Published

2024-02-25

Helicobacter pylori Removal through Gravel Filtration in a Water Treatment System of the Municipality of Popayán, Cauca

Remoción de Helicobacter pylori a través de sistemas de tratamiento por filtración en gravas en el municipio de Popayán, Cauca

DOI:

https://doi.org/10.15446/ing.investig.100573

Keywords:

Helicobacter pylori, gravel filtration, multi-stage filtration technology, rural water supply (en)
Helicobacter pylori, filtración en gravas, filtración en múltiples etapas, acueducto rural (es)

Downloads

Authors

Multi-stage filtration technology (MSFT) is an alternative that reduces the risk of fecal contamination, allowing for reliable water purification in rural water supplies. MSFT is composed of two gravel filtration (GF) stages: one including dynamic gravel filters (DyGF) and up-flow gravel filters (UGF), and a final stage with slow sand filters (SSFs). However, with the purpose of reducing construction costs, this technology is partially implemented, leaving SSFs for a later construction stage and limiting its treatment potential. To evaluate the removal capabilities regarding fecal contamination (especially that by the pathogen H. pylori) of a two-stage GF system, the quality of raw and treated water and the hydraulic parameters of Los Llanos treatment system (municipality of Popayán, Cauca) were monitored for 15 weeks. This system is operated and maintained by the community. The results showed the removal efficiency regarding turbidity to be 16% (p=0,045) and 34% (p=0,030) for the DyGF and the UGF, respectively. The color removed by the DyGF reached 19% (p=0,033), and the UGF reported a value of 30% (p=0,041). The reduction of total coliforms was limited by the system’s operation and maintenance, exhibiting a tendency towards increased concentrations at the outlet. The presence or absence of H. pylori was determined via the PCR molecular technique. A greater presence was evidenced in treated water than in raw one, which may be associated with a limited operation and a low maintenance frequency of the system. The implementation of MSFT, without the complement of SSFs, is not reliable in ensuring quality of water, particularly from a perspective of microbiological control and H. pylori control.

La tecnología de filtración en múltiples etapas (FIME) es una alternativa que reduce el riesgo por contaminación fecal, permitiendo la potabilización del agua de manera confiable en acueductos rurales. La tecnología FiME está compuesta por dos etapas de filtros en grava (FG): una que incluye filtros dinámicos (FGDi) y filtros gruesos ascendentes (FGAC), y una etapa final con filtros lentos en arena (FLA). Sin embargo, con el fin de reducir los costos de construcción, esta tecnología se implementa de manera parcial, dejando los FLA para una etapa posterior de construcción y limitando su potencial de tratamiento. Con el fin de evaluar la capacidad de remoción de la contaminación fecal (especialmente del patógeno H. pylori) en un sistema de FG de dos etapas, se monitoreó durante 15 semanas la calidad del agua cruda y tratada y los parámetros hidráulicos del sistema de tratamiento Los Llanos en el municipio de Popayán, Cauca, el cual es operado y mantenido por la comunidad. Los resultados mostraron que la eficiencia de remoción respecto a la turbiedad es de 16 % (p=0,045) y 34 % (p=0,030) para el FGDi y el FGAC respectivamente. El color removido por el FGDi alcanzó el 19 % (p=0,033), y el FGAC reportó un valor de 30 % (p=0,041). La reducción de los coliformes totales se vio limitada por la operación y mantenimiento del sistema, presentando una tendencia a incrementar su concentración en la salida. La presencia o ausencia del H. pylori se determinó con la técnica molecular PCR. Se evidenció una mayor presencia en agua tratada que en agua cruda, lo cual puede asociarse con una limitada operación y una baja frecuencia de mantenimiento del sistema. La implementación de la tecnología FiME, sin el complemento de FLA, es poco confiable para garantizar la calidad del agua, particularmente desde el punto de vista microbiológico y el control del H. pylori.

