Published

2024-02-22

Thermal Degradation Analysis of Mamoncillo (Melicoccus bijugatus) Waste: Thermal Behaviors, Kinetics, and Thermodynamics

Análisis de degradación térmica de residuos de mamoncillo (Melicoccus bi-jugatus): comportamiento térmico, cinético y termodinámico

DOI:

https://doi.org/10.15446/ing.investig.103068

Keywords:

kinetic models, mamoncillo wastes, pyrolysis, thermodynamic analysis (en)
modelos cinéticos, residuos de mamoncillo, pirólisis, análisis termodinámico (es)

Downloads

Authors

This research studied the thermal conversion characteristics, kinetics, and thermodynamics of mamoncillo peels and seeds using non-isothermal thermogravimetric analysis. Kinetic analysis was performed using the Kissinger-Akahira-Sunose, Flynn-Wall-Ozawa, Starink, and Friedman methods. The reaction kinetic models were obtained by means of the master-plots method for 18 different empirical reaction models, calculating the enthalpy, Gibbs free energy, and entropy as thermodynamics parameters. It was found that the average activation energy for mamoncillo peels and seeds was 238,71 and 197,60 kJ/mol, respectively. The frequency factor was found to be between 109 and 1031 s-1 for mamoncillo peels and between 109 and 1034 s-1 for mamoncillo seeds. The average values of DH and DG were also found to be 233,83 and 192,81 kJ/mol and 164,84 and 162,10 kJ/mol for mamoncillo peels and seeds, respectively. The reaction kinetic models regarding the thermal decomposition of mamoncillo peels were found to be described by the contracting cylinder (R2) and third-order (F3) models, while those for mamoncillo seeds can be described by the second-order (F2) and contracting sphere (R3) models. It was concluded that the pyrolysis process of mamoncillo waste can be described by a complex reaction mechanism, and that these wastes have thermal properties with the potential to produce bioenergy.

En este estudio se investigaron las características de conversión térmica, cinéticas y termodinámicas de las semillas y cáscaras de mamoncillo utilizando análisis termogravimétrico no isotérmico. El análisis cinético se realizó empleando los métodos de Kissinger-Akahira-Sunose, Flynn-Wall-Ozawa, Starink y Friedman. Los modelos cinéticos de reacción se obtuvieron mediante el método de gráficas maestras para 18 modelos de reacción empíricos diferentes, y, como parámetros termodinámicos, se calcularon la entalpía, la energía libre de Gibbs y la entropía. Se encontró que la energía de activación promedio para las cáscaras y las semillas de mamoncillo fue de 238,71 y 197,60 kJ/mol respectivamente. El factor de frecuencia estuvo entre 109 y 1031 s-1 para las cáscaras de mamoncillo y entre 109 y 1034 s-1 para las semillas de mamoncillo. También se encontró que el valor promedio de DH y DG estaba entre 233,83 y 192,81 kJ/mol y 164,84 y 162,10 kJ/mol para las cáscaras y las semillas respectivamente. Se encontró que los modelos cinéticos de reacción para la descomposición térmica de cáscaras de mamoncillo se pueden describir mediante los modelos cilindro de contracción (R2) y de tercer orden (F3), mientras los de las semillas se pueden describir por medio de los modelos de segundo orden (F2) y esfera de contracción (R3). Se concluyó que el proceso de pirólisis de los residuos de mamoncillo se puede describir utilizando un mecanismo de reacción complejo, y que estos residuos presentan propiedades térmicas con potencial para producir bioenergía.

References

Aboulkas, A., El harfi, K., and El Bouadili, A. (2010). Thermal degradation behaviors of polyethylene and polypropylene. Part 1: Pyrolysis kinetics and mechanisms. Energy Conversion Management, 51, 1363-1369. https://doi.org/10.1016/j.enconman.2009.12.017 DOI: https://doi.org/10.1016/j.enconman.2009.12.017

Bensidhom, G., Trabelsi, B. H., Mahmood, M. A., and Ceylan, S. (2021). Insights into pyrolite feedstock potential of date palm industry wastes: Kinetic study and product characterization. Fuel, 285, 119096. https://doi.org/10.1016/j.fuel.2021.119096 DOI: https://doi.org/10.1016/j.fuel.2020.119096

Bridgwater, A. V. (2012). Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy, 38, 68-94. https://doi.org/10.1016/j.biombioe.2011.01.048 DOI: https://doi.org/10.1016/j.biombioe.2011.01.048

