Publicado

2023-01-05

CARACTERÍSTICAS MORFOLÓGICAS FOLIARES Y SU RELACIÓN CON LA DEFOLIACIÓN EN TRES ESPECIES DE PLANTAS FORRAJERAS

Morphological leaf traits and their relationship to defoliation in three forage plant species

CARACTERÍSTICAS MORFOLÓGICAS FOLIARES E SUA RELAÇÃO COM A DESFOLIAÇÃO EM TRÊS ESPÉCIES DE PLANTAS DE FORRAGEM

DOI:

https://doi.org/10.15446/abc.v28n1.88402

Palabras clave:

Asimetría fluctuante, Daño foliar, Fenología, Yucatán (es)
Fluctuating asymmetry, Leaf damage, Phenology, Yucatan (en)
herbivoria, idade da folha, idade da planta (pt)

Descargas

Autores/as

Las plantas responden a cambios bióticos y abióticos acorde a su plasticidad fenotípica. Estas variaciones pueden expresarse en características relacionadas a la morfología foliar, crecimiento y defoliación. Este estudio evalúa la influencia de la edad de las plantas y de hojas sobre las características foliares, y su relación con la defoliación en tres especies forrajeras, Tithonia diversifolia, Morus alba y Moringa oleifera. M. oleifera mostró hojas con mayores valores de grosor, peso seco, asimetría y área; M. alba hojas más duras y con mayor área foliar especifica. M. oleifera el área foliar, peso seco, grosor y dureza incrementaron en plantas de 30 días. En tanto, que en M. alba las hojas intermedias tuvieron mayor área; y, las plantas de 90 días mayores valores de SLA, grosor y dureza. El área foliar y peso seco fueron mayores a los 60 y 30 días, respectivamente. En T. diversifolia las hojas intermedias presentaron mayor peso seco y grosor, las plantas de 30 días mayor área foliar y peso seco; y, las de 90 días, mayor grosor. Se encontraron relaciones negativas en hojas jóvenes con el grosor, dureza y peso seco. La defoliación mostró asociaciones positivas con el SLA y la dureza; y, negativas con el grosor, peso seco, asimetría y área. Subrayamos la importancia de realizar estudios que contribuyan al entendimiento de interrelaciones entre la estructura de la hoja, su función y sus relaciones con la expresión de los rasgos morfológicos de resistencia y tolerancia en especies tropicales de importancia económica y ecológica.

Plants respond to biotic and abiotic changes through their phenotypic plasticity. These variations can be expressed in traits related to leaf morphology, plant growth, and defoliation. We evaluated the influence of plant age and leaf age on leaf traits and its relation with defoliation in three forage plant species, Tithonia diversifolia, Morus alba, and Moringa oleifera. Interspecifically, M. oleifera showed thicker leaves, higher dry weight, leaf asymmetry, and leaf area; M. alba showed harder leaves and higher specific leaf area. Intraspecifically, in the M. oleifera leaf area, dry weight, thickness, and hardness of leaves increased only in 30 day-old-plant. While in M. alba intermediate leaves had higher leaf area; and, 90 day-old-plant had higher thickness and hardness. Leaf area and dry weight were higher in 60 and 30 day-old-plants, respectively. In T. diversifolia intermediate leaves showed higher dry weight and leaf thickness, 30 day-old-plant had higher leaf area and leaf dry weight; and, 90 day-old-plant had higher leaf thickness. In addition, we found negative relationships between young leaves with leaf thickness, leaf hardness, and leaf dry weight. Defoliation showed positive relationships with SLA and leaf hardness, and negative ones with leaf thickness, leaf dry weight, leaf asymmetry, and leaf area.