References

Acosta, C. P., Codony, F., Fittipaldi, M., Sierra-Torres, C. H., and Morató, J, (2018). Monitoring levels of viable Heli-cobacter pylori in surface water by qPCR in Northeast Spain. Journal of Water and Health, 16(5), 839-845. https://doi.org/10.2166/wh.2018.195 DOI: https://doi.org/10.2166/wh.2018.195

Adrada, J. C., Calambás, F. H., Díaz, J. E., Delgado, D. O., and Sierra, C. H. (2008). Características sociodemográ-ficas y clínicas en una población con cáncer gástrico en el departmento de Cauca, Colombia. Revista Co-lombiana de Gastroenterologia, 23, 309-314. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-99572008000400004

Agustí, G., Codony, F., Fittipaldi, M., Adrados, B., and Morató, J. (2010). Viability determination of Helicobacter pylori using propidium monoazide quantitative PCR. Helico-bacter, 15(5), 473-476. https://doi.org/10.1111/j.1523-5378.2010.00794.x DOI: https://doi.org/10.1111/j.1523-5378.2010.00794.x

Al-Sulami, A. A., Al-Taee, A. M. R., and Juma’a, M. G. (2010). Isolation and identification of helicobacter pylori from drinking water in Basra governorate, Iraq. Eastern Medi-terranean Health Journal, 16(9), 920-925. https://doi.org/10.26719/2010.16.9.920 DOI: https://doi.org/10.26719/2010.16.9.920

Atherton, J. C., Cao, P., Peek, R. M., Tummuru, M. K. R., Blaser, M. J., and Cover, T. L. (1995). Mosaicism in vacuolating cytotoxin alleles of Helicobacter pylori, Association of specific vacA types with cytotoxin production and pep-tic ulceration. Journal of Biological Chemistry, 270(30), 17771-17777. https://doi.org/10.1074/jbc.270.30.17771 DOI: https://doi.org/10.1074/jbc.270.30.17771

Aziz, R. K., Khalifa, M. M., and Sharaf, R. R. (2015). Contami-nated water as a source of Helicobacter pylori infec-tion: A review. Journal of Advanced Research, 6(4), 539-547. https://doi.org/10.1016/j.jare.2013.07.007 DOI: https://doi.org/10.1016/j.jare.2013.07.007

Baker, K. H., and Hegarty, J. P. (2001). Presence of Helicobac-ter pylori in drinking water is associated with clinical in-fection. Scandinavian Journal of Infectious Diseases, 33(10), 744-746. https://doi.org/10.1080/003655401317074536 DOI: https://doi.org/10.1080/003655401317074536

Bartram, J., and Cairncross, S. (2010). Hygiene, sanitation, and water: Forgotten foundations of health PLoS Medicine, 7(11), e1000367. https://doi.org/10.1371/journal.pmed.1000367 DOI: https://doi.org/10.1371/journal.pmed.1000367

Boller, M. (1993). Filter mechanisms in roughing filters. Aqua, 42(3), 174-185.

Campos, M., Soto, H., Meléndez, M., Sandoval, C., Santama-ría, G., Rojas, B., Cascante, L., Gutiérrez, O., and Monte-ro Campos, V. (2011). Hallazgo de la bacteria Helico-bacter pylori en agua de consumo humano y su rela-ción con la incidencia de cáncer gástrico en Costa Ri-ca. Tecnologia En Marcha, 24(3), 3-14.

Chowdhury, S. (2012). Heterotrophic bacteria in drinking water distribution system: A review. Environmental Monitoring and Assessment, 184, 6087-6137. https://doi.org/10.1007/s10661-011-2407-x DOI: https://doi.org/10.1007/s10661-011-2407-x

Engstrand, L. (2001). Helicobacter in water and waterborne routes of transmission. Symposium Series (Society for Applied Microbiology), 30, 80-84. DOI: https://doi.org/10.1046/j.1365-2672.2001.01356.x

