
Published
Thermal Degradation Analysis of Mamoncillo (Melicoccus bijugatus) Waste: Thermal Behaviors, Kinetics, and Thermodynamics
Análisis de degradación térmica de residuos de mamoncillo (Melicoccus bi-jugatus): comportamiento térmico, cinético y termodinámico
DOI:
https://doi.org/10.15446/ing.investig.103068Keywords:
kinetic models, mamoncillo wastes, pyrolysis, thermodynamic analysis (en)modelos cinéticos, residuos de mamoncillo, pirólisis, análisis termodinámico (es)
Downloads
This research studied the thermal conversion characteristics, kinetics, and thermodynamics of mamoncillo peels and seeds using non-isothermal thermogravimetric analysis. Kinetic analysis was performed using the Kissinger-Akahira-Sunose, Flynn-Wall-Ozawa, Starink, and Friedman methods. The reaction kinetic models were obtained by means of the master-plots method for 18 different empirical reaction models, calculating the enthalpy, Gibbs free energy, and entropy as thermodynamics parameters. It was found that the average activation energy for mamoncillo peels and seeds was 238,71 and 197,60 kJ/mol, respectively. The frequency factor was found to be between 109 and 1031 s-1 for mamoncillo peels and between 109 and 1034 s-1 for mamoncillo seeds. The average values of DH and DG were also found to be 233,83 and 192,81 kJ/mol and 164,84 and 162,10 kJ/mol for mamoncillo peels and seeds, respectively. The reaction kinetic models regarding the thermal decomposition of mamoncillo peels were found to be described by the contracting cylinder (R2) and third-order (F3) models, while those for mamoncillo seeds can be described by the second-order (F2) and contracting sphere (R3) models. It was concluded that the pyrolysis process of mamoncillo waste can be described by a complex reaction mechanism, and that these wastes have thermal properties with the potential to produce bioenergy.
En este estudio se investigaron las características de conversión térmica, cinéticas y termodinámicas de las semillas y cáscaras de mamoncillo utilizando análisis termogravimétrico no isotérmico. El análisis cinético se realizó empleando los métodos de Kissinger-Akahira-Sunose, Flynn-Wall-Ozawa, Starink y Friedman. Los modelos cinéticos de reacción se obtuvieron mediante el método de gráficas maestras para 18 modelos de reacción empíricos diferentes, y, como parámetros termodinámicos, se calcularon la entalpía, la energía libre de Gibbs y la entropía. Se encontró que la energía de activación promedio para las cáscaras y las semillas de mamoncillo fue de 238,71 y 197,60 kJ/mol respectivamente. El factor de frecuencia estuvo entre 109 y 1031 s-1 para las cáscaras de mamoncillo y entre 109 y 1034 s-1 para las semillas de mamoncillo. También se encontró que el valor promedio de DH y DG estaba entre 233,83 y 192,81 kJ/mol y 164,84 y 162,10 kJ/mol para las cáscaras y las semillas respectivamente. Se encontró que los modelos cinéticos de reacción para la descomposición térmica de cáscaras de mamoncillo se pueden describir mediante los modelos cilindro de contracción (R2) y de tercer orden (F3), mientras los de las semillas se pueden describir por medio de los modelos de segundo orden (F2) y esfera de contracción (R3). Se concluyó que el proceso de pirólisis de los residuos de mamoncillo se puede describir utilizando un mecanismo de reacción complejo, y que estos residuos presentan propiedades térmicas con potencial para producir bioenergía.
