Publicado

2021-12-15

CARACTERIZACIÓN Y DISMINUCIÓN EN LA EXPRESIÓN DE UNA QUITINA SINTASA MEDIADA POR ARNi EN Hypothenemus hampei (CURCULIONIDAE)

Characterization and RNAi-mediated knockdown of a chitin synthase in Hypothenemus hampei (Curculionidae)

DOI:

https://doi.org/10.15446/abc.v27n2.89981

Palabras clave:

ARNcd, café, insecto plaga, RT-qPCR (es)
coffee, dsRNA, insect pest, RT-qPCR (en)

Descargas

Autores/as

La broca del café, Hypothenemus hampei, es un insecto plaga que causa daños significativos al grano de café y grandes pérdidas económicas a los productores en todo el mundo. Al igual que otros insectos, la broca de café requiere de quitina sintasas (CHS) para la biosíntesis de la quitina, componente principal del exoesqueleto del insecto, y de vital importancia para su crecimiento y desarrollo. En este estudio, el gen CHS1 de la broca del café (HhCHS1) fue identificado, caracterizado y posteriormente silenciado mediante el uso de ARNi, mecanismo que permite degradar el ARNm e interrumpir la expresión de proteínas de interés en un organismo. Los perfiles de expresión del gen HhCHS1, medidos por RT-qPCR, mostraron niveles de expresión diferencial en las diferentes etapas del desarrollo del insecto. Los niveles más altos de expresión se encontraron en larvas de segundo estadio (L2) y machos adultos. El ARNcd administrado por vía oral, a concentraciones de 2 µg/100 µL, generó un silenciamiento efectivo del gen HhCHS1 (84 %) después de 7 días de tratamiento. Estos resultados sugieren que el gen HhCHS1 desempeña un papel importante en el desarrollo del insecto, y que, por ende, podría usarse como objetivo para desarrollar nuevas estrategias de manejo de este insecto plaga, mediante el uso de ARNi.

 Palabras Clave: ARNcd, café, insecto plaga, quitina-sintasa, RT-qPCR.

The coffee berry borer, Hypothenemus hampei, is an insect pest that causes significant damage to the grain and profound economic losses to coffee crops and producers worldwide. Like other insects, the coffee berry borer requires chitin synthases (CHS) for the biosynthesis of chitin, which is the main component of the insect exoskeleton, as well as a component of vital importance for their growth and development. In this study, the coffee berry borer CHS1 gene (HhCHS1) was identified, characterized, and subsequently silenced by using RNAi, a mechanism that allows mRNA to be degraded, interrupting the expression of the proteins of interest in an organism. The expression profiles of the HhCHS1 gene, measured by RT-qPCR, showed levels of differential expression in the different stages of insect development. The highest levels of expression were found in second instar (L2) larvae and adult males. Orally administered dsRNA, at concentrations of 2 µg/100 µL, was able to generate effective HhCHS1 silencing (84 %) after 7 days of treatment. These results suggest that the HhCHS1 gene plays an important role in the development of the coffee berry borer that could be used as target to develop new management strategies of this insect pest by using RNAi.

 

Keywords: CHS1, coffee, dsRNA, insect pest, RT-qPCR

Referencias

Aguilera, C., Padilla, B. E., Flórez, C. P., Rubio, J. D. y Acuña, J. R. (2011). ARN interferente: Potenciales usos en genómica funcional y control genético de Hypothenemus hampei (Coleoptera: Scolytinae). Revista Colombiana de Entomología, 37(2), 167-172.

Alvarenga, E. S. L., Mansur, J. F., Justi, S. A., Figueira-Mansur, J., Dos Santos, V. M., Lopez, S. G., Masuda, H., Lara, F. A., Melo, A. C. A. and Moreira, M. F. (2016). Chitin is a component of the Rhodnius prolixus midgut. Insect Biochemistry and Molecular Biology, 69, 61-70. https://doi.org/10.1016/j.ibmb.2015.04.003 DOI: https://doi.org/10.1016/j.ibmb.2015.04.003

Alves, A. P., Lorenzen, M. D., Beeman, R. W., Foster, J. E., and Siegfried, B. D. (2010). RNA interference as a method for target-site screening in the western corn rootworm, Diabrotica virgifera virgifera. Journal of Insect Science, 10(1), 162. https://doi.org/10.1673/031.010.14122 DOI: https://doi.org/10.1673/031.010.14122

