Publicado

2022-09-01

ARBUSCULAR MYCORRHIZA SYMBIOSIS REDUCES THE RHIZOCTONIA ROOT ROT AND ALTERS THE PHENOLIC PROFILE IN COMMON BEAN

La simbiosis micorrízica arbuscular reduce la pudrición de raíz por rhizoctonia y altera el perfil de fenoles en frijol

DOI:

https://doi.org/10.15446/abc.v27n3.87627

Palabras clave:

plant disease, Fungus, defense (en)
enfermedad de planta, Hongo, defensa (es)

Descargas

Autores/as

Arbuscular mycorrhizal fungi (AMF) have the potential to reduce the deleterious effect of soil-borne pathogens, but their ability for pathogen biocontrol may vary depending on the genotype of the plant, the pathogen, and the AMF interaction. Thus, the aim of this work was to evaluate the effect of the Mexican biofertilizer Rizofermic-UV based on a mix of AMF formulation against the common bean root rot caused by the pathogenic fungus Rhizoctonia solani Kühn 1858 (Teleomorph: Thanatephorus cucumeris). Additionally, the total phenolic content, individual phenolic acid (caffeic, ferulic, o-cumaric, p-cumaric, sinapic, and vanillic), and the flavonoid (catechin, kaempherol, quercetin, and rutin) profiles were analyzed. Our results show that the AMF biofertilization reduces the disease severity up to 68 %, and this was accompanied by a boost in total phenolic content in dual inoculation. Furthermore, a variation in the individual phenolic profiles caused by both AMF interaction and pathogen treatment alone were observed. In dual inoculations, vanillic acid was significantly different among treatments, suggesting it may contribute to the enhanced resistance of mycorrhizal roots to soil-borne pathogens. Further work is required to elucidate the exact role of these compounds in the bioprotection of arbuscular mycorrhizal to plant pathogens.

Los hongos micorrízicos arbusculares (AMF) tienen el potencial de reducir el efecto negativo de los patógenos en plantas, pero su capacidad para el biocontrol puede variar dependiendo del genotipo de la planta, el patógeno y AMF. Por lo tanto, el objetivo de este trabajo fue evaluar el efecto del biofertilizante mexicano Rizofermic-UV basado en una mezcla diversos AMF contra la pudrición de la raíz del frijol causada por el hongo patógeno Rhizoctonia solani Kühn 1858 (Teleomorfa: Thanatephorus cucumeris). Se evaluó también el contenido de fenoles totales, el de ácidos fenólicos individuales (cafeico, ferúlico, o-cumárico, p-cumárico, sinápico y vanílico) y los perfiles de flavonoides (catequina, kaempferol, quercetina y rutina). Nuestros resultados muestran que la biofertilización reduce la severidad hasta un 68 %, esto es acompañado por un aumento en el contenido de fenoles totales en la inoculación doble. Además, se observó una variación en los perfiles fenólicos individuales en la interacción con los AMF y en el tratamiento que contenía solo el patógeno. En las inoculaciones duales, el ácido vanílico fue significativamente diferente entre los tratamientos, lo que sugiere que puede contribuir a una mayor resistencia de las raíces micorrizadas a los patógenos transmitidos por el suelo. Se requiere trabajo adicional para dilucidar el papel exacto de estos compuestos en la bioprotección de las micorrizas arbusculares contra los patógenos de las plantas.

Referencias

Abdel-Fattah, G. M., El-Haddad, S. A., Hafez, E. E., and Rashad, Y. M. (2011). Induction of defense responses in common bean plants by arbuscular mycorrhizal fungi. Microbiological Research, 166(4), 268-281. https://doi.org/10.1016/j.micres.2010.04.004

Al-Askar, A. A., and Rashad, Y. M. (2010). Arbuscular Mycorrhizal Fungi: A biocontrol agent against common bean fusarium root rot disease. Plant Pathology Journal, 9(1), 31-38. https://dx.doi.org/10.3923/ppj.2010.31.38

