Publicado

2025-09-03

Exploring hydrogen cyanide variation in cassava leaves and effective removal strategies

Exploración de la variación de cianuro de hidrógeno en hojas de yuca y estrategias efectivas de eliminación

DOI:

https://doi.org/10.15446/abc.v30n2.117717

Palabras clave:

Cyanogenic glycosides, Cyanide removal, Linamarin, Manihot esculenta, Toxicity (en)
Eliminación de cianuro, Glucósidos cianogénicos, Linamarina, Manihot esculenta, Toxicidad (es)

Descargas

Autores/as

Cassava leaves have significant nutritional potential, but their high content of cyanogenic glycosides, which are synthesized as a defense mechanism and release hydrogen cyanide (HCN), poses a challenge using leaves as a potential food. This study evaluated the variation of HCN content in cassava leaves from seven and five cultivars at two stages after planting, respectively (seven and nine months). HCN levels ranged from 1800 to 2761 mg kg-1 (ppm) at seven months of age, with significant biological variation observed within cultivars. A reduction in HCN content was noted at nine months of age, with a maximum decrease of 74 % in one cultivar. Additionally, treatments involving crushing leaves followed boiling with NaHCO3 resulted in 90 % HCN reduction. This research highlights the importance of understanding HCN variability across cultivars and plant ages and suggests practical methods to reduce HCN content in leaves, making them a potential safer alternative nutritional source.

Las hojas de yuca presentan un potencial nutricional significativo; sin embargo, su alto contenido en glucósidos cianogénicos, los cuales son sintetizados como un mecanismo de defensa de la planta, liberan cianuro de hidrógeno (HCN). Esta situación plantea un desafío para su uso como fuente alimentaria potencial. Este estudio evaluó la variación en el contenido de HCN en hojas de yuca de siete y cinco cultivares en dos etapas de desarrollo post-siembra, respectivamente (siete y nueve meses). Los niveles de HCN variaron entre 1800 y 2761 mg kg⁻¹ (ppm) a los siete meses, observándose una variación biológica significativa dentro de los cultivares. Se observó una reducción en el contenido de HCN a los nueve meses, con una disminución máxima del 74 % en uno de los cultivares. Además, los tratamientos que involucraron triturado de las hojas seguido de ebullición con NaHCO₃ resultaron en una reducción del 90 % de HCN. Esta investigación resalta la importancia de comprender la variabilidad del HCN entre cultivares y edades de las plantas, y sugiere métodos prácticos para reducir su contenido, lo que podría convertir a las hojas de yuca en una fuente nutricional alternativa más segura.

Referencias

Alamu, E. O., Dixon, G. A., Adesokan, M. and Maziya-Dixon, B. (2023). Correlate the cyanogenic potential and dry matter content of cassava roots and leaves grown in different environments. Scientific Reports, 13(1), 1–9. https://doi.org/10.1038/s41598-023-42425-2

FAO (2022). Guía técnica para producción y análisis de almidón de yuca. Boletín de servicios agrícolas de la FAO - 163, 153. https://doi.org/10.4060/CC2323EN

Baird, R. B., Eaton, A. D. and Rice, E. W. (2017). Standard Methods for the examination of water and wastewater. In American Public Health Association (23rd ed.).

Bradbury, J. H. and Denton, I. C. (2014). Mild method for removal of cyanogens from cassava leaves with retention of vitamins and protein. Food Chemistry, 158, 417–420. https://doi.org/10.1016/J.FOODCHEM.2014.02.132

Ceballos, H. y Ospina, B. (2003). La yuca en el Tercer Milenio. En CIAT: CLAYUCA: Ministerio de Agricultura y Desarrollo Rural, FENAVI (Primera Edición). Centro Internacional de Agricultura Tropical.

Codex Alimentarius. (2024). General Standard for Contaminants and Toxins in Food And Feed-CXS 193-1995. Food and Agriculture Organization of the United Nations.