Ampasala, D. R., Zheng, S. C., Zhang, D. Y., Ladd, T., Doucet, D., Krell, P. J., Retnakaran, A., and Feng, Q. (2011). An epidermis-specific chitin synthase CDNA in Choristoneura fumiferana: Cloning, characterization, developmental and hormonal regulated expression. Archives of Insect Biochemistry and Physiology, 76(2), 83-96. https://doi.org/10.1002/arch.20404 DOI: https://doi.org/10.1002/arch.20404

Arakane, Y., Baguinon, M. C., Jasrapuria, S., Chaudhari, S., Doyungan, A., Kramer, K. J., Muthukrishnan, S. and Beeman R. W. (2011). Two UDP N-acetylglucosamine pyrophosphorylases of Tribolium castaneum are critical for molting, survival and fecundity. Insect Biochemistry and Molecular Biology, 41(1), 42-50. https://doi.org/10.1016/j.ibmb.2010.09.011 DOI: https://doi.org/10.1016/j.ibmb.2010.09.011

Arakane, Y., Hogenkamp, D. G., Zhu, Y. C., Kramer, K. J., Specht, C. A., Beeman, R. W., Kanost, M.R. and Muthukrishnan, S. (2004). Characterization of two chitin synthase genes of the red flour beetle, Tribolium castaneum, and alternate exon usage in one of the genes during development. Insect Biochemistry and Molecular Biology, 34(3), 291-304. https://doi.org/10.1016/j.ibmb.2003.11.004 DOI: https://doi.org/10.1016/j.ibmb.2003.11.004

Arakane, Y., Muthukrishnan, S., Kramer, K. J., Specht, C. A., Tomoyasu, Y., Lorenzen, M. D., Kanost, M. and Beeman, R. W. (2005). The Tribolium chitin synthase genes TcCHS1 and TcCHS2 are specialized for synthesis of epidermal cuticle and midgut peritrophic matrix. Insect Molecular Biology, 14(5), 453-463. https://doi.org/10.1111/j.1365-2583.2005.00576.x DOI: https://doi.org/10.1111/j.1365-2583.2005.00576.x

Arakane, Y., Specht, C. A., Kramer, K. J., Muthukrishnan, S. and Beeman, R.W. (2008). Chitin synthases are required for survival, fecundity and egg hatch in the red flour beetle, Tribolium castaneum. Insect Biochemistry and Molecular Biology, 38(10), 959-962. https://doi.org/10.1016/j.ibmb.2008.07.006 DOI: https://doi.org/10.1016/j.ibmb.2008.07.006

Bansal, R., Rouf Mian, M. A., Mittapalli, O., and Michel, A. P. (2012). Characterization of a chitin synthase encoding gene and effect of diflubenzuron in soybean aphid, Aphis glycines. International Journal Biological Sciences, 8(10), 1323-1334. https://doi.org/10.7150/ijbs.4189 DOI: https://doi.org/10.7150/ijbs.4189

Barros Rodrigues, T., Khajuria, C., Wang, H., Matz, N., Cunha Cardoso, D., Valicente, F. H., Zhou, X. and Siegfried, B. (2014). Validation of Reference Housekeeping Genes for Gene Expression Studies in Western Corn Rootworm (Diabrotica virgifera virgifera). PLoS One, 10(4), e0124187. https://doi.org/10.1371/journal.pone.0109825 DOI: https://doi.org/10.1371/journal.pone.0124187

Basu, S., Pereira, A. E., Pinheiro, D. H., Wang, H., Valencia-Jiménez, A., Siegfried, B. D., Louis, J., Zhou, X. J. and Vélez, A. M. (2019). Evaluation of reference genes for real-time quantitative PCR analysis in southern corn rootworm, Diabrotica undecimpunctata howardi (Barber). Scientific Reports, 9, 10703. https://doi.org/10.1038/s41598-019-47020-y DOI: https://doi.org/10.1038/s41598-019-47020-y

Bolognesi, R., Arakane, Y., Muthukrishnan, S., Kramer, K. J., Terra, W. R., y Ferreira, C. (2005). Sequences of cDNAs and expression of genes encoding chitin synthase and chitinase in the midgut of Spodoptera frugiperda. Insect Biochemistry and Molecular Biology,35(11), 1249-1259. https://doi.org/10.1016/j.ibmb.2005.06.006 DOI: https://doi.org/10.1016/j.ibmb.2005.06.006

Bustillo, A. E. (2006). Una revisión sobre la broca del café, Hypothenemus hampei (Coleoptera: Curculionidae: Scolytinae), en Colombia. Revista Colombiana de Entomología, 32, 101-116.