Erzin, Y., Koksal, V., Altun, S., Dobrucali, A., Aslan, M., Erdamar, S., Dirican, A., and Kocazeybek, B. (2006). Prevalence of Helicobacter pylori vacA, cagA, cagE, iceA, babA2 genotypes and correlation with clinical outcome in Turkish patients with dyspepsia. Helicobac-ter, 11(6), 574-580. https://doi.org/10.1111/j.1523-5378.2006.00461.x DOI: https://doi.org/10.1111/j.1523-5378.2006.00461.x

Fernández-Delgado, M., Contreras, M., García-Amado, M. A., Michelangeli, F., and Suárez, P. (2008). Evidencias de la transmisión acuática de Helicobacter pylori. Intercien-cia, 33(6), 412-417. http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0378-18442008000600005

Fernández, J., Cruz, A., and Benavides, E. (2006). Remoción de materia orgánica por filtración en múltiples etapas. Ingeniería Hoy, 24, 20-27.

Galvis, G., Teun Visscher, J., and Lloyd, B. (1992). Multi-stage surface water treatment for community water supply in Colombia. Waterlines, 10(3), 26-29, https://doi.org/10.3362/0262-8104.1992.008 DOI: https://doi.org/10.3362/0262-8104.1992.008

Galvis, G. (1999). Development and evaluation of multistage filtration plants: An innovative, robust and efficient wa-ter treatment technology [Doctoral thesis, Univertsity of Surrey]. https://openresearch.surrey.ac.uk/esploro/outputs/doctoral/Development-and-evaluation-of-multistage-filtration/99513881902346

Galvis, G., Latorre, J., and Visscher, J. T. (1999). Filtración en múltiples etapas: tecnología innovativa para el trata-miento de agua. Artes Gráficas de Univalle. https://www.ircwash.org/sites/default/files/255.9-99FI-17025.pdf

Gião, M. S., Azevedo, N. F., Wilks, S. A., Vieira, M. J., and Keevil, C. W. (2008). Persistence of Helicobacter pylori in heterotrophic drinking-water biofilms. Applied and Envi-ronmental Microbiology, 74(19), 5898-5904. https://doi.org/10.1128%2FAEM.00827-08 DOI: https://doi.org/10.1128/AEM.00827-08

Goh, K., Chan, W., Shiota, S., and Yamaoka, Y. (2011). Epi-demiology of Helicobacter pylori infection and public health implications. Helicobacter, 16, 1-9. https://doi.org/10.1111/j.1523-5378.2011.00874.x DOI: https://doi.org/10.1111/j.1523-5378.2011.00874.x

Haig, S. (2014). Characterising the functional ecology of slow sand filters through environmental genomics [Doctoral thesis, University of Glasgow]. https://theses.gla.ac.uk/5523/1/2014HaigPhD.pdf

Haig, S. J., Collins, G., Davies, R. L., Dorea, C. C., and Quince, C. (2011). Biological aspects of slow sand filtration: Past, present and future. Water Science and Technology: Wa-ter Supply, 11(4), 468-472. https://doi.org/10.2166/ws.2011.076 DOI: https://doi.org/10.2166/ws.2011.076

Hooi, J. K. Y., Lai, W. Y., Ng, W. K., Suen, M. M. Y., Underwood, F. E., Tanyingoh, D., Malfertheiner, P., Graham, D. Y., Wong, V. W. S., Wu, J. C. Y., Chan, F. K. L., Sung, J. J. Y., Kaplan, G. G., and Ng, S. C. (2017). Global prevalence of Helicobacter pylori infection: Systematic review and meta-analysis. Gastroenterology, 153(2), 420-429. https://doi.org/10.1053/j.gastro.2017.04.022 DOI: https://doi.org/10.1053/j.gastro.2017.04.022

Hulten, K., Han, S. W., Enroth, H., Klein, P. D., Opekun, A. R., Gilman, R. H., Evans, D. G., Engstrand, L., Graham, D. Y., and El-Zaatari, F. A. K. (1996). Helicobacter pylori in the drinking water in Peru. Gastroenterology, 110(4), 1031-1035. https://doi.org/10.1053/gast.1996.v110.pm8612990 DOI: https://doi.org/10.1053/gast.1996.v110.pm8612990