Aseel, D. G., Rashad, Y. M., and Hammad, S. M. (2019). Arbuscular mycorrhizal fungi trigger transcriptional expression of flavonoid and chlorogenic acid biosynthetic pathways genes in tomato against Tomato mosaic virus. Scientific Reports, 9(1), 9692. https://doi.org/10.1038/s41598-019-46281-x

Bi, B., Tang, J., Han, S., Guo, J., and Miao, Y. (2017). Sinapic acid or its derivatives interfere with abscisic acid homeostasis during Arabidopsis thaliana seed germination. BMC Plant Biology, 17(1), 99. https://doi.org/10.1186/s12870-017-1048-9

Carling, D. E., Pope, E. J., Brainard, K. A., and Carter, D. A. (1999). Characterization of mycorrhizal isolates of Rhizoctonia solani from an orchid, including AG-12, a new anastomosis group. Phytopathology, 89(10), 942-946. https://doi.org/10.1094/PHYTO.1999.89.10.942

Chakraborty, B. N., and Saha, A. (1994). Accumulation of antifungal compounds in tea leaf tissue infected with Bipolaris carbonum. Folia Microbiologica, 39(5), 409-414. https://doi.org/10.1007/BF02814448

Chavez-Servia, J. L., Heredia-García, E., Mayek-Pérez, N., et al. (2016). Diversity of common bean (Phaseolus vulgaris L.) landraces and the nutritional value of their grains. In K. G. Aakash (Ed.), Grain legumes (pp. 1-33). InTechOpen. https://doi.org/10.5772/63439

Conrath, U. (2011). Molecular aspects of defence priming. Trends in Plant Science, 16(10), 524-531. https://doi.org/10.1016/j.tplants.2011.06.004

Eke, P., Chatue Chatue, G., Wakam, L. N., Kouipou, R. M. T., Fokou, P. V. T., and Boyom, F. F. (2016). Mycorrhiza consortia suppress the fusarium root rot (Fusarium solani f. sp. phaseoli) in common bean (Phaseolus vulgaris L.). Biological Control, 103, 240-250. https://doi.org/10.1016/j.biocontrol.2016.10.001

Giovannetti, M., and Mosse, B. (1980). An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytologist, 84(3), 489-500. https://doi.org/10.1111/j.1469-8137.1980.tb04556.x

Grandmaison, J., Olah, G. M., Van Calsteren, M. -R., and Furlan, V. (1993). Characterization and localization of plant phenolics likely involved in the pathogen resistance expressed by endomycorrhizal roots. Mycorrhiza, 3, 155-164. https://doi.org/10.1007/BF00203609

Hammerschmidt, R. (2003). Phenols and plant–pathogen interactions: The saga continues. Physiological and Molecular Plant Pathology, 66(3), 77-78. https://doi.org/10.1016/j.pmpp.2005.08.001

Hao, Z., Xie, W., and Chen, B. (2019). Arbuscular mycorrhizal symbiosis affects plant immunity to viral infection and accumulation. Viruses, 11(6), 534. https://doi.org/10.3390/v11060534

Köhl, J., Kolnaar, R., and Ravensberg, W. J. (2019). Mode of Action of microbial biological control agents against plant diseases: Relevance beyond efficacy. Frontiers in Plant Science, 10(845), 1-19. https://doi.org/10.3389/fpls.2019.00845

Konig, S., Feussner, K., Kaever, A., Landesfeind, M., Thurow, C., Karlovsky, P., Gatz, C., Polle, A., and Feussner, I. (2014). Soluble phenylpropanoids are involved in the defense response of Arabidopsis against Verticillium longisporum. New Phytologist, 202(3), 823-837. https://doi.org/10.1111/nph.12709

López-Ráez, J. A., Flors, V., García, J. M., and Pozo, M. J. (2010). AM symbiosis alters phenolic acid content in tomato roots. Plant Signaling & Behavior, 5(9), 1138-40. https://doi.org/10.4161/psb.5.9.12659

Mandal, S. M., Chakraborty, D., and Dey, S. (2010). Phenolic acids act as signaling molecules in plantmicrobe symbioses. Plant Signaling & Behavior, 5(4), 359-368. https://doi.org/10.4161/psb.5.4.10871