Chapman, R. (1998). Integument. In The Insects: Structure and Function (pp. 415-440). Cambridge: Cambridge University Press. https://doi:10.1017/CBO9780511818202.017 DOI: https://doi.org/10.1017/CBO9780511818202.017

Chen, L., Yang, W. -J., Cong, L., Xu, K. -K., y Wang, J. -J. (2013). Molecular cloning, characterization and mRNA expression of a chitin synthase 2 gene from the oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae). International Journal Molecular Sciences, 14(8), 17055-17072. https://doi.org/10.3390/ijms140817055 DOI: https://doi.org/10.3390/ijms140817055

Corpet, F. (1988). Multiple sequence alignment with hierarchical clustering, Nucleic Acids Research, 16(22), 10881-10890. https://doi.org/10.1093/nar/16.22.10881 DOI: https://doi.org/10.1093/nar/16.22.10881

Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39(4), 783-791. https://doi.org/10.2307/2408678 DOI: https://doi.org/10.1111/j.1558-5646.1985.tb00420.x

Firmino, A. A. P., Fonseca, F. C. dA., de Macedo, L. L. P., Coelho, R. R., Antonino de Souza Jr, J. D., Togawa, R. C., Silva-Junior, O. B., Pappas-Jr, G.J., Mattar da Silva, M. C., Engler, G. and Grossi-de-Sa M. F. (2013). Transcriptome Analysis in Cotton Boll Weevil (Anthonomus grandis) and RNA Interference in Insect Pests. PLoS One, 8(12), e85079. https://doi.org/10.1371/journal.pone.0085079 DOI: https://doi.org/10.1371/journal.pone.0085079

Infante, F. (2018). Pest management strategies against the coffee berry borer (Coleoptera: Curculionidae: Scolytinae). Journal Agricultural and Food Chemistry, 66(21), 5275-5280. https://doi.org/10.1021/acs.jafc.7b04875 DOI: https://doi.org/10.1021/acs.jafc.7b04875

Kelkenberg, M., Odman-Naresh, J., Muthukrishnan, S. and Merzendorfer, H. (2015). Chitin is a necessary component to maintain the barrier function of the peritrophic matrix in the insect midgut. Insect Biochemistry and Molecular Biology, 56, 21-28. https://doi.org/10.1016/j.ibmb.2014.11.005 DOI: https://doi.org/10.1016/j.ibmb.2014.11.005

Kramer, K. J. and Muthukrishnan, S. (2005). Chitin metabolism in insects: a revisit. En L. I. Gilbert, K. Iatrou, S. and Gill (Eds.). Comprehensive Molecular Insect Science. Elsevier Press. https://doi.org/10.1016/B0-44-451924-6/00051-X DOI: https://doi.org/10.1016/B0-44-451924-6/00051-X

Krogh, A., Larsson, B., Heijne, G. V. and Sonnhammer, E. L. L. (2001). Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. Journal of Molecular Biology, 305(3), 567-80. https://doi.org/10.1006/jmbi.2000.4315 DOI: https://doi.org/10.1006/jmbi.2000.4315

Kumar, S., Stecher, G., Li, M., Knyaz, C. and Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547-1549. https://doi.org/10.1093/molbev/msy096 DOI: https://doi.org/10.1093/molbev/msy096

Kyre, B. R., Bentz, B. J. and Rieske, L. K. (2020). Susceptibility of mountain pine beetle (Dendoctonus ponderosae, Hopkins) to gene silencing through RNAi provides potential as a novel management tool. Forest Ecology and Management. 473, 118322. https://Doi.org/10.1016/j.foreco.2020.118322 DOI: https://doi.org/10.1016/j.foreco.2020.118322

Le, S. Q. and Gascuel, O. (2008). An improved general amino acid replacement matrix. Molecular Biology and Evolution, 25(7), 1307-1320. https://doi.org/10.1093/molbev/msn067 DOI: https://doi.org/10.1093/molbev/msn067