Díaz, P. y López, C. E. (2021). Yuca: Pan y Carne, Una Alternativa Potencial para Hacer Frente al Hambre Oculta. Acta Biol. Colomb, 26(2), 235–246. https://doi.org/10.15446/abc.v26n2.84569

Echeverry-Solarte, M., Ocasio-Ramirez, V., Figueroa, A., González, E. and Siritunga, D. (2013). Expression Profiling of Genes Associated with Cyanogenesis in Three Cassava Cultivars Containing Varying Levels of Toxic Cyanogens. American Journal of Plant Sciences, 4(7), 1533–1545. https://doi.org/10.4236/AJPS.2013.47185

Essers, S. A. J. A., Bosveld, M., Van Grift, R. M. D. and Voragen, A. G. J. (1993). Studies on the quantification of specific cyanogens in cassava products and introduction of a new chromogen. Journal of the Science of Food and Agriculture, 63(3). https://doi.org/10.1002/jsfa.2740630305

Gomez, M. A., Berkoff, K. C., Gill, B. K., Iavarone, A. T., Lieberman, S. E., Ma, J. M., Schultink, A., Karavolias, N. G., Wyman, S. K., Chauhan, R. D., Taylor, N. J., Staskawicz, B. J., Cho, M. J., Rokhsar, D. S. and Lyons, J. B. (2022). CRISPR-Cas9-mediated knockout of CYP79D1 and CYP79D2 in cassava attenuates toxic cyanogen production. Frontiers in Plant Science, 13, 1079254. https://doi.org/10.3389/fpls.2022.1079254

Latif, S. and Müller, J. (2015). Potential of cassava leaves in human nutrition: A review. Trends in Food Science & Technology, 44(2), 147–158. https://doi.org/10.1016/J.TIFS.2015.04.006

Latif, S., Zimmermann, S., Barati, Z. and Müller, J. (2019). Detoxification of Cassava Leaves by Thermal, Sodium Bicarbonate, Enzymatic, and Ultrasonic Treatments. Journal of Food Science, 84(7), 1986–1991. https://doi.org/10.1111/1750-3841.14658

Mcmahon, J., Sayre, R. and Zidenga, T. (2022). Cyanogenesis in cassava and its molecular manipulation for crop improvement. Journal of Experimental Botany, 73(7), 1853–1867. https://doi.org/10.1093/jxb/erab545

Montagnac, J. A., Davis, C. R. and Tanumihardjo, S. A. (2009). Processing techniques to reduce toxicity and antinutrients of Cassava for use as a staple food. Comprehensive Reviews in Food Science and Food Safety, 8(1). https://doi.org/10.1111/j.1541-4337.2008.00064.x

Nyirenda, K. K. (2020). Toxicity Potential of Cyanogenic Glycosides in Edible Plants. Medical Toxicology. https://doi.org/10.5772/intechopen.91408

Okafor, P. N., Okorowkwo, C. O. and Maduagwu, E. N. (2002). Occupational and dietary exposures of humans to cyanide poisoning from large-scale cassava processing and ingestion of cassava foods. Food and Chemical Toxicology, 40(7). https://doi.org/10.1016/S0278-6915(01)00109-0

Ospina, M. A. (2018). Evaluación de propiedades nutricionales y de calidad comercial en siete centros de diversidad de yuca con genotipificación para contenido de cianuro. https://repositorio.unal.edu.co/handle/unal/63355

Ospina, M. A., Pizarro, M., Tran, T., Ricci, J., Belalcazar, J., Luna, J., Londoño, L., Salazar, S., Ceballos, H., Dufour, D. and Becerra Lopez‐Lavalle, L. A. (2021). Cyanogenic, carotenoids and protein composition in leaves and roots across seven diverse population found in the world cassava germplasm collection at CIAT, Colombia. International Journal of Food Science & Technology, 56(3), 1343–1353. https://doi.org/10.1111/ijfs.14888

Ospina, M., Tran, T., Pizarro, M., Luna, J., Salazar, S., Londoño, L., Ceballos, H., Becerra, L. and Dufour, D. (2024). Content and distribution of cyanogenic compounds in cassava roots and leaves in association with physiological age. Journal of the Science of Food and Agriculture, 104(8), 4851–4859. https://doi.org/10.1002/jsfa.13123

Schmidt, F., Cho, S., Olsen, C., Yang, S., Møller, B. and Jørgensen, K. (2018). Diurnal regulation of cyanogenic glucoside biosynthesis and endogenous turnover in cassava. Plant Direct, 2(2). https://doi.org/10.1002/pld3.38