Martins, S. A., Schurt, D. A., Seabra, S. S., Martins, S. J., Patto Ramalho, M. A., de Souza Moreira, F. M., Pereira da Silva, J. C., Goyulart da Silva, J. A., and Vasconcelos de Medeiros, F. H. (2018). Common bean (Phaseolus vulgaris L.) growth promotion and biocontrol by rhizobacteria under Rhizoctonia solani suppressive and conducive soils. Applied Soil Ecology, 127, 129-135. https://doi.org/10.1016/j.apsoil.2018.03.007

Mayo-Prieto, S., Marra, R., Vinale, F., Rodríguez-González, Á., Woo, S. L., Lorito, M., Gutiérrez, S., and Casquero P. A. (2019). Effect of Trichoderma velutinum and Rhizoctonia solani on the metabolome of bean plants (Phaseolus vulgaris L.). International Journal of Molecular Sciences, 20(3), 549. https://doi.org/10.3390/ijms20030549

Mecha, E., Figueira, M. E., Vaz Patto, M. C., and Bronze, M. R. (2018). Two sides of the same coin: The impact of grain legumes on human health: Common bean (Phaseolus vulgaris L.) as a case study. In J. C. Jimenez-Lopez, and A. Clemente, (Ed.), Legume seed nutraceutical research (pp. 25-46). InTechOpen. https://doi.org/10.5772/intechopen.78737

Mierziak, J., Kostyn, K., and Kulma, A. (2014). Flavonoids as important molecules of plant interactions with the environment. Molecules, 19(10), 16240-16265. https://doi.org/10.3390/molecules191016240

Montesano, M., Brader, G., Ponce de León, I., and Palva, E. T. (2005). Multiple defence signals induced by Erwinia carotovora ssp. carotovora elicitors in potato.Molecular Plant Pathology, 6(5), 541-549. https://doi.org/10.1111/j.1364-3703.2005.00305.x

Mora-Romero, G. A., Cervantes-Gámez, R. G., Galindo-Flores, H., González-Ortíz, M. A., Félix-Gastélum, R., Maldonado-Mendoza, I. E., Salinas Pérez, R., León-Félix, J., Martínez-Valenzuela, M. C., and López-Meyer, M. (2015). Mycorrhiza-induced protection against pathogens is both genotype-specific and graft-transmissible. Symbiosis, 66, 55-64. https://doi.org/10.1007/s13199-015-0334-2

Nurmi, K., Ossipov, V., Haukioja, E., and Philaja, K. (1996). Variation of total phenolic content and individual lowmolecular-weight phenolics in foliage of mountain birch trees (Betula pubescens ssp.tortuosa). Journal of Chemical Ecology, 22, 2023-2040. https://doi.org/10.1007/BF02040093

Phillips, J. M., and Hayman, D. S. (1970). Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55(1), 158-161. https://doi.org/10.1016/S0007-1536(70)80110-3

Pozo, M. J., and Azcon-Aguilar, C. (2007). Unraveling mycorrhiza-induced resistance. Current Opinion in Plant Biology, 10(4), 393-8. https://doi.org/10.1016/j.pbi.2007.05.004

Ruelas, C., Tiznado-Hernández, M. E., Sánchez-Estrada, A., Robles-Burgueño, M. R., and Troncoso-Rojas, R. (2006). Changes in phenolic acid content during Alternaria alternata infection in tomato fruit. Journal of Phytopathology, 54(4), 236-244. https://doi.org/10.1111/j.1439-0434.2006.01090.x

Schliemann, W., Ammer, C., and Strack, D. (2008). Metabolite profiling of mycorrhizal roots of Medicago truncatula. Phytochemistry, 69(1), 112-146. https://doi.org/10.1016/j.phytochem.2007.06.032

Sharma, I. P., and Sharma, A. K. (2017). Co-inoculation of tomato with an arbuscular mycorrhizal fungus improves plant immunity and reduces root-knot nematode infection. Rhizosphere, 4, 25-28. https://doi.org/10.1016/j.rhisph.2017.05.008