References
Aboulkas, A., El harfi, K., and El Bouadili, A. (2010). Thermal degradation behaviors of polyethylene and polypropylene. Part 1: Pyrolysis kinetics and mechanisms. Energy Conversion Management, 51, 1363-1369. https://doi.org/10.1016/j.enconman.2009.12.017 DOI: https://doi.org/10.1016/j.enconman.2009.12.017
Bensidhom, G., Trabelsi, B. H., Mahmood, M. A., and Ceylan, S. (2021). Insights into pyrolite feedstock potential of date palm industry wastes: Kinetic study and product characterization. Fuel, 285, 119096. https://doi.org/10.1016/j.fuel.2021.119096 DOI: https://doi.org/10.1016/j.fuel.2020.119096
Bridgwater, A. V. (2012). Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy, 38, 68-94. https://doi.org/10.1016/j.biombioe.2011.01.048 DOI: https://doi.org/10.1016/j.biombioe.2011.01.048
Calderón, J. C., Sachdev, H., Thepanondh, S., and Quintanilla, Y. A. (2021). Morphological and physico-chemical characterization of fruit of melicoccus bijugatus jacq. Bangladesh Journal Botanic, 50(2), 387-394. https://doi.org/10.3329/bjb.v50i2.54096 DOI: https://doi.org/10.3329/bjb.v50i2.54096
Cai, J., Xu, D., Dong, Z., Yu, X., Yang, Y., and Banks, S. W. (2018). Processing thermogravimetric analysis data for isoconversional kinetic analysis of lignocellulosic biomass pyrolysis: Case study of corn stalk. Renewable and Sustainable Energy Reviews, 82, 2705-2715. https://dx.doi.org/10.1016/j.rser.2017.09.113 DOI: https://doi.org/10.1016/j.rser.2017.09.113
Can-Cauich, C. A., Sauri-Duch, E., Betancur-Ancona, D., Chel-Guerrero, L., González-Aguilar, G. A., Cuevas-Glory, L. F., Pérez-Pacheco, E., and Moo-Huchin, V. M. (2017). Tropical fruit peel powders as functional ingredients: Evaluation of their bioactive compounds and antioxidant activity. Journal of Functional Foods, 37, 501-506. https://doi.org/doi:10.1016/j.jff.2017.08.028 DOI: https://doi.org/10.1016/j.jff.2017.08.028
Chen, D., Shuang, E., and Liu, L. (2018). Analysis of pyrolysis characteristics and kinetics of sweet sorghum bagasse and cotton stalk. Journal of Thermal Analysis and Calorimetry, 131, 1899-1909. https://doi.org/10.1007/s10973-017-6585-9 DOI: https://doi.org/10.1007/s10973-017-6585-9
Chen, J., Wang, Y., Lang, X., Ren, X., and Fan, S. (2017). Evaluation of agricultural residues pyrolysis under non-isothermal conditions: Thermal behaviors, kinetics, and thermodynamics. Bioresource Technology, 241, 340-348. https://doi.org/10.1016/j.biortech.2017.05.036 DOI: https://doi.org/10.1016/j.biortech.2017.05.036
Chen, X., Cai, D., Yang, Y., Sun, Y., Wang, B., Yao, Z., Jin, M., Liu, J., Reinmoller, M., Badshah, S. L., and Magdziarz, A. (2023). Pyrolysis kinetics of bio-based polyurethane: Evaluating the kinetic parameters, thermodynamic parameters, and complementary product gas analysis using TG/FTIR and TG/GC-MS. Renewable Energy, 205, 490-498. https://doi.org/10.1016/j.renene.2023.01.078 DOI: https://doi.org/10.1016/j.renene.2023.01.078
Dhyani, V., Kumar, L., and Bhaskar, T. (2017). Thermal decomposition kinetics of sorghum straw via thermogravimetric analysis. Bioresource Technology, 245, 1122-1129. https://doi.org/10.1016/j.biortech.2017.08.189 DOI: https://doi.org/10.1016/j.biortech.2017.08.189
Emiola-Sadiq, T., Zhang, L., and Dalai, A.K. (2021). Thermal and kinetic studies on biomass degradation via thermogravimetric analysis: A combination of model-fitting and model-free approach. ACS Omega, 6, 22233-22247. https://doi.org/10.1021acsomega.1c02937 DOI: https://doi.org/10.1021/acsomega.1c02937