As plantas respondem a alterações abióticas e bióticas de acordo com sua plasticidade fenotípica. Essas variações podem ser expressas em características relacionadas à morfologia foliar, crescimento e desfolhamento. Este estudo avalia a influência da idade das plantas e das folhas nas características foliares e sua relação com a desfolhamento em três espécies forrageiras, Tithonia diversifolia, Morus alba e Moringa oleifera. Inespecificamente, M. oleifera apresentou folhas com maiores valores de espessura, peso seco, assimetria e área; M. alba folhas mais duras e com maior SLA. Intraspecificamente, em M. oleifera a área foliar, peso seco, espessura e dureza aumentaram apenas em plantas de 30 dias. Enquanto isso, em M. alba as folhas intermediárias tiveram uma área maior; e, as plantas com 90 dias de SLA, espessura e dureza mais altas. A área foliar e o peso seco foram maiores aos 60 e 30 dias, respectivamente. Em T. diversifolia, as folhas intermediárias apresentaram maior peso e espessura secos, as plantas de 30 dias apresentaram maior área foliar e peso seco; e os de 90 dias, maior espessura. Foram encontradas relações negativas de folhas jovens com espessura, dureza e peso seco. Desfolhamento mostrou associações positivas com SLA e dureza; e negativo com espessura, peso seco, assimetria e área foliar. Ressaltamos a importância de realizar estudos que considerem características foliares em espécies forrageiras suscetíveis a danos por desfolhamento repetitivo, o que causaria respostas diferenciais em comparação com espécies não forrageiras.

Referencias

Abdulkadir, A. R., Jahan, M. S., y Zawawi, D. D. (2015). Effect of chlorophyll content and maturity on total phenolic, total flavonoid contents and antioxidant activity of Moringa oleifera leaf (Miracle tree). Journal of Chemical and Pharmaceutical Research, (5), 1147-1152.

Baatar, B. (2008). Effects of cutting height and frequency on yield in a Mongolian rangeland. Land Restoration Training Programme, 1-16.

Bajpai, P. K., Warghat, A. R., Yadav, A., Kant, A., Srivastava, R. B., y Stobdan, T. (2015). High phenotypic variation in Morus alba L. along an altitudinal gradient in the Indian trans-Himalaya. Journal of Mountain Science, 12, 446-455. https://doi.org/10.1007/s11629-013-2875-2 DOI: https://doi.org/10.1007/s11629-013-2875-2

Ballina-Gómez, H. S., Vivar S. I., Orellana, R., y Santiago, L. S. (2008). Crecimiento, supervivencia y herbivoría de plántulas de Brosimum alicastrum (Moraceae), una especie del sotobosque neotropical. Revista de Biología Tropical, 56(4), 2055-2067. https://doi.org/10.15517/rbt.v56i4.5779 DOI: https://doi.org/10.15517/rbt.v56i4.5779

Ballina-Gómez, H. S., Vivar, S. I., Orellana, R., y Santiago, L. S. (2010). Compensatory growth responses to defoliation and light availability in two native Mexican woody plant species. Journal of tropical ecology, 26(2), 163-171. https://doi.org/10.1017/S0266467409990514 DOI: https://doi.org/10.1017/S0266467409990514

Barton, K. E. (2008). Phenotypic plasticity in seedling defense strategies: compensatory growth and chemical induction. Oikos, 117(6), 917-925. https://doi.org/10.1111/j.0030-1299.2008.16324.x DOI: https://doi.org/10.1111/j.0030-1299.2008.16324.x

Barton, K. E., Kyle, F. E., y Koricheva, J. (2019). Shifts in woody plant defence syndromes during leaf development. Functional Ecology, 33(11), 2095-2104. https://doi.org/10.1111/1365-2435.13435 DOI: https://doi.org/10.1111/1365-2435.13435

Boege, K., Barton, K. E., y Dirzo, R. (2011). Influence of tree ontogeny on plant-herbivore interactions. In: Meinzer F, Lachenbruch B, Dowson T, editor(s). Size- and agerelated changes in tree structure and function. Tree Physiology, 4, 193-214. https://doi.org/10.1007/978-94-007-1242-3_7 DOI: https://doi.org/10.1007/978-94-007-1242-3_7

Boege, K., y Marquis, R. (2005). Facing herbivory as you grow up: the ontogeny of resistance in plants. Trends in Ecology & Evolution, 20(8), 441-448. https://doi.org/10.1016/j.tree.2005.05.001 DOI: https://doi.org/10.1016/j.tree.2005.05.001

Carrillo-Herrera, E. F., Dzib-Ek, S. A., y Ballina-Gómez, H. S. (2021). Influencia de la herbivoría y la apertura de claros sobre el crecimiento total de Brosimum alicastrum (Moraceae). Acta Biológica Colombiana, 26(2), 186-196. https://doi.org/10.15446/abc.v26n2.83289 DOI: https://doi.org/10.15446/abc.v26n2.83289

Caruso, C. M., Maherali, H., y Martin, R. A. (2020). A meta-analysis of natural selection on plant functional traits. International Journal of Plant Sciences, 181(1), 44-55. https://doi.org/10.1086/706199 DOI: https://doi.org/10.1086/706199

Casanova-Lugo, F., Cetzal-Ix, W., Díaz-Echeverría, V. F., Chay-Canul, A. J., Oros-Ortega, I., Piñeiro-Vázquez, A. T., y González-Valdivia, N. A. (2018). Moringa oleifera Lam. (Moringaceae): Árbol Exótico con Gran Potencial para la Ganadería Ecológica en el Trópico. AGROProductividad, 11(2), 100-106.