Calderón, J. C., Sachdev, H., Thepanondh, S., and Quintanilla, Y. A. (2021). Morphological and physico-chemical characterization of fruit of melicoccus bijugatus jacq. Bangladesh Journal Botanic, 50(2), 387-394. https://doi.org/10.3329/bjb.v50i2.54096 DOI: https://doi.org/10.3329/bjb.v50i2.54096

Cai, J., Xu, D., Dong, Z., Yu, X., Yang, Y., and Banks, S. W. (2018). Processing thermogravimetric analysis data for isoconversional kinetic analysis of lignocellulosic biomass pyrolysis: Case study of corn stalk. Renewable and Sustainable Energy Reviews, 82, 2705-2715. https://dx.doi.org/10.1016/j.rser.2017.09.113 DOI: https://doi.org/10.1016/j.rser.2017.09.113

Can-Cauich, C. A., Sauri-Duch, E., Betancur-Ancona, D., Chel-Guerrero, L., González-Aguilar, G. A., Cuevas-Glory, L. F., Pérez-Pacheco, E., and Moo-Huchin, V. M. (2017). Tropical fruit peel powders as functional ingredients: Evaluation of their bioactive compounds and antioxidant activity. Journal of Functional Foods, 37, 501-506. https://doi.org/doi:10.1016/j.jff.2017.08.028 DOI: https://doi.org/10.1016/j.jff.2017.08.028

Chen, D., Shuang, E., and Liu, L. (2018). Analysis of pyrolysis characteristics and kinetics of sweet sorghum bagasse and cotton stalk. Journal of Thermal Analysis and Calorimetry, 131, 1899-1909. https://doi.org/10.1007/s10973-017-6585-9 DOI: https://doi.org/10.1007/s10973-017-6585-9

Chen, J., Wang, Y., Lang, X., Ren, X., and Fan, S. (2017). Evaluation of agricultural residues pyrolysis under non-isothermal conditions: Thermal behaviors, kinetics, and thermodynamics. Bioresource Technology, 241, 340-348. https://doi.org/10.1016/j.biortech.2017.05.036 DOI: https://doi.org/10.1016/j.biortech.2017.05.036

Chen, X., Cai, D., Yang, Y., Sun, Y., Wang, B., Yao, Z., Jin, M., Liu, J., Reinmoller, M., Badshah, S. L., and Magdziarz, A. (2023). Pyrolysis kinetics of bio-based polyurethane: Evaluating the kinetic parameters, thermodynamic parameters, and complementary product gas analysis using TG/FTIR and TG/GC-MS. Renewable Energy, 205, 490-498. https://doi.org/10.1016/j.renene.2023.01.078 DOI: https://doi.org/10.1016/j.renene.2023.01.078

Dhyani, V., Kumar, L., and Bhaskar, T. (2017). Thermal decomposition kinetics of sorghum straw via thermogravimetric analysis. Bioresource Technology, 245, 1122-1129. https://doi.org/10.1016/j.biortech.2017.08.189 DOI: https://doi.org/10.1016/j.biortech.2017.08.189

Emiola-Sadiq, T., Zhang, L., and Dalai, A.K. (2021). Thermal and kinetic studies on biomass degradation via thermogravimetric analysis: A combination of model-fitting and model-free approach. ACS Omega, 6, 22233-22247. https://doi.org/10.1021acsomega.1c02937 DOI: https://doi.org/10.1021/acsomega.1c02937

Gogoi, M., Konwar, K., Bhuyan, N., Borah, R. C., Kalita, A. C., Nath, H. P., and Saikia, N. (2018). Assessments of pyrolysis kinetics and mechanisms of biomass residues using thermogravimetry. Bioresource Technology Reports, 44, 0-49. https://doi.org/10.1016/j.biteb.2018.08.016 DOI: https://doi.org/10.1016/j.biteb.2018.08.016

Kan, T., Strezov, V., and Evans, T.J. (2012). Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters. Renewable and Sustainable Energy Reviews, 57, 1126-1140. https://doi.org/10.1016/j.rser.2015.12.185 DOI: https://doi.org/10.1016/j.rser.2015.12.185

Kaur, R., Gera, P., Jha, M. K., and Bhaskar, T. (2017). Pyrolysis kinetics and thermodynamic parameters of castor (Ricinus communis) residue using thermogravimetric analysis. Bioresource Technology, 250, 422-428. https://doi.org/10.1016/j.biortech.2017.11.077 DOI: https://doi.org/10.1016/j.biortech.2017.11.077