Gogoi, M., Konwar, K., Bhuyan, N., Borah, R. C., Kalita, A. C., Nath, H. P., and Saikia, N. (2018). Assessments of pyrolysis kinetics and mechanisms of biomass residues using thermogravimetry. Bioresource Technology Reports, 44, 0-49. https://doi.org/10.1016/j.biteb.2018.08.016 DOI: https://doi.org/10.1016/j.biteb.2018.08.016
Kan, T., Strezov, V., and Evans, T.J. (2012). Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters. Renewable and Sustainable Energy Reviews, 57, 1126-1140. https://doi.org/10.1016/j.rser.2015.12.185 DOI: https://doi.org/10.1016/j.rser.2015.12.185
Kaur, R., Gera, P., Jha, M. K., and Bhaskar, T. (2017). Pyrolysis kinetics and thermodynamic parameters of castor (Ricinus communis) residue using thermogravimetric analysis. Bioresource Technology, 250, 422-428. https://doi.org/10.1016/j.biortech.2017.11.077 DOI: https://doi.org/10.1016/j.biortech.2017.11.077
Kumar, M., Shukla, S. K., Upadhyay, S. N., and Mishra, P. K. (2020). Analysis of thermal degradation of banana (Musa balbisiana) trunk biomass waste using iso-conversional models. Bioresource Technology, 310, 123393, https://doi.org/10.1016/j.biortech.2020.123393 DOI: https://doi.org/10.1016/j.biortech.2020.123393
Lam, S. S., Liew, R. K., Lim, X. Y., Ani, F. N., and Jusoh, A. (2016). Fruit waste as feedstock for pyrolysis technique. International Biodeterioration & Biodegradation, 113, 325-333. https://doi.org/10.1016/j.ibiod.2016.02.021 DOI: https://doi.org/10.1016/j.ibiod.2016.02.021
Li, Y., Wan, Y., Chai, M., Li, Ch, Nishu, L., Yellezuome, D., and Liu, R. (2023). Pyrolysis kinetics and thermodynamic parameters of bamboo residues and its three main components using thermogravimetric analysis. Biomass and Bioenergy, 170, 106705. https://doi.org/10.1016/j.biombioe.2023.106705 DOI: https://doi.org/10.1016/j.biombioe.2023.106705
Liu, H., Chen, B., and Wang, C. (2020). Pyrolysis kinetics study of biomass waste using Shuffled Complex Evaluation algorithm. Fuel Processing Technology., 208, 106509. https://doi.org/10.1016/j.fuproc.2020.106509 DOI: https://doi.org/10.1016/j.fuproc.2020.106509
Maia, A. D., and Morais, L. C. (2016). Kinetic parameters of red pepper waste as biomass to solid biofuel. Bioresource Technology, 204, 157-163. https://doi.org/10.1016/j.biortech.2015.12.055 DOI: https://doi.org/10.1016/j.biortech.2015.12.055
Mallick, D., Poddar, M. K., Mahanta, P., and Moholkar, V. S. (2018). Discernment of synergism in pyrolysis of biomass blends using thermogravimetric analysis. Bioresource Technology, 261, 294-305. https://doi.org/10.1016/j.biortech.2018.04.011 DOI: https://doi.org/10.1016/j.biortech.2018.04.011
Mehmood, M. A., Ye, G., Luo, H., Liu, C., Malik, S., Afzal, I., Xu, J., and Ahmad, M. S. (2017). Pyrolysis, and kinetic analyses of Camel grass (Cymbopogon schoenanthus) for bioenergy. Bioresource Technology, 228, 18-24. https://doi.org/10.1016/j.biortech.2016.12.096 DOI: https://doi.org/10.1016/j.biortech.2016.12.096
Mishra, G., and Bhasker, T. (2014). Non isothermal model-free kinetics for pyrolysis of rice straw. Bioresource Technology, 169, 614-621. https://doi.org/10.1016/j.biortech.2014.07.045 DOI: https://doi.org/10.1016/j.biortech.2014.07.045