Ministerio de Vivienda Ciudad y Territorio (2020). Informe Na-cional de Calidad del Agua para Consumo Humano INCA 2019. https://www.minvivienda.gov.co/sites/default/files/documentos/informe-calidad-de-agua-2019.pdf

Moncayo, J. I., Santacruz, J. J., Álvarez, A. L., Franco, B., López, M. A., Ángel, A., Gallego, M. L., and Serrano, H. (2006). Comparación de métodos diagnósticos en la in-fección por Helicobacter pylori en Quindío, Colombia. Colombia Medica, 37(3), 203-212. https://www.redalyc.org/articulo.oa?id=28337306

Montero-Campos, V. (2019). Helicobacter pylori en Costa Rica, más de una década de investigaciones. Revista Tecnología En Marcha, 32, 94-103. https://doi.org/10.18845/tm.v32i9.4636 DOI: https://doi.org/10.18845/tm.v32i9.4636

Moreno, Y., Piqueres, P., Alonso, J. L., Jiménez, A., González, A., F. M. (2007). Survival and viability of Helicobacter pylori after inoculation into chlorinated drinking water. Water Research, 41(15), 3490-3496. https://doi.org/10.1016/j.watres.2007.05.020 DOI: https://doi.org/10.1016/j.watres.2007.05.020

Mushila, C. N., Ochieng, G. M., Otieno, F. A. O., Shitote, S. M., and Sitters, C. W. (2016). Hydraulic design to optimize the treatment capacity of multi-stage filtration units. Physics and Chemistry of the Earth, 92, 85-91. https://doi.org/10.1016/j.pce.2015.10.015 DOI: https://doi.org/10.1016/j.pce.2015.10.015

Nkwonta, O., and Ochieng, G. (2009). Roughing filter for wa-ter pre-treatment technology in developing countries: A review. International Journal of Physical Sciences, 4(9), 455-463). https://www.researchgate.net/publication/237827490_Roughing_filter_for_water_pre-treat-ment_technology_in_developing_countries_A_review

Ochieng, G. M. M., Otieno, F. A. O., Ogada, T. P. M., Shitote, S. M., and Menzwa, D. M. (2004). Performance of multi-stage filtration using different filter media against con-ventional water treatment systems. Water SA, 30(3), 361-367. https://doi.org/10.4314/wsa.v30i3.5085 DOI: https://doi.org/10.4314/wsa.v30i3.5085

Oliver, J. D. (2005). The viable but nonculturable state in bac-teria. Journal of Microbiology, 43, 93-100.

Ordóñez, J. F. (2015). Evaluación de la calidad microbiológi-ca de las fuentes de abastecimiento del acueducto ru-ral El Saladito – Timbío – Cauca [Undergraduate thesis, Universidad del Cauca]. http://repositorio.unicauca.edu.co:8080/xmlui/handle/}123456789/6862

Pardo, C., De Vries, E., Buitrago, L., and Gamboa, Ó. (2017). Atlas de mortalidad por cáncer en Colombia. https://www.cancer.gov.co/ATLAS_de_Mortalidad_por_cancer_en_Colombia.pdf

Posso, D. (2012). Análisis de la operación y mantenimiento de la filtración en gravas de flujo ascendentes a escala real [Undergraduate thesis, Universidad del Valle]. https://hdl.handle.net/10893/7675

Premoli, G., González, A., Millán-mendoza, B., Percoco, T., and Vielma, A. (2004). Diagnóstico de Helicobacter py-lori mediante la reacción en cadena de la polimerasa. Revista Cubana de Medicina Tropical, 56(2), 85-90. http://scielo.sld.cu/pdf/mtr/v56n2/mtr01204.pdf

Raman, A., Paramasivam, R., Heijnen, H. A., Visscher, J. (1992). Filtracion lenta en arena : tratamiento de agua para comunidades : planeacion, diseno, construccion, operacion y mantenimiento. https://es.ircwash.org/resources/filtracion-lenta-en-arena-tratamiento-de-agua-para-comunidades-planeacion-diseno

