Publicado
A Class of Abelian Rings
Una clase de anillos abelianos
Palabras clave:
Abelian ring, J-abelian ring, ring extension (en)anillos abelianos, anillos J-abelianos, extensiones de anillos (es)
Descargas
Referencias
A. Badawi, On abelian r-regular rings, Comm. Algebra 25 (1997), no. 4,
- 1021.
V. P. Camillo and H. P. Yu, Exchange rings, units and idempotents, Comm. Algebra 22 (1994), no. 12, 4737 - 4749.
H. Chen, On strongly j-clean rings, Comm. Algebra 38 (2010), no. 10,
- 3804.
J. Cui and J. Chen, A class of quasipolar rings, Comm. Algebra 40 (2012), no. 12, 4471 - 4482.
S. Halicioglu H. Chen, O. Gurgun and A. Harmanci, Rings in which nilpotents belong to jacobson radical, An. Stiint. Univ. Al. I. Cuza Iasi. Mat.
(N.S.) LXII (2016), no. 2, 595 - 606.
N. K. Kim and Y. Lee, Armendariz rings and reduced rings, J. Algebra
(2000), no. 2, 477 - 488.
J. J. Koliha and P. Patricio, Elements of rings with equal spectral idempotents, J. Aust. Math. Soc. 72 (2002), no. 1, 137 - 152.
H. Kose and A. Harmanci, On a class of semicommutative rings, New
Zealand J. Math. 47 (2017), 69 - 85.
Z. Mesyan, The ideals of an ideal extension, J. Algebra Appl. 9 (2010),
no. 3, 407 - 431.
W. K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer.
Math. Soc. 229 (1977), 269 - 278.
W. K. Nicholson, Strongly clean rings and fitting's lemma, Comm. Algebra 27 (1999), no. 8, 3583 - 3592.
S. Halicioglu O. Gurgun and B. Ungor, A subclass of strongly clean rings, Commun. Math. 23 (2015), no. 1, 13 - 31.
M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad.
Ser. A Math. Sci. 73 (1997), 14 - 17.
R. B.Warfield, Exchange rings and decompositions of modules, Math. Ann. 199 (1972), 31 - 36.
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Visitas a la página del resumen del artículo
Descargas
Licencia
Derechos de autor 2019 Boletín de Matemáticas
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.