Chen, M., Huang, Y., Liu, G., Qin, F., Yang, S., y Xu, X. (2016). Effects of enhanced UV-B radiation on morphology, physiology, biomass, leaf anatomy and ultrastructure in male and female mulberry (Morus alba) saplings. Environmental and Experimental Botany, 129, 85-93. https://doi.org/10.1016/j.envexpbot.2016.03.006 DOI: https://doi.org/10.1016/j.envexpbot.2016.03.006

Cuevas-Reyes, P., Novais-Pereira, G. C., Gelvez-Zuniga, I., Fernandes, G. W., Venancio, H., Santos, J. C., y Maldonado-Lopez, Y. (2018). Effects of ferric soils on arthropod abundance and herbivory on Tibouchina heteromalla (Melastomataceae): importance of fluctuating asymmetry as indicator of environmental stress? Plant Ecology, 219, 69-78. https://doi.org/10.1007/s11258-017-0778-y DOI: https://doi.org/10.1007/s11258-017-0778-y

Díaz, M., Pulido, F. J., y Møller, A. P. (2004). Herbivore effects on developmental instability and fecundity of holm oaks. Oecologia, 139, 224-234. https://doi.org/10.1007/s00442-004-1491-9 DOI: https://doi.org/10.1007/s00442-004-1491-9

Dineva, S. (2017). Leaf Blade Structure of Morus alba L. and Resistance to Industrial Pollution. eJournal of Applied Forest Ecology, 5(2), 1-8.

Dirzo, R., y Domínguez, C.A. (1995). Plant-herbivore interactions in Mesoamerican tropical dry forest. Seasonally dry tropical forest. Cambridge University Press, Cambridge, 305-325. https://doi.org/10.1017/CBO9780511753398.012 DOI: https://doi.org/10.1017/CBO9780511753398.012

Divíšek, J., Chytrý, M., Beckage, B., Gotelli, N. J., Lososová, Z., Pyšek, P., y Molofsky, J. (2018). Similarity of introduced plant species to native ones facilitates naturalization, but differences enhance invasion success. Nature communications, 9(1), 1-10. https://doi.org/10.1038/s41467-018-06995-4 DOI: https://doi.org/10.1038/s41467-018-06995-4

Falconer, D. S. (1981). Introduction to quantitative genetics. Genetics, 167(4), 1529-1536. https://doi.org/10.1093/genetics/167.4.1529 DOI: https://doi.org/10.1093/genetics/167.4.1529

Fuglie, L. J. (2000). New Uses of Moringa studied in Nicaragua. ECHO Development.

Gaquerel, E., y Stitz, M. (2017). Insect Resistance: An Emerging Molecular Framework Linking Plant Age and JA Signaling. Molecular Plant, 10(4), 537-539. https://doi.org/10.1016/j.molp.2017.02.006 DOI: https://doi.org/10.1016/j.molp.2017.02.006

Gianoli, E., y González, M. (2005). Environmental heterogeneity and population differentiation in plasticity to drought in Convolvulus chilensis (Convolvulaceae). Evolutionary Ecology, 19, 603-613. https://doi.org/10.1007/s10682-005-2220-5 DOI: https://doi.org/10.1007/s10682-005-2220-5

Gong, B., y Zhang, G. (2014). Interactions between plants and herbivores: A review of plant defense. Ecological Society of China, 34(6), 325-336. https://doi.org/10.1016/j.chnaes.2013.07.010 DOI: https://doi.org/10.1016/j.chnaes.2013.07.010

González, M. A., Bordera, S., y González, D. H. (2015). Spatio-temporal diversity of Cryptinae (Hymenoptera, Ichneumonidae) assemblages in a protected area of southeast Mexico. Journal of Insect Conservation, 19, 1153-1161. https://doi.org/10.1007/s10841-015-9830-1 DOI: https://doi.org/10.1007/s10841-015-9830-1

Herrera, C. M., y Pellmyr, O. (2002). Plant-animal interactions. An evolutionary approach. Global Ecology and Biogeography, 12(4), 358–360. DOI: https://doi.org/10.1046/j.1466-822X.2003.00029_2.x

Hilbert, D. W., Swift, D. M., Detling, J. K., y Dyer, M. I. (1981). Relative growth rates and the grazing optimization hypothesis. Oecologia, 51, 14-18. https://doi.org/10.1007/BF00344645 DOI: https://doi.org/10.1007/BF00344645

Hill, M. O. (1979). DECORANA-A FORTRAN program for detrended correspondence analysis and reciprocal averaging. Global Ecology and Biogeography, 12(4), 1-52.