Moo Huchin, V. M., Ac Chim, D.M., Chim Chi, Y. A., Ríos Soberanis, C. R., Ramos, G., Yee Madeira, H. T., Ortiz Fernández, A., Estrada León, R. J., and Pérez Pacheco, E. (2020). Huaya (Melicoccus bijugatus) seed four as a new source of starch: Physicochemical, morphological, thermal, and functional characterization. Journal of Food Measurement and Characterization, 14, 3299-3309. https://doi.org/10.1007/s11694-020-00573-3 DOI: https://doi.org/10.1007/s11694-020-00573-3
Nawaz, A., Misha, R. K., Sabbarwal, S., and Kumar P. (2021). Studies of physicochemical characterization and pyrolysis behavior of low-value waste biomass using thermogravimetric analyzer: Evaluation of kinetic and thermodynamic parameters. Bioresource Technology Reports, 16, 100858. https://doi.org/10.1016/j.biteb.2021.100858 DOI: https://doi.org/10.1016/j.biteb.2021.100858
Pacheco, J. I., Lucca, F. A., Goncalves, W. D., Chacón, G., and Sousa, V. (2022). Influence of biomass waste from agro-industries on obtaining energetic gases assisted by chronoamperometric process. International Journal Hydrogen Energy, 47(2), 735-746. https://doi.org/10.1016/j.ijhydene.2021.10.045 DOI: https://doi.org/10.1016/j.ijhydene.2021.10.045
Pawar, A., Panwar, N. L., Jain, S., Jain, N. K., and Gupta, T. (2021). Thermal degradation of coconut husk waste biomass under non-isothermal condition. Biomass Conversion and Biorefinery, 13, 7613-7622. https://doi.org/10.1007/s13399-021-01657-w DOI: https://doi.org/10.1007/s13399-021-01657-w
Raza, M., Abu-Jdayil, B., Al-Marzouqi, A.H., and Inayat, A. (2022). Kinetic and thermodynamic analyses of date palm surface fibers pyrolysis using Coats-Redfern method. Renewable Energy, 163, 67-77. https://doi.org/10.1016/j.renene.2021.10.065 DOI: https://doi.org/10.1016/j.renene.2021.10.065
Rojas, A. F., and Flórez, C. (2019). Valorización de residuos de frutas para combustión y pirólisis. Revista Politécnica, 15(28), 42-53. https://doi.org/10.33571/rpolitec.v15n28a4 DOI: https://doi.org/10.33571/rpolitec.v15n28a4
Rony, A. H., Koug, L., Lu, W., Dejam, M., Adidharma, H., Gasem, K. A. M., Zheng, Y., Norton, U., and Fan, M. (2019). Kinetics, thermodynamics, and physical characterization of corn stover (Zea mays) for solar biomass pyrolysis potential analysis. Bioresource Technology, 284, 466-473. https://doi.org/10.1016/j.biortech.2019.03.049 DOI: https://doi.org/10.1016/j.biortech.2019.03.049
Santos, V. O., Queiroz, L. S., Araujo, R. O., Ribeiro, F. C. P., Guimaraes, M. N., Costa, C. E. F., Chaar, J. S., and Souza, L. K. C. (2020). Pyrolysis of acai seed biomass Kinetics and thermodynamic parameters using thermogravimetric analysis. Bioresource Technology Reports, 12, 100553. https://doi.org/10.1016/j.biteb.2020.100553 DOI: https://doi.org/10.1016/j.biteb.2020.100553
Singh, R. K., Patil, T., Pandey, D., and Sawarkar, A. N. (2020a). Pyrolysis of banana leaves biomass: Physico-chemical characterization, thermal decomposition behavior, kinetic and thermodynamic analyses. Bioresource Technology, 310, 123464. https://doi.org/10.1016/j.biortech.2020.123464 DOI: https://doi.org/10.1016/j.biortech.2020.123464
Singh, R. K., Patil, T., and Sawarkar, A. N. (2020b). Pyrolysis of garlic husk biomass: Physico-chemical characterization, thermodynamic and kinetic analyses. Bioresource Technology Reports, 12, 100558. https://doi.org/10.1016/j.biteb.2020.100558 DOI: https://doi.org/10.1016/j.biteb.2020.100558