Toussaint, J. -P., Smith, F. A., and Smith, S. E. (2007). Arbuscular mycorrhizal fungi can induce the production of phytochemicals in sweet basil irrespective of phosphorus nutrition. Mycorrhiza, 17, 291-297. https://doi.org/10.1007/s00572-006-0104-3

Valentín Torres, S., Vargas, M. M., Godoy-Lutz, G., Porch, T. G., and Beaver, J. S. (2016). Isolates of Rhizoctonia solani can produce both web blight and root rot symptoms in common bean (Phaseolus vulgaris L.). Plant Disease, 100, 1351-1357. https://doi.org/10.1094/PDIS-11-15-1270-RE

Weiss, M., Mikolajewski, S., Peipp, H., U. Schmitt, J. Schmidt, V. Wray, D. Strack. (1997). Tissue-specific and development-dependent accumulation of phenylpropanoids in larch mycorrhizas Plant Physiology, 114(1), 15-27. https://doi.org/10.1104/pp.114.1.15

Yang, S., Peng, Q., Francisco, M., Wang, Y., Zeng, Q., and Yang, C. -H. (2008). Type III Secretion System Genes of Dickeya dadantii 3937 are induced by plant phenolic acids. PloSone, 3(8), e2973. https://doi.org/10.1371/journal.pone.0002973

Cómo citar

APA

Corrales-Sánchez, J. B., López-Meyer, M., Valdez Morales, M., Trejo Aguilar, D., Bojórquez Armenta, Y. de J., Valle Castillo, C. E., Ibarra Sarmiento, C. R., Romero Urías, C. de L. Ángeles y Mora Romero, G. A. (2022). ARBUSCULAR MYCORRHIZA SYMBIOSIS REDUCES THE RHIZOCTONIA ROOT ROT AND ALTERS THE PHENOLIC PROFILE IN COMMON BEAN. Acta Biológica Colombiana, 27(3), 316–325. https://doi.org/10.15446/abc.v27n3.87627

ACM

[1]
Corrales-Sánchez, J.B., López-Meyer, M., Valdez Morales, M., Trejo Aguilar, D., Bojórquez Armenta, Y. de J., Valle Castillo, C.E., Ibarra Sarmiento, C.R., Romero Urías, C. de L. Ángeles y Mora Romero, G.A. 2022. ARBUSCULAR MYCORRHIZA SYMBIOSIS REDUCES THE RHIZOCTONIA ROOT ROT AND ALTERS THE PHENOLIC PROFILE IN COMMON BEAN. Acta Biológica Colombiana. 27, 3 (sep. 2022), 316–325. DOI:https://doi.org/10.15446/abc.v27n3.87627.

ACS

(1)
Corrales-Sánchez, J. B.; López-Meyer, M.; Valdez Morales, M.; Trejo Aguilar, D.; Bojórquez Armenta, Y. de J.; Valle Castillo, C. E.; Ibarra Sarmiento, C. R.; Romero Urías, C. de L. Ángeles; Mora Romero, G. A. ARBUSCULAR MYCORRHIZA SYMBIOSIS REDUCES THE RHIZOCTONIA ROOT ROT AND ALTERS THE PHENOLIC PROFILE IN COMMON BEAN. Acta biol. Colomb. 2022, 27, 316-325.

ABNT

CORRALES-SÁNCHEZ, J. B.; LÓPEZ-MEYER, M.; VALDEZ MORALES, M.; TREJO AGUILAR, D.; BOJÓRQUEZ ARMENTA, Y. de J.; VALLE CASTILLO, C. E.; IBARRA SARMIENTO, C. R.; ROMERO URÍAS, C. de L. Ángeles; MORA ROMERO, G. A. ARBUSCULAR MYCORRHIZA SYMBIOSIS REDUCES THE RHIZOCTONIA ROOT ROT AND ALTERS THE PHENOLIC PROFILE IN COMMON BEAN. Acta Biológica Colombiana, [S. l.], v. 27, n. 3, p. 316–325, 2022. DOI: 10.15446/abc.v27n3.87627. Disponível em: https://revistas.unal.edu.co/index.php/actabiol/article/view/87627. Acesso em: 27 ago. 2024.