Liu, X., Zhang, H., Li, S., Zhu, K. Y., Ma, E. and Zhang, J. (2012). Characterization of a midgut-specific chitin synthase gene (LmCHS2) responsible for biosynthesis of chitin of peritrophic matrix in Locusta migratoria. Insect Biochemistry and Molecular Biology, 42(12), 902-910. https://doi.org/10.1016/j.ibmb.2012.09.002 DOI: https://doi.org/10.1016/j.ibmb.2012.09.002

Livak, K. J. and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real time quantitative PCR and the 2−ΔΔCT method. Methods, 25(4), 402-408. https://doi.org/10.1006/meth.2001.1262 DOI: https://doi.org/10.1006/meth.2001.1262

Macedo, L. L. P., Antonino de Souza Jr., J. D., Coelho, R. R., Fonseca, F. C. dA., Firmino, A. A. P., Silva, M. C. M. Fragoso, R. R., Albuquerque, E. V. S., Silva, M. S., de Almeida Engler, J., Terra, W.R., and Grossi-de-Sa, M.F. (2017). Knocking down chitin synthase 2 by RNAi is lethal to the cotton boll weevil. Biotechnology Research and Innovation, 1(1), 72-86. https://doi.org/10.1016/j.biori.2017.04.001 DOI: https://doi.org/10.1016/j.biori.2017.04.001

Mansur, J. F., Alvarenga, E. S., Figueira-Mansur, J., Franco, T. A., Ramos, I. B., Masuda, H., Melo, A. C.A. and Moreira, M. F. (2014). Effects of chitin synthase double-stranded RNA on molting and oogenesis in the chagas disease vector Rhodnius prolixus. Insect Biochemistry and Molecular Biology, 51, 110-121. https://doi.org/10.1016/j.ibmb.2013.12.006 DOI: https://doi.org/10.1016/j.ibmb.2013.12.006

Merzendorfer, H. and Zimoch, L. (2003). Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. Journal Experimental Biology, 206(24), 4393-4412. https://doi.org/10.1242/jeb.00709 DOI: https://doi.org/10.1242/jeb.00709

Merzendorfer, H. (2006). Insect chitin synthases: A review. Journal of Comparative Physiology B, 176, 1-15. https://doi.org/10.1007/s00360-005-0005-3 DOI: https://doi.org/10.1007/s00360-005-0005-3

Merzendorfer, H. (2011). The cellular basis of chitin synthesis in fungi and insects: Common principles and differences. European Journal of Cell Biology, 90(9), 759-769. https://doi.org/10.1016/j.ejcb.2011.04.014 DOI: https://doi.org/10.1016/j.ejcb.2011.04.014

Mi, H., Muruganujan, A., Ebert, D., Huang, X. and Thomas, P. (2019). PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Research, 47(D1), D419-D426. https://doi.org/10.1093/nar/gky1038 DOI: https://doi.org/10.1093/nar/gky1038

Moreira, M. F., Dos Santos, A. S., Marotta, H. R., Mansur, J. F., Ramos, I. B., Machado, E. A., Souza, G. H. M. F., Eberlin, M. N., Kaiser, C. R., Kramer, K. J., Muthukrishnan, S. and Vasconcellos, A. M. H. (2007). A chitin-like component in Aedes aegypti eggshells, eggs and ovaries. Insect Biochemistry and Molecular Biology, 37(12), 1249-1261. https://doi.org/10.1016/j.ibmb.2007.07.017 DOI: https://doi.org/10.1016/j.ibmb.2007.07.017

Noriega, D. D., Arias, P. L., Barbosa, H. R., Arraes, F. B. M., Ossa, G. A., Villegas, B., Coelho, R. R., Albuquerque, E. V. S., Togawa, R. C. Grynberg, P., Wang, H., Vélez, A. M., Arboleda, J. W., Grossi-de-Sa, M. F., Silva, M. C. M. and Valencia-Jiménez, A. (2019). Transcriptome and gene expression analysis of three developmental stages of the coffee berry borer, Hypothenemus hampei. Scientific Reports, 9, 12804. https://doi.org/10.1038/s41598-019-49178-x DOI: https://doi.org/10.1038/s41598-019-49178-x

