicine: eCAM, 2019, 3834265. https://doi.org/10.1155/2019/3834265

Aljabre, S. H., Randhawa, M. A., Akhtar, N., Alakloby, O. M., Alqurashi, A. M. and Aldossary, A. (2005). Antidermatophyte activity of ether extract of Nigella sativa and its active principle, thymoquinone. Journal of ethnopharmacology, 101(1-3), 116-119. https://doi.org/10.1016/j.jep.2005.04.002

Almshawit, H. and Macreadie, I. (2017). Fungicidal effect of thymoquinone involves generation of oxidative stress in Candida glabrata. Microbiological research, 195, 81-88. https://doi.org/10.1016/j.micres.2016.11.008

Bita, A., Rosu, A. F., Calina, D., Rosu, L., Zlatian, O., Dindere, C. and Simionescu, A. (2012). An alternative treatment for Candida infections with Nigella sativa extracts. European Journal of Hospital Pharmacy, 19(12), 162. https://doi.org/10.1136/ejhpharm-2012-000074.203

Burstein, V. L., Beccacece, I., Guasconi, L., Mena, C. J., Cervi, L. and Chiapello, L. S. (2020). Skin Immunity to Dermatophytes: From Experimental Infection Models to Human Disease. Frontiers in immunology, 11, 605644. https://doi.org/10.3389/fimmu.2020.605644

Egbe, N. E., Ali, H. I., di Abdulsalami, M. S., Umar, Z. and Okpaga, U. A. (2023). Antifungal effects of Nigella sativa L. (Black cumin) seed extracts and seed oil on selected Candida albicans strains. Journal of Current Biomedical Research, 3(3), 993-1004. https://doi.org/10.54117/jcbr.v3i3.3

Fioriti, S., Brescini, L., Pallotta, F., Canovari, B., Morroni, G. and Barchiesi, F. (2022). Antifungal Combinations against Candida Species: From Bench to Bedside. Journal of fungi (Basel, Switzerland), 8(10), 1077. https://doi.org/10.3390/jof8101077

Frías-De-León, M. G., Hernández-Castro, R., Conde-Cuevas, E., García-Coronel, I. H., Vázquez-Aceituno, V. A., Soriano-Ursúa, M. A. Farfán García, E. D.,; Ocharán-Hernández, E.,; Rodríguez-Cerdeira, C.,; Arenas, R.; et al. (2021). Candida glabrata Antifungal Resistance and Virulence Factors, a Perfect Pathogenic Combination. Pharmaceutics, 13(10), 1529. https://doi.org/10.3390/pharmaceutics13101529

Hassan, Y., Chew, S. Y. and Than, L. T. L. (2021). Candida glabrata: Pathogenicity and Resistance Mechanisms for Adaptation and Survival. Journal of Fungi (Basel), 7(8), 667. https://doi.org/10.3390/jof7080667

Hill, R. C., Caplan, A. S., Elewski, B., Gold, J. A. W., Lockhart, S. R., Smith, D. J. and Lipner, S. R. (2024). Expert Panel Review of Skin and Hair Dermatophytoses in an Era of Antifungal Resistance. American journal of clinical dermatology, 25(3), 359–389. https://doi.org/10.1007/s40257-024-00848-1

Jung, K. W., Chung, M. S., Bai, H. W., Chung, B. Y. and Lee, S. (2021). Investigation of Antifungal Mechanisms of Thymol in the Human Fungal Pathogen, Cryptococcus neoformans. Molecules (Basel), 26(11), 3476. https://doi.org/10.3390/molecules26113476

Khwaza, V. and Aderibigbe, B. A. (2023). Antifungal Activities of Natural Products and Their Hybrid Molecules. Pharmaceutics, 15(12), 2673. https://doi.org/10.3390/pharmaceutics15122673

Last, A., Maurer, M., S Mosig, A. S., S Gresnigt, M. S. and Hube, B. (2021). In vitro infection models to study fungal-host interactions. FEMS microbiology reviews, 45(5), fuab005. https://doi.org/10.1093/femsre/fuab005

Lavaee, F., Motaghi, D., Jassbi, A. R., Jafarian, H., Ghasemi, F. and Badiee, P. (2018). Antifungal effect of the bark and root extracts of Punica granatum on oral Candida isolates. Current medical mycology, 4(4), 20–24. https://doi.org/10.18502/cmm.4.4.382

Mahmoudvand, H., Sepahvand, A., Jahanbakhsh, S., Ezatpour, B. and Ayatollahi Mousavi, S. A. (2014). Evaluation of antifungal activities of the essential oil and various extracts of Nigella sativa and its main component, thymoquinone against pathogenic dermatophyte strains. Journal de mycologie medicale, 24(4), e155–e161. https://doi.org/10.1016/j.mycmed.2014.06.048

Mączka, W., Twardawska, M., Anczuków, Grabarczyk, M. K. and JęśkowiakWińska, K. J. (2023). Carvacrol A natural phenolic compound with antifungal activity. Molecules, 12(5), 824. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10215463/ https://doi.org/10.3390/antibiotics12050824

Michalczyk, A. and Ostrowska, P. (2021). Essential oils and their components in combating fungal pathogens of animal and human skin. Journal de mycologie medicale, 31(2), 101118. https://doi.org/10.1016/j.mycmed.2021.101118

Pristov, K. E. and Ghannoum, M. A. (2019). Resistance of Candida to azoles and echinocandins worldwide. Clinical microbiology and infection: the official publication of the European Society of Clinical Microbiology and Infectious Diseases, 25(7), 792–798. https://doi.org/10.1016/j.cmi.2019.03.028