Chicago

Corrales-Sánchez, Jesús Benjamín, Melina López-Meyer, Maribel Valdez Morales, Dora Trejo Aguilar, Yolani de Jesús Bojórquez Armenta, Carmen Elena Valle Castillo, Carlos Ramiro Ibarra Sarmiento, Cecilia de Los Ángeles Romero Urías, y Guadalupe Arlene Mora Romero. 2022. «ARBUSCULAR MYCORRHIZA SYMBIOSIS REDUCES THE RHIZOCTONIA ROOT ROT AND ALTERS THE PHENOLIC PROFILE IN COMMON BEAN». Acta Biológica Colombiana 27 (3):316-25. https://doi.org/10.15446/abc.v27n3.87627.

Harvard

Corrales-Sánchez, J. B., López-Meyer, M., Valdez Morales, M., Trejo Aguilar, D., Bojórquez Armenta, Y. de J., Valle Castillo, C. E., Ibarra Sarmiento, C. R., Romero Urías, C. de L. Ángeles y Mora Romero, G. A. (2022) «ARBUSCULAR MYCORRHIZA SYMBIOSIS REDUCES THE RHIZOCTONIA ROOT ROT AND ALTERS THE PHENOLIC PROFILE IN COMMON BEAN», Acta Biológica Colombiana, 27(3), pp. 316–325. doi: 10.15446/abc.v27n3.87627.

IEEE

[1]
J. B. Corrales-Sánchez, «ARBUSCULAR MYCORRHIZA SYMBIOSIS REDUCES THE RHIZOCTONIA ROOT ROT AND ALTERS THE PHENOLIC PROFILE IN COMMON BEAN», Acta biol. Colomb., vol. 27, n.º 3, pp. 316–325, sep. 2022.

MLA

Corrales-Sánchez, J. B., M. López-Meyer, M. Valdez Morales, D. Trejo Aguilar, Y. de J. Bojórquez Armenta, C. E. Valle Castillo, C. R. Ibarra Sarmiento, C. de L. Ángeles Romero Urías, y G. A. Mora Romero. «ARBUSCULAR MYCORRHIZA SYMBIOSIS REDUCES THE RHIZOCTONIA ROOT ROT AND ALTERS THE PHENOLIC PROFILE IN COMMON BEAN». Acta Biológica Colombiana, vol. 27, n.º 3, septiembre de 2022, pp. 316-25, doi:10.15446/abc.v27n3.87627.

Turabian

Corrales-Sánchez, Jesús Benjamín, Melina López-Meyer, Maribel Valdez Morales, Dora Trejo Aguilar, Yolani de Jesús Bojórquez Armenta, Carmen Elena Valle Castillo, Carlos Ramiro Ibarra Sarmiento, Cecilia de Los Ángeles Romero Urías, y Guadalupe Arlene Mora Romero. «ARBUSCULAR MYCORRHIZA SYMBIOSIS REDUCES THE RHIZOCTONIA ROOT ROT AND ALTERS THE PHENOLIC PROFILE IN COMMON BEAN». Acta Biológica Colombiana 27, no. 3 (septiembre 1, 2022): 316–325. Accedido agosto 27, 2024. https://revistas.unal.edu.co/index.php/actabiol/article/view/87627.

Vancouver

1.
Corrales-Sánchez JB, López-Meyer M, Valdez Morales M, Trejo Aguilar D, Bojórquez Armenta Y de J, Valle Castillo CE, Ibarra Sarmiento CR, Romero Urías C de L Ángeles, Mora Romero GA. ARBUSCULAR MYCORRHIZA SYMBIOSIS REDUCES THE RHIZOCTONIA ROOT ROT AND ALTERS THE PHENOLIC PROFILE IN COMMON BEAN. Acta biol. Colomb. [Internet]. 1 de septiembre de 2022 [citado 27 de agosto de 2024];27(3):316-25. Disponible en: https://revistas.unal.edu.co/index.php/actabiol/article/view/87627

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

854

Descargas

Los datos de descargas todavía no están disponibles.