Hosseini, A., y Linares, J. C. (2018). Linking morphological and ecophysiological leaf traits to canopy dieback in Persian oak trees from central Zagros. Journal of Forestry Research, 30(5), 1755-1764. https://doi.org/10.1007/s11676-018-0805-4 DOI: https://doi.org/10.1007/s11676-018-0805-4

Koslov, M. V., Zverev, V., y Zvereva, E. L. (2018). Do defoliating insects distinguish between symmetric and asymmetric leaves within a plant? Ecological Entomology, 43(5), 656-664. https://doi.org/10.1111/een.12642 DOI: https://doi.org/10.1111/een.12642

Lamers, J. P. A., Khamzina, A., y Worbes, M. (2006). The analyses of physiological and morphological attributes of 10 tree species for early determination of their suitability to afforest degraded landscapes in the Aral Sea Basin of Uzbekistan. Forest Ecology and Management, 221(3), 249-259. https://doi.org/10.1016/j.foreco.2005.10.022 DOI: https://doi.org/10.1016/j.foreco.2005.10.022

Larcher, W. (2006). Ecofisiologia vegetal. RiMa, São Carlo, (5), 525-550.

Lee, M. A. (2018). A global comparison of the nutritive values of forage plants grown in contrasting environments. Journal of plant research, 131(4), 641-654. https://doi.org/10.1007/s10265-018-1024-y DOI: https://doi.org/10.1007/s10265-018-1024-y

Legendre, P., y Legendre, L. (1998). Numerical ecology 2nd Elsevier, Amsterdam, The Netherlands, 852.

Lusk, C. H., Reich, P. B., Montgomery, R. A., y Ackerly, D. D. (2008). Cavender-Bares J. Why are evergreen leaves so contrary about shade? Trends in Ecology & Evolution, 23(6), 299–303. https://doi.org/10.1016/j.tree.2008.02.006 DOI: https://doi.org/10.1016/j.tree.2008.02.006

Marron, N., Dillen, S. Y., y Ceulemans R. (2007). Evaluation of leaf traits for indirect selection of high yielding poplar hybrids. Environmental and Experimental Botany, 61(2), 103–116. https://doi.org/10.1016/j.envexpbot.2007.04.002 DOI: https://doi.org/10.1016/j.envexpbot.2007.04.002

Maschinski, J., y Whitam, T. G. (1989). The continuum of plant responses to herbivory: the influence of plant association, nutrient availability and timing. The American Naturalist, 134(1), 1-19. https://doi.org/10.1086/284962 DOI: https://doi.org/10.1086/284962

McNickle, G. G., y Evans, W. D. (2018). Toleration games: compensatory growth by plants in response to enemy attack is an evolutionarily stable strategy. AoB Plants, 10(4), 1-14. https://doi.org/10.1093/aobpla/ply035 DOI: https://doi.org/10.1093/aobpla/ply035

Medugu, C. I., Mohammed, G., Raji, A. O., Barwa, E., y Zhinma, A. (2012). Utilization of different forages by growing rabbits. International Journal of Advanced Research in Biological Sciences, 2(2), 375-381.

Meihls, L. N., Kaur, H. L., y Jander, G. (2012). Natural Variation in Maize Defense against Insect Herbivores. Cold Spring Harbor Symposia on Quantitative Biology, 77, 269-283. https://doi.org/10.1101/sqb.2012.77.014662 DOI: https://doi.org/10.1101/sqb.2012.77.014662

Mejía-Díaz, E., Mahecha-Ledesma, L., y Angulo-Arizala, J. (2017). Tithonia diversifolia: especie para ramoneo en sistemas silvopastoriles y métodos para estimar su consumo. Agronomía Mesoamericana, 28(1), 289-302. https://doi.org/10.15517/am.v28i1.22673 DOI: https://doi.org/10.15517/am.v28i1.22673