Ramos, A. R., and Sánchez, R. S. (2009), Contribución de Latinoamérica al estudio del Helicobacter pylori. Acta Gastroenterologica Latinoamericana, 39(3), 197-218. https://www.redalyc.org/exportarcita.oa?id=199317345011

Samra, Z. Q., Javaid, U., Ghafoor, S., Batool, A., Dar, N., and Athar, M. A. (2011). PCR assay targeting virulence genes of Helicobacter pylori isolated from drinking water and clinical samples in Lahore metropolitan, Pakistan. Jour-nal of Water and Health, 9(1), 208-216. https://doi.org/10.2166/wh.2010.169 DOI: https://doi.org/10.2166/wh.2010.169

Sánchez, L. D., Sánchez, A., Galvis, G., and Latorre, J. (2007). Filtración en Múltiples Etapas. IRC. https://es.ircwash.org/resources/filtraci%C3%B3n-en-m%C3%BAltiples-etapas

Sánchez, L. D. (2017). Determinación del factor de adherencia en filtros de grava de flujo ascendente en capas. Inge-niería Y Competitividad, 19(2), 121-130. https://doi.org/10.25100/iyc.v19i2.5299 DOI: https://doi.org/10.25100/iyc.v19i2.5299

Santiago, P. (2016). Transmisión de Helicobacter pylori a tra-vés del agua: estudio de la presencia del patógeno e identificación de formas viables mediante técnicas mo-leculares [Doctoral thesis, Universidad Politécnica de Valencia]. https://doi.org/10.4995/Thesis/10251/75086 DOI: https://doi.org/10.4995/Thesis/10251/75086

Vega Serrano, H. A. (2013). Evaluación del sistema de filtra-ción en múltiples etapas FiME en tanques plásticos con pre-sedimentación y retro-lavado en la hacienda Ma-javita (Socorro, Santander) [Master's thesis, Universidad de Manizales]. https://ridum.umanizales.edu.co/xmlui/bitstream/handle/20.500.12746/151/402_Vega_Serrano_Haimar_Ariel_2013_Documento.pdf

Vesga, F. (2018). Detección y viabilidad de Helicobacter pylori en aguas crudas y potables en tres plantas de potabilización en la ciudad de Bogotá [Doctoral thesis, Pontificia Universidad Javeriana, Universidad Politécni-ca de Barcelona]. https://doi.org/10.11144/Javeriana.10554.41877 DOI: https://doi.org/10.11144/Javeriana.10554.41877

Watson, C. L., Owen, R. J., Said, B., Lai, S., Lee, J. V., Surman-Lee, S., and Nichols, G. (2004). Detection of Helicobac-ter pylori by PCR but not culture in water and biofilm samples from drinking water distribution systems in Eng-land. Journal of Applied Microbiology, 97(4), 690-698. https://doi.org/10.1111/j.1365-2672.2004.02360.x DOI: https://doi.org/10.1111/j.1365-2672.2004.02360.x

Wegelin, M. (1996). Surface water treatment by roughing filters: A design, construction and operation manual. SKAT. https://www.ircwash.org/resources/surface-water-treatment-roughing-filters-design-construction-and-operation-manual

World Health Organization (WHO) (2017). Guidelines for drink-ing-water quality: fourth edition incorporating the first addendum. WHO. https://www.who.int/publications/m/item/guidelines-for-drinking-water-quality-4th-ed.-incorporating-the-1st-addendum-(chapters)

Yamaoka, Y., Kodama, T., Gutiérrez, O., Kim, J. G., Kashima, K., and Graham, D. Y. (1999). Relationship between Hel-icobacter priori iceA, cagA, and vacA status and clini-cal outcome: Studies in four different countries. Journal of Clinical Microbiology, 37(7), 2274-2279. https://doi.org/10.1128/jcm.37.7.2274-2279.1999 DOI: https://doi.org/10.1128/JCM.37.7.2274-2279.1999

How to Cite

APA

Ledezma, C., Fernández, J., Acosta, P. and Leyton , J. (2024). Helicobacter pylori Removal through Gravel Filtration in a Water Treatment System of the Municipality of Popayán, Cauca. Ingeniería e Investigación, 44(1), e100573. https://doi.org/10.15446/ing.investig.100573

ACM

[1]
Ledezma, C., Fernández, J., Acosta, P. and Leyton , J. 2024. Helicobacter pylori Removal through Gravel Filtration in a Water Treatment System of the Municipality of Popayán, Cauca. Ingeniería e Investigación. 44, 1 (Jan. 2024), e100573. DOI:https://doi.org/10.15446/ing.investig.100573.