Singh, R. K., Patil, T., Pandey, D., and Sawarkar, A. N. (2021). Pyrolysis of mustard oil residue: A kinetic and thermodynamic study. Bioresource Technology, 339, 125631. https://doi.org/10.1016/j.biortech.2021.125631 DOI: https://doi.org/10.1016/j.biortech.2021.125631
Vejar, A. G., Tolosa, B., Parra, J. W., and Rodríguez-Ordoñez, D. R. (2016). Uso de la cáscara de mamón (Melicoccus bijugatus) para el teñido de telas. Avances en Química, 11(3), 123-128. https://www.redalyc.org/articulo.oa?id=93349879004
Vyazovkin, S., Burnham, A. K., Criado, J. M., Pérez-Marqueda, L. A., Popescu, C., and Sbirrazzuoli, N. (2011). ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochemical Acta, 520, 1-19. https://doi.org/10.1016/j.tca.2011.03.034 DOI: https://doi.org/10.1016/j.tca.2011.03.034
Wang, C., Wang, X., Jiang, X., Li, F., Lei, Y., and Lin, Q. (2019). The thermal behavior and kinetics of co-combustion between sewage sludge and wheat straw. Fuel Processing Technology, 189, 1-14. https://doi.org/10.1016/j.fuproc.2019.02.024 DOI: https://doi.org/10.1016/j.fuproc.2019.02.024
Yang, H., Ji, G., Clough, P.T., Xu, X., and Zhao, M. (2019). Kinetics of catalytic biomass pyrolysis using Ni-based functional materials. Fuel Processing Technology, 195, 106145. https://doi.org/10.1016/j.fuproc.2019.106145 DOI: https://doi.org/10.1016/j.fuproc.2019.106145
Yuan, X., He, T., Cao, H., and Yuan, Q. (2017). Cattle manure pyrolysis process: kinetic and thermodynamic analysis with isoconversional methods. Renewable Energy, 107, 489-496. https://doi.org/10.1016/j.renene.2017.02.026 DOI: https://doi.org/10.1016/j.renene.2017.02.026
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2024 Andrés Felipe Rojas González

This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors or holders of the copyright for each article hereby confer exclusive, limited and free authorization on the Universidad Nacional de Colombia's journal Ingeniería e Investigación concerning the aforementioned article which, once it has been evaluated and approved, will be submitted for publication, in line with the following items:
1. The version which has been corrected according to the evaluators' suggestions will be remitted and it will be made clear whether the aforementioned article is an unedited document regarding which the rights to be authorized are held and total responsibility will be assumed by the authors for the content of the work being submitted to Ingeniería e Investigación, the Universidad Nacional de Colombia and third-parties;
2. The authorization conferred on the journal will come into force from the date on which it is included in the respective volume and issue of Ingeniería e Investigación in the Open Journal Systems and on the journal's main page (https://revistas.unal.edu.co/index.php/ingeinv), as well as in different databases and indices in which the publication is indexed;
3. The authors authorize the Universidad Nacional de Colombia's journal Ingeniería e Investigación to publish the document in whatever required format (printed, digital, electronic or whatsoever known or yet to be discovered form) and authorize Ingeniería e Investigación to include the work in any indices and/or search engines deemed necessary for promoting its diffusion;
4. The authors accept that such authorization is given free of charge and they, therefore, waive any right to receive remuneration from the publication, distribution, public communication and any use whatsoever referred to in the terms of this authorization.