Scott, J. G., Michel, K., Bartholomay, L. C., Siegfried, B. D., Hunter, W. B. and Smagghe, G. (2013). Towards the elements of successful insect RNAi. Journal of Insect Physiology, 59(12), 1212-1221. https://doi.org/10.1016/j.jinsphys.2013.08.014 DOI: https://doi.org/10.1016/j.jinsphys.2013.08.014

Shang, F., Xiong, Y., Xia, W. K., Wei, D. D., Wei, D. and Wang, J. J. (2016). Identification, characterization and functional analysis of a chitin synthase gene in the brown citrus aphid, Toxoptera citricida (Hemiptera, Aphididae). Insect Molecular Biology, 25(4), 422-430. https://doi.org/10.1111/imb.12228 DOI: https://doi.org/10.1111/imb.12228

Shi, J. -F., Mu, L. -L., Chen, X., Guo, W. -C. and Li, G. -Q. (2016). RNA interference of chitin synthase genes inhibits chitin biosynthesis and affects larval performance in Leptinotarsa decemlineata (Say). International Journal of Biological Sciences, 12(11), 1319-1331. https://doi.org/10.7150/ijbs.14464 DOI: https://doi.org/10.7150/ijbs.14464

Siomi, M. C., Sato, K., Pezic, D. and Aravin, A. A. (2011). PIWI-interacting small RNAs: The vanguard of genome defence. Nature Reviews Molecular Cell Biology, 12(4), 246-258. https://doi.org/10.1038/nrm3089 DOI: https://doi.org/10.1038/nrm3089

Tellam, R. L. and Eisemann, C. (2000). Chitin is only a minor component of the peritrophic matrix from larvae of Lucilia cuprina. Insect Biochemistry and Molecular Biology, 30(12), 1189-1201. https://doi.org/10.1016/s0965-1748(00)00097-7 DOI: https://doi.org/10.1016/S0965-1748(00)00097-7

Tellam, R. L., Vuocolo, T., Johnson, S. E., Jarmey, J. and Pearson, R. D. (2000). Insect chitin synthase cDNA sequence, gene organization and expression. European Journal of Biochemistry, 267(19), 6025-6043. https://doi.org/10.1046/j.1432-1327.2000.01679.x DOI: https://doi.org/10.1046/j.1432-1327.2000.01679.x

Tian, H., Peng, H., Yao, Q., Chen, H., Xie, Q., Tang, B. and Zhang, W. (2009). Developmental Control of a Lepidopteran Pest Spodoptera exigua by Ingestion of Bacteria Expressing dsRNA of a Non-Midgut Gene. PLoS One, 4(7), e6225. https://doi.org/10.1371/journal.pone.0006225 DOI: https://doi.org/10.1371/journal.pone.0006225

Wang, P. and Granados, R. R. (2000). Calcofluor disrupts the midgut defense system in insects. Insect Biochemistry and Molecular Biology, 30(2), 135-143. https://doi.org/10.1016/s0965-1748(99)00108-3 DOI: https://doi.org/10.1016/S0965-1748(99)00108-3

Wang, Y., Fan, H. -W., Huang, H. -J., Xue, J., Wu, W. -J., Bao, Y. -Y., Xu, H. -J. and Zhu, Z.-R. (2012). Chitin synthase 1 gene and its two alternative splicing variants from two sap-sucking insects, Nilaparvata lugens and Laodelphax striatellus (Hemiptera: Delphacidae). Insect Biochemistry and Molecular Biology, 42(9), 637-646. https://doi.org/10.1016/j.ibmb.2012.04.009 DOI: https://doi.org/10.1016/j.ibmb.2012.04.009

Wang, Y., Zuber, R., Oehl, K., Norum, M. and Moussian, B. (2015). Report on Drosophila melanogaster larvae without functional tracheae. Journal of Zoology, 296(2), 139-145. https://doi.org/10.1111/jzo.12226 DOI: https://doi.org/10.1111/jzo.12226

Wang, Z., Yang, H., Zhou, C., Yang, W. -J., Jin, D. -C. and Long, G. -Y. (2019). Molecular cloning, expression, and functional analysis of the chitin synthase 1 gene and its two alternative splicing variants in the white-backed planthopper, Sogatella furcifera (Hemiptera: Delphacidae). Scientific Reports, 9, 1087. https://doi.org/10.1038/s41598-018-37488-5 DOI: https://doi.org/10.1038/s41598-018-37488-5