Moller, A. P. (1995). Leaf-mining insects and fluctuating asymmetry in elm Ulmus glabra leaves. Journal of Animal Ecology, 64(6), 697-707. https://doi.org/10.2307/5849 DOI: https://doi.org/10.2307/5849

Moran, M. D. (2003). Arguments for rejecting the sequential Bonferroni in ecological studies. Oikos, 100(2), 403–405. https://doi.org/10.1034/j.1600-0706.2003.12010.x DOI: https://doi.org/10.1034/j.1600-0706.2003.12010.x

Muiruri, W. E., Barantal, S., Iason G. R., Salminen J. P., Fernandez E. P., y Koricheva J. (2018). Forest diversity effects on insect herbivores: do leaf traits matter? New Phytologist, 221(4), 2250-2260. https://doi.org/10.1111/nph.15558 DOI: https://doi.org/10.1111/nph.15558

Murgueitio, E., Xocchitl Martha y Uribe, F. (2015). Productividad en sistemas silvopastoriles intensivos en américa latina. Sistemas agroforestales. Funciones productivas, socioeconómicas y ambientales. Florencia Montagnini, CIPAV, Cali, Colombia. 454.

Ndubuaku, M., Ndubuaku, C. N., y Ndubuaku, E. (2014). Yield Characteristics of Moringa oleifera Across Different Ecologies in Nigeria as an Index of Its Adaptation to Climate Sustainable Agriculture Research, 3(1), 95-100. https://doi.org/10.5539/sar.v3n1p95 DOI: https://doi.org/10.5539/sar.v3n1p95

Noda, Y., Martín, G., y Machado, R. (2007). Rendimiento agronómico de la morera por efecto de diferentes alturas y frecuencias de corte. Pastos y Forrajes, 30(3), 327-339.

Noguera-Talavera, Á., Reyes-Sánchez, N., Membreño, J. J., Duarte-Aguilar, C., Mendieta-Araica, B. (2014). Calidad de plántulas de tres especies forrajeras (Moringa oleifera Lam., Leucaena leucocephala y Cajanus cajan) en condiciones de vivero. La Calera, 14(22), 21-27. https://doi.org/10.5377/calera.v14i22.2652 DOI: https://doi.org/10.5377/calera.v14i22.2652

Onoda, Y., Wright, I. J., Evans, J. R., Hikosaka. K., Kitajima, K., Niinemets, Ü., y Westoby, M. (2017). Physiological and structural tradeoffs underlying the leaf economics spectrum. New Phytologist, 214(4), 1447-1463. https://doi.org/10.1111/nph.14496 DOI: https://doi.org/10.1111/nph.14496

Palacio, S., Hernandez, R., Martinez, M. M., y Camarero, J. J. (2012). Fast replenishment of initial carbon stores after defoliation by the pine processionary moth and its relationship to the re-growth ability of trees. Trees. 26,1627-1640. https://doi.org/10.1007/s00468-012-0739-y DOI: https://doi.org/10.1007/s00468-012-0739-y

Palmer, A. R. (1996). Waltzing with Asymmetry: Is fluctuating asymmetry a powerful new tool for biologists or just an alluring new dance step? BioScience,46(7), 518-532. https://doi.org/10.2307/1312930 DOI: https://doi.org/10.2307/1312930

Ramos, S. E., y Schiestl, F. P. (2020). Herbivory and pollination impact on the evolution of herbivore-induced plasticity in defense and floral traits. Evolution Letters, 4(6), 556-569. https://doi.org/10.1002/evl3.200 DOI: https://doi.org/10.1002/evl3.200

Ruiz-Santiago, R. R., Ballina-Gómez, H. S., Ruiz-Sánchez, E., Martínez-Castillo, J., Garruña-Hernández, R., y Andueza-Noh, R. H. (2021). Determining relevant traits for selecting landrace accessions of Phaseolus lunatus L. for insect resistance. PeerJ, 9:e12088. https://doi.org/10.7717/peerj.12088 DOI: https://doi.org/10.7717/peerj.12088

Rusman, Q., Lucas-Barbosa, D., Hassan, K., y Poelman, E. H. (2020). Plant ontogeny determines strength and associated plant fitness consequences of plantmediated interactions between herbivores and flower visitors. Journal of Ecology, 108(3), 1046-1060. https://doi.org/10.1111/1365-2745.13370 DOI: https://doi.org/10.1111/1365-2745.13370

Schulze, E. D., Beck, E., y Müller-Hohenstein, K. (2005). Plant Ecology, Berlin: Springer.