Sadgrove, N. J. and Jones, G. L. (2019). From Petri Dish to Patient: Bioavailability Estimation and Mechanism of Action for Antimicrobial and Immunomodulatory Natural Products. Frontiers in microbiology, 10, 2470. https://doi.org/10.3389/fmicb.2019.02470

Shafodino, F. S., Lusilao, J. M. and Mwapagha, L. M. (2022). Phytochemical characterization and antimicrobial activity of Nigella sativa seeds. PloS One, 17(8), e0272457. https://doi.org/10.1371/journal.pone.0272457

Shokri, H. (2016). A review on the inhibitory potential of Nigella sativa against pathogenic and toxigenic fungi. Avicenna journal of phytomedicine, 6(1), 21–33.

Tiji, S., Rokni, Y., Benayad, O., Laaraj, N., Asehraou, A. and Mimouni, M. (2021). Chemical Composition Related to Antimicrobial Activity of Moroccan Nigella sativa L. Extracts and Isolated Fractions. Evidence-based complementary and alternative medicine: eCAM, 2021, 8308050. https://doi.org/10.1155/2021/8308050

Tortorano, A. M., Prigitano, A., Morroni, G., Brescini, L. and Barchiesi, F. (2021). Candidemia: Evolution of Drug Resistance and Novel Therapeutic Approaches. Infection and drug resistance, 14, 5543-5553. https://doi.org/10.2147/IDR.S274872

Vanreppelen, G., Wuyts, J., Van Dijck, P. and Vandecruys, P. (2023). Sources of Antifungal Drugs. Journal of fungi (Basel), 9(2), 171. https://doi.org/10.3390/jof9020171

Williams, T. J., Harvey, S. and Armstrong-James, D. (2020). Immunotherapeutic approaches for fungal infections. BMC complementary medicine and therapies, 58, 130–137. https://doi.org/10.1016/j.mib.2020.09.007

Yassin, M. T., Mostafa, A. A. and Al-Askar, A. A. (2020). In vitro anticandidal potency of Syzygium aromaticum (clove) extracts against vaginal candidiasis. BMC complementary medicine and therapies, 20(1), 25. https://doi.org/10.1186/s12906-020-2818-8

Cómo citar

APA

Bououden, F. Z. & Akroum, S. (2025). Antifungal activity of Nigella sativa (Ranunculaceae) extracts against dermatophytes and Candida species. Acta Biológica Colombiana, 30(3). https://revistas.unal.edu.co/index.php/actabiol/article/view/117668

ACM

[1]
Bououden, F.Z. y Akroum, S. 2025. Antifungal activity of Nigella sativa (Ranunculaceae) extracts against dermatophytes and Candida species. Acta Biológica Colombiana. 30, 3 (sep. 2025).

ACS

(1)
Bououden, F. Z.; Akroum, S. Antifungal activity of Nigella sativa (Ranunculaceae) extracts against dermatophytes and Candida species. Acta biol. Colomb. 2025, 30.

ABNT

BOUOUDEN, F. Z.; AKROUM, S. Antifungal activity of Nigella sativa (Ranunculaceae) extracts against dermatophytes and Candida species. Acta Biológica Colombiana, [S. l.], v. 30, n. 3, 2025. Disponível em: https://revistas.unal.edu.co/index.php/actabiol/article/view/117668. Acesso em: 9 ene. 2026.

Chicago

Bououden, Fatima Zohra, y Souad Akroum. 2025. «Antifungal activity of Nigella sativa (Ranunculaceae) extracts against dermatophytes and Candida species». Acta Biológica Colombiana 30 (3). https://revistas.unal.edu.co/index.php/actabiol/article/view/117668.

Harvard

Bououden, F. Z. y Akroum, S. (2025) «Antifungal activity of Nigella sativa (Ranunculaceae) extracts against dermatophytes and Candida species», Acta Biológica Colombiana, 30(3). Disponible en: https://revistas.unal.edu.co/index.php/actabiol/article/view/117668 (Accedido: 9 enero 2026).

IEEE

[1]
F. Z. Bououden y S. Akroum, «Antifungal activity of Nigella sativa (Ranunculaceae) extracts against dermatophytes and Candida species», Acta biol. Colomb., vol. 30, n.º 3, sep. 2025.

MLA

Bououden, F. Z., y S. Akroum. «Antifungal activity of Nigella sativa (Ranunculaceae) extracts against dermatophytes and Candida species». Acta Biológica Colombiana, vol. 30, n.º 3, septiembre de 2025, https://revistas.unal.edu.co/index.php/actabiol/article/view/117668.

Turabian

Bououden, Fatima Zohra, y Souad Akroum. «Antifungal activity of Nigella sativa (Ranunculaceae) extracts against dermatophytes and Candida species». Acta Biológica Colombiana 30, no. 3 (septiembre 12, 2025). Accedido enero 9, 2026. https://revistas.unal.edu.co/index.php/actabiol/article/view/117668.

Vancouver

1.
Bououden FZ, Akroum S. Antifungal activity of Nigella sativa (Ranunculaceae) extracts against dermatophytes and Candida species. Acta biol. Colomb. [Internet]. 12 de septiembre de 2025 [citado 9 de enero de 2026];30(3). Disponible en: https://revistas.unal.edu.co/index.php/actabiol/article/view/117668

Descargar cita

Visitas a la página del resumen del artículo

75

Descargas

Los datos de descargas todavía no están disponibles.