Wu, K., Yang, B., Huang, W., Dobens, L., Song, H. and Ling, E. (2016). Gut immunity in Lepidopteran insects. Developmental & Comparative Immunology, 64, 65-74. https://doi.org/10.1016/j.dci.2016.02.010 DOI: https://doi.org/10.1016/j.dci.2016.02.010

Yang, W. -J., Xu, K. -K.., Cong, L. and Wang, J. -J. (2013). Identification, mRNA expression, and functional analysis of chitin synthase 1 gene and its two alternative splicing variants in oriental fruit fly. Bactrocera dorsalis. International Journal Biological Sciences, 9(4), 331-342. https://doi.org/10.7150/ijbs.6022 DOI: https://doi.org/10.7150/ijbs.6022

Ye, C., Jiang, Y. -D., An, X., Yang, L., Shang, F., Niu, J. and Wang, J. -J. (2019). Effects of RNAi-based silencing of chitin synthase gene on moulting and fecundity in pea aphids (Acyrthosiphon pisum). Scientific Reports, 9, 3694. https://doi.org/10.1038/s41598-019-39837-4 DOI: https://doi.org/10.1038/s41598-019-39837-4

Zhang, J., Liu, X., Zhang, J., Li, D., Sun, Y., Guo, Y., Ma, E. and Zhu, K. Y. (2010). Silencing of two alternative splicing-derived mRNA variants of chitin synthase 1 gene by RNAi is lethal to the oriental migratory locust, Locusta migratoria manilensis (Meyen). Insect Biochemistry and Molecular Biology, 40(11), 824-833. https://doi.org/10.1016/j.ibmb.2010.08.001 DOI: https://doi.org/10.1016/j.ibmb.2010.08.001

Zhang, X., Zhang, J., Park, Y. and Zhu, K.Y. (2012). Identification and characterization of two chitin synthase genes in African malaria mosquito, Anopheles gambiae. Insect Biochemistry and Molecular Biology, 42(9), 674-682. https://doi.org/10.1016/j.ibmb.2012.05.005 DOI: https://doi.org/10.1016/j.ibmb.2012.05.005

Zhao, Y., Sui, X., Xu, L., Liu, G., Lu, L., You, M., Xie, C., Li, B., Ni, Z. and Liang, R. (2018). Plant-mediated RNAi of grain aphid CHS1 gene confers common wheat resistance against aphids. Pest Management Science, 74(12), 2754-2760, https://doi.org/10.1002/ps.5062 DOI: https://doi.org/10.1002/ps.5062

Zhu, Y. -C., Specht, C. A, Dittmer, N. T., Muthukrishnan, S., Kanost, M. R. and Kramer, K. J. (2002). Sequence of a cDNA and expression of the gene encoding a putative epidermal chitin synthase of Manduca sexta. Insect Biochemistry and Molecular Biology, 32(11), 1497-1506. https://doi.org/10.1016/s0965-1748(02)00070-x DOI: https://doi.org/10.1016/S0965-1748(02)00070-X

Zhuo, W., Fang, Y., Kong, L., Li, X., Sima, Y. and Xu, S. (2014). Chitin synthase A: A novel epidermal development regulation gene in the larvae of Bombyx mori. Molecular Biology Reports, 41(7), 4177-4186. https://doi.org/10.1007/s11033-014-3288-1 DOI: https://doi.org/10.1007/s11033-014-3288-1

Cómo citar

APA

Ossa Ossa, G. A., Villegas Estrada, B. y Valencia Jiménez, A. (2021). CARACTERIZACIÓN Y DISMINUCIÓN EN LA EXPRESIÓN DE UNA QUITINA SINTASA MEDIADA POR ARNi EN Hypothenemus hampei (CURCULIONIDAE) . Acta Biológica Colombiana, 27(2), 186–198. https://doi.org/10.15446/abc.v27n2.89981

ACM

[1]
Ossa Ossa, G.A., Villegas Estrada, B. y Valencia Jiménez, A. 2021. CARACTERIZACIÓN Y DISMINUCIÓN EN LA EXPRESIÓN DE UNA QUITINA SINTASA MEDIADA POR ARNi EN Hypothenemus hampei (CURCULIONIDAE) . Acta Biológica Colombiana. 27, 2 (dic. 2021), 186–198. DOI:https://doi.org/10.15446/abc.v27n2.89981.