Silva, S. E. B., Auad, A. M., Moraes, J. C., Alvarenga, R., Claudino, S. S., y Resende, T. T. (2017). Biological Performance and Preference of Mahanarva spectabilis (Hemiptera: Cercopidae) for Feeding on Different Forage Plants. Journal of Economic Entomology, 110(4), 1877-1885. https://doi.org/10.1093/jee/tox180 DOI: https://doi.org/10.1093/jee/tox180

Singh, R. B., y Mal S. (2014). Trends and variability of monsoon and other rain fall seasons in Western Himalaya, India. Atmospheric Science Letters, 15(3), 218-226. https://doi.org/10.1002/asl2.494 DOI: https://doi.org/10.1002/asl2.494

Sperlich, D., Chang, C. T., Peñuelas, J., Gracia, C., y Sabate, S. (2015). Seasonal variability of foliar photosynthetic and morphological traits and drought impacts in a Mediterranean mixed forest. Tree Physiology, 35(5), 501-520. https://doi.org/10.1093/treephys/tpv017 DOI: https://doi.org/10.1093/treephys/tpv017

Stotz, G. C., Salgado-Luarte, C., Escobedo, V. M., Valladares, F., y Gianoli, E. (2021). Global trends in phenotypic plasticity of plants. Ecology Letters. 24(10), 2267-2281. https://doi.org/10.1111/ele.13827 DOI: https://doi.org/10.1111/ele.13827

Tecco, P. A., Urcelay, C., Díaz, S., Cabido, M., y Harguindeguy, N. P. (2012). Contrasting functional trait syndromes underlay woody alien success in the same ecosystem. Austral Ecology, 38(4), 443-451. https://doi.org/10.1111/j.1442-9993.2012.02428.x DOI: https://doi.org/10.1111/j.1442-9993.2012.02428.x

Turner, I. M. (2001). The ecology of trees in the tropical rain forest. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511542206 DOI: https://doi.org/10.1017/CBO9780511542206

Uribe, S. D., Sáenz, R. C., González R. A., Téllez, V. O., y Oyama, K. (2008). Foliar morphological variation in the white oak Quercus rugosa Née (Fagaceae) along a latitudinal gradient in Mexico: potential implications for management and conservation. Forest Ecology and Management, 256(12), 2121-2226. https://doi.org/10.1016/j.foreco.2008.08.002 DOI: https://doi.org/10.1016/j.foreco.2008.08.002

Vernescu, C., y Ryser, P. (2006). Constraints on leaf structural traits in wetland plants. American Journal of Botany, 96(6), 1068-1074. https://doi.org/10.3732/ajb.0800312PMid:21628257 DOI: https://doi.org/10.3732/ajb.0800312

Vijayan, K., Tikader, A., Kar, P. K., Srivastava, P. P., Awasthi, A. K., Thangavelu, K., y Saratchandra, B. (2006). Assessment of genetic relationships between wild and cultivated mulberry (Morus) species using PCR based markers. Genetic Resources and Crop Evolution, 53, 873-882. https://doi.org/10.1007/s10722-004-6148-3 DOI: https://doi.org/10.1007/s10722-004-6148-3

Westoby, M., Daniel, S., Falster, A. T., Moles, T., Peter, A. V., Wright, I. J. (2002) Plant Ecological Strategies: Some Leading Dimensions of Variation Between Species. Annual Review of Ecology and Systematics, 33, 125-159. https://doi.org/10.1146/annurev.ecolsys.33.010802.150452 DOI: https://doi.org/10.1146/annurev.ecolsys.33.010802.150452

Cómo citar

APA

Ruiz-Santiago, R. R., Ballina-Gómez, H. S. y Ruiz-Sánchez, E. (2023). CARACTERÍSTICAS MORFOLÓGICAS FOLIARES Y SU RELACIÓN CON LA DEFOLIACIÓN EN TRES ESPECIES DE PLANTAS FORRAJERAS. Acta Biológica Colombiana, 28(1), 12–22. https://doi.org/10.15446/abc.v28n1.88402

ACM

[1]
Ruiz-Santiago, R.R., Ballina-Gómez, H.S. y Ruiz-Sánchez, E. 2023. CARACTERÍSTICAS MORFOLÓGICAS FOLIARES Y SU RELACIÓN CON LA DEFOLIACIÓN EN TRES ESPECIES DE PLANTAS FORRAJERAS. Acta Biológica Colombiana. 28, 1 (ene. 2023), 12–22. DOI:https://doi.org/10.15446/abc.v28n1.88402.