Sun, Z., Zhang, K., Chen, C., Wu, Y., Tang, Y., Georgiev, M. I., Zhang, X., Lin, M. and Zhou, M. (2018). Biosynthesis and regulation of cyanogenic glycoside production in forage plants. Applied Microbiology and Biotechnology, 102(1), 9–16. https://doi.org/10.1007/s00253-017-8559-z

Cómo citar

APA

Mahecha-Rojas, I. M., Soto-Sedano, J. C., Chaves-Silva, D. C. & López-Carrascal, C. E. (2025). Exploring hydrogen cyanide variation in cassava leaves and effective removal strategies. Acta Biológica Colombiana, 30(2), 152–159. https://doi.org/10.15446/abc.v30n2.117717

ACM

[1]
Mahecha-Rojas, I.M., Soto-Sedano, J.C., Chaves-Silva, D.C. y López-Carrascal, C.E. 2025. Exploring hydrogen cyanide variation in cassava leaves and effective removal strategies. Acta Biológica Colombiana. 30, 2 (abr. 2025), 152–159. DOI:https://doi.org/10.15446/abc.v30n2.117717.

ACS

(1)
Mahecha-Rojas, I. M.; Soto-Sedano, J. C.; Chaves-Silva, D. C.; López-Carrascal, C. E. Exploring hydrogen cyanide variation in cassava leaves and effective removal strategies. Acta biol. Colomb. 2025, 30, 152-159.

ABNT

MAHECHA-ROJAS, I. M.; SOTO-SEDANO, J. C.; CHAVES-SILVA, D. C.; LÓPEZ-CARRASCAL, C. E. Exploring hydrogen cyanide variation in cassava leaves and effective removal strategies. Acta Biológica Colombiana, [S. l.], v. 30, n. 2, p. 152–159, 2025. DOI: 10.15446/abc.v30n2.117717. Disponível em: https://revistas.unal.edu.co/index.php/actabiol/article/view/117717. Acesso em: 26 dic. 2025.

Chicago

Mahecha-Rojas, Iván Mauricio, Johana Carolina Soto-Sedano, Diana Carolina Chaves-Silva, y Camilo Ernesto López-Carrascal. 2025. «Exploring hydrogen cyanide variation in cassava leaves and effective removal strategies». Acta Biológica Colombiana 30 (2):152-59. https://doi.org/10.15446/abc.v30n2.117717.

Harvard

Mahecha-Rojas, I. M., Soto-Sedano, J. C., Chaves-Silva, D. C. y López-Carrascal, C. E. (2025) «Exploring hydrogen cyanide variation in cassava leaves and effective removal strategies», Acta Biológica Colombiana, 30(2), pp. 152–159. doi: 10.15446/abc.v30n2.117717.

IEEE

[1]
I. M. Mahecha-Rojas, J. C. Soto-Sedano, D. C. Chaves-Silva, y C. E. López-Carrascal, «Exploring hydrogen cyanide variation in cassava leaves and effective removal strategies», Acta biol. Colomb., vol. 30, n.º 2, pp. 152–159, abr. 2025.

MLA

Mahecha-Rojas, I. M., J. C. Soto-Sedano, D. C. Chaves-Silva, y C. E. López-Carrascal. «Exploring hydrogen cyanide variation in cassava leaves and effective removal strategies». Acta Biológica Colombiana, vol. 30, n.º 2, abril de 2025, pp. 152-9, doi:10.15446/abc.v30n2.117717.

Turabian

Mahecha-Rojas, Iván Mauricio, Johana Carolina Soto-Sedano, Diana Carolina Chaves-Silva, y Camilo Ernesto López-Carrascal. «Exploring hydrogen cyanide variation in cassava leaves and effective removal strategies». Acta Biológica Colombiana 30, no. 2 (abril 9, 2025): 152–159. Accedido diciembre 26, 2025. https://revistas.unal.edu.co/index.php/actabiol/article/view/117717.

Vancouver

1.
Mahecha-Rojas IM, Soto-Sedano JC, Chaves-Silva DC, López-Carrascal CE. Exploring hydrogen cyanide variation in cassava leaves and effective removal strategies. Acta biol. Colomb. [Internet]. 9 de abril de 2025 [citado 26 de diciembre de 2025];30(2):152-9. Disponible en: https://revistas.unal.edu.co/index.php/actabiol/article/view/117717

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

213

Descargas

Los datos de descargas todavía no están disponibles.