ACS

(1)
Ossa Ossa, G. A.; Villegas Estrada, B.; Valencia Jiménez, A. CARACTERIZACIÓN Y DISMINUCIÓN EN LA EXPRESIÓN DE UNA QUITINA SINTASA MEDIADA POR ARNi EN Hypothenemus hampei (CURCULIONIDAE) . Acta biol. Colomb. 2021, 27, 186-198.

ABNT

OSSA OSSA, G. A.; VILLEGAS ESTRADA, B.; VALENCIA JIMÉNEZ, A. CARACTERIZACIÓN Y DISMINUCIÓN EN LA EXPRESIÓN DE UNA QUITINA SINTASA MEDIADA POR ARNi EN Hypothenemus hampei (CURCULIONIDAE) . Acta Biológica Colombiana, [S. l.], v. 27, n. 2, p. 186–198, 2021. DOI: 10.15446/abc.v27n2.89981. Disponível em: https://revistas.unal.edu.co/index.php/actabiol/article/view/89981. Acesso em: 29 mar. 2024.

Chicago

Ossa Ossa, Gustavo Adolfo, Bernardo Villegas Estrada, y Arnubio Valencia Jiménez. 2021. «CARACTERIZACIÓN Y DISMINUCIÓN EN LA EXPRESIÓN DE UNA QUITINA SINTASA MEDIADA POR ARNi EN Hypothenemus hampei (CURCULIONIDAE) ». Acta Biológica Colombiana 27 (2):186-98. https://doi.org/10.15446/abc.v27n2.89981.

Harvard

Ossa Ossa, G. A., Villegas Estrada, B. y Valencia Jiménez, A. (2021) «CARACTERIZACIÓN Y DISMINUCIÓN EN LA EXPRESIÓN DE UNA QUITINA SINTASA MEDIADA POR ARNi EN Hypothenemus hampei (CURCULIONIDAE) », Acta Biológica Colombiana, 27(2), pp. 186–198. doi: 10.15446/abc.v27n2.89981.

IEEE

[1]
G. A. Ossa Ossa, B. Villegas Estrada, y A. Valencia Jiménez, «CARACTERIZACIÓN Y DISMINUCIÓN EN LA EXPRESIÓN DE UNA QUITINA SINTASA MEDIADA POR ARNi EN Hypothenemus hampei (CURCULIONIDAE) », Acta biol. Colomb., vol. 27, n.º 2, pp. 186–198, dic. 2021.

MLA

Ossa Ossa, G. A., B. Villegas Estrada, y A. Valencia Jiménez. «CARACTERIZACIÓN Y DISMINUCIÓN EN LA EXPRESIÓN DE UNA QUITINA SINTASA MEDIADA POR ARNi EN Hypothenemus hampei (CURCULIONIDAE) ». Acta Biológica Colombiana, vol. 27, n.º 2, diciembre de 2021, pp. 186-98, doi:10.15446/abc.v27n2.89981.

Turabian

Ossa Ossa, Gustavo Adolfo, Bernardo Villegas Estrada, y Arnubio Valencia Jiménez. «CARACTERIZACIÓN Y DISMINUCIÓN EN LA EXPRESIÓN DE UNA QUITINA SINTASA MEDIADA POR ARNi EN Hypothenemus hampei (CURCULIONIDAE) ». Acta Biológica Colombiana 27, no. 2 (diciembre 15, 2021): 186–198. Accedido marzo 29, 2024. https://revistas.unal.edu.co/index.php/actabiol/article/view/89981.

Vancouver

1.
Ossa Ossa GA, Villegas Estrada B, Valencia Jiménez A. CARACTERIZACIÓN Y DISMINUCIÓN EN LA EXPRESIÓN DE UNA QUITINA SINTASA MEDIADA POR ARNi EN Hypothenemus hampei (CURCULIONIDAE) . Acta biol. Colomb. [Internet]. 15 de diciembre de 2021 [citado 29 de marzo de 2024];27(2):186-98. Disponible en: https://revistas.unal.edu.co/index.php/actabiol/article/view/89981

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

414

Descargas

Los datos de descargas todavía no están disponibles.