ACS

(1)
Ruiz-Santiago, R. R.; Ballina-Gómez, H. S.; Ruiz-Sánchez, E. CARACTERÍSTICAS MORFOLÓGICAS FOLIARES Y SU RELACIÓN CON LA DEFOLIACIÓN EN TRES ESPECIES DE PLANTAS FORRAJERAS. Acta biol. Colomb. 2023, 28, 12-22.

ABNT

RUIZ-SANTIAGO, R. R.; BALLINA-GÓMEZ, H. S.; RUIZ-SÁNCHEZ, E. CARACTERÍSTICAS MORFOLÓGICAS FOLIARES Y SU RELACIÓN CON LA DEFOLIACIÓN EN TRES ESPECIES DE PLANTAS FORRAJERAS. Acta Biológica Colombiana, [S. l.], v. 28, n. 1, p. 12–22, 2023. DOI: 10.15446/abc.v28n1.88402. Disponível em: https://revistas.unal.edu.co/index.php/actabiol/article/view/88402. Acesso em: 24 jul. 2024.

Chicago

Ruiz-Santiago, Roberto Rafael, Horacio Salomón Ballina-Gómez, y Esaú Ruiz-Sánchez. 2023. «CARACTERÍSTICAS MORFOLÓGICAS FOLIARES Y SU RELACIÓN CON LA DEFOLIACIÓN EN TRES ESPECIES DE PLANTAS FORRAJERAS». Acta Biológica Colombiana 28 (1):12-22. https://doi.org/10.15446/abc.v28n1.88402.

Harvard

Ruiz-Santiago, R. R., Ballina-Gómez, H. S. y Ruiz-Sánchez, E. (2023) «CARACTERÍSTICAS MORFOLÓGICAS FOLIARES Y SU RELACIÓN CON LA DEFOLIACIÓN EN TRES ESPECIES DE PLANTAS FORRAJERAS», Acta Biológica Colombiana, 28(1), pp. 12–22. doi: 10.15446/abc.v28n1.88402.

IEEE

[1]
R. R. Ruiz-Santiago, H. S. Ballina-Gómez, y E. Ruiz-Sánchez, «CARACTERÍSTICAS MORFOLÓGICAS FOLIARES Y SU RELACIÓN CON LA DEFOLIACIÓN EN TRES ESPECIES DE PLANTAS FORRAJERAS», Acta biol. Colomb., vol. 28, n.º 1, pp. 12–22, ene. 2023.

MLA

Ruiz-Santiago, R. R., H. S. Ballina-Gómez, y E. Ruiz-Sánchez. «CARACTERÍSTICAS MORFOLÓGICAS FOLIARES Y SU RELACIÓN CON LA DEFOLIACIÓN EN TRES ESPECIES DE PLANTAS FORRAJERAS». Acta Biológica Colombiana, vol. 28, n.º 1, enero de 2023, pp. 12-22, doi:10.15446/abc.v28n1.88402.

Turabian

Ruiz-Santiago, Roberto Rafael, Horacio Salomón Ballina-Gómez, y Esaú Ruiz-Sánchez. «CARACTERÍSTICAS MORFOLÓGICAS FOLIARES Y SU RELACIÓN CON LA DEFOLIACIÓN EN TRES ESPECIES DE PLANTAS FORRAJERAS». Acta Biológica Colombiana 28, no. 1 (enero 5, 2023): 12–22. Accedido julio 24, 2024. https://revistas.unal.edu.co/index.php/actabiol/article/view/88402.

Vancouver

1.
Ruiz-Santiago RR, Ballina-Gómez HS, Ruiz-Sánchez E. CARACTERÍSTICAS MORFOLÓGICAS FOLIARES Y SU RELACIÓN CON LA DEFOLIACIÓN EN TRES ESPECIES DE PLANTAS FORRAJERAS. Acta biol. Colomb. [Internet]. 5 de enero de 2023 [citado 24 de julio de 2024];28(1):12-2. Disponible en: https://revistas.unal.edu.co/index.php/actabiol/article/view/88402

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

565

Descargas

Los datos de descargas todavía no están disponibles.