ACS

(1)
Ledezma, C.; Fernández, J.; Acosta, P.; Leyton , J. Helicobacter pylori Removal through Gravel Filtration in a Water Treatment System of the Municipality of Popayán, Cauca. Ing. Inv. 2024, 44, e100573.

ABNT

LEDEZMA, C.; FERNÁNDEZ, J.; ACOSTA, P.; LEYTON , J. Helicobacter pylori Removal through Gravel Filtration in a Water Treatment System of the Municipality of Popayán, Cauca. Ingeniería e Investigación, [S. l.], v. 44, n. 1, p. e100573, 2024. DOI: 10.15446/ing.investig.100573. Disponível em: https://revistas.unal.edu.co/index.php/ingeinv/article/view/100573. Acesso em: 30 jan. 2025.

Chicago

Ledezma, Cristina, Javier Fernández, Patricia Acosta, and Javier Leyton. 2024. “Helicobacter pylori Removal through Gravel Filtration in a Water Treatment System of the Municipality of Popayán, Cauca”. Ingeniería E Investigación 44 (1):e100573. https://doi.org/10.15446/ing.investig.100573.

Harvard

Ledezma, C., Fernández, J., Acosta, P. and Leyton , J. (2024) “Helicobacter pylori Removal through Gravel Filtration in a Water Treatment System of the Municipality of Popayán, Cauca”, Ingeniería e Investigación, 44(1), p. e100573. doi: 10.15446/ing.investig.100573.

IEEE

[1]
C. Ledezma, J. Fernández, P. Acosta, and J. Leyton, “Helicobacter pylori Removal through Gravel Filtration in a Water Treatment System of the Municipality of Popayán, Cauca”, Ing. Inv., vol. 44, no. 1, p. e100573, Jan. 2024.

MLA

Ledezma, C., J. Fernández, P. Acosta, and J. Leyton. “Helicobacter pylori Removal through Gravel Filtration in a Water Treatment System of the Municipality of Popayán, Cauca”. Ingeniería e Investigación, vol. 44, no. 1, Jan. 2024, p. e100573, doi:10.15446/ing.investig.100573.

Turabian

Ledezma, Cristina, Javier Fernández, Patricia Acosta, and Javier Leyton. “Helicobacter pylori Removal through Gravel Filtration in a Water Treatment System of the Municipality of Popayán, Cauca”. Ingeniería e Investigación 44, no. 1 (January 2, 2024): e100573. Accessed January 30, 2025. https://revistas.unal.edu.co/index.php/ingeinv/article/view/100573.

Vancouver

1.
Ledezma C, Fernández J, Acosta P, Leyton J. Helicobacter pylori Removal through Gravel Filtration in a Water Treatment System of the Municipality of Popayán, Cauca. Ing. Inv. [Internet]. 2024 Jan. 2 [cited 2025 Jan. 30];44(1):e100573. Available from: https://revistas.unal.edu.co/index.php/ingeinv/article/view/100573

Download Citation

CrossRef Cited-by

CrossRef citations1

1. Javier Leyton, Javier Fernández, Patricia Acosta, Andrés Quiroga, Francesc Codony. (2024). Reduction of Helicobacter pylori cells in rural water supply using slow sand filtration. Environmental Monitoring and Assessment, 196(7) https://doi.org/10.1007/s10661-024-12764-2.

Dimensions

PlumX

Article abstract page views

514

Downloads

Download data is not yet available.