Kumar, M., Shukla, S. K., Upadhyay, S. N., and Mishra, P. K. (2020). Analysis of thermal degradation of banana (Musa balbisiana) trunk biomass waste using iso-conversional models. Bioresource Technology, 310, 123393, https://doi.org/10.1016/j.biortech.2020.123393 DOI: https://doi.org/10.1016/j.biortech.2020.123393

Lam, S. S., Liew, R. K., Lim, X. Y., Ani, F. N., and Jusoh, A. (2016). Fruit waste as feedstock for pyrolysis technique. International Biodeterioration & Biodegradation, 113, 325-333. https://doi.org/10.1016/j.ibiod.2016.02.021 DOI: https://doi.org/10.1016/j.ibiod.2016.02.021

Li, Y., Wan, Y., Chai, M., Li, Ch, Nishu, L., Yellezuome, D., and Liu, R. (2023). Pyrolysis kinetics and thermodynamic parameters of bamboo residues and its three main components using thermogravimetric analysis. Biomass and Bioenergy, 170, 106705. https://doi.org/10.1016/j.biombioe.2023.106705 DOI: https://doi.org/10.1016/j.biombioe.2023.106705

Liu, H., Chen, B., and Wang, C. (2020). Pyrolysis kinetics study of biomass waste using Shuffled Complex Evaluation algorithm. Fuel Processing Technology., 208, 106509. https://doi.org/10.1016/j.fuproc.2020.106509 DOI: https://doi.org/10.1016/j.fuproc.2020.106509

Maia, A. D., and Morais, L. C. (2016). Kinetic parameters of red pepper waste as biomass to solid biofuel. Bioresource Technology, 204, 157-163. https://doi.org/10.1016/j.biortech.2015.12.055 DOI: https://doi.org/10.1016/j.biortech.2015.12.055

Mallick, D., Poddar, M. K., Mahanta, P., and Moholkar, V. S. (2018). Discernment of synergism in pyrolysis of biomass blends using thermogravimetric analysis. Bioresource Technology, 261, 294-305. https://doi.org/10.1016/j.biortech.2018.04.011 DOI: https://doi.org/10.1016/j.biortech.2018.04.011

Mehmood, M. A., Ye, G., Luo, H., Liu, C., Malik, S., Afzal, I., Xu, J., and Ahmad, M. S. (2017). Pyrolysis, and kinetic analyses of Camel grass (Cymbopogon schoenanthus) for bioenergy. Bioresource Technology, 228, 18-24. https://doi.org/10.1016/j.biortech.2016.12.096 DOI: https://doi.org/10.1016/j.biortech.2016.12.096

Mishra, G., and Bhasker, T. (2014). Non isothermal model-free kinetics for pyrolysis of rice straw. Bioresource Technology, 169, 614-621. https://doi.org/10.1016/j.biortech.2014.07.045 DOI: https://doi.org/10.1016/j.biortech.2014.07.045

Moo Huchin, V. M., Ac Chim, D.M., Chim Chi, Y. A., Ríos Soberanis, C. R., Ramos, G., Yee Madeira, H. T., Ortiz Fernández, A., Estrada León, R. J., and Pérez Pacheco, E. (2020). Huaya (Melicoccus bijugatus) seed four as a new source of starch: Physicochemical, morphological, thermal, and functional characterization. Journal of Food Measurement and Characterization, 14, 3299-3309. https://doi.org/10.1007/s11694-020-00573-3 DOI: https://doi.org/10.1007/s11694-020-00573-3

Nawaz, A., Misha, R. K., Sabbarwal, S., and Kumar P. (2021). Studies of physicochemical characterization and pyrolysis behavior of low-value waste biomass using thermogravimetric analyzer: Evaluation of kinetic and thermodynamic parameters. Bioresource Technology Reports, 16, 100858. https://doi.org/10.1016/j.biteb.2021.100858 DOI: https://doi.org/10.1016/j.biteb.2021.100858

Pacheco, J. I., Lucca, F. A., Goncalves, W. D., Chacón, G., and Sousa, V. (2022). Influence of biomass waste from agro-industries on obtaining energetic gases assisted by chronoamperometric process. International Journal Hydrogen Energy, 47(2), 735-746. https://doi.org/10.1016/j.ijhydene.2021.10.045 DOI: https://doi.org/10.1016/j.ijhydene.2021.10.045

Pawar, A., Panwar, N. L., Jain, S., Jain, N. K., and Gupta, T. (2021). Thermal degradation of coconut husk waste biomass under non-isothermal condition. Biomass Conversion and Biorefinery, 13, 7613-7622. https://doi.org/10.1007/s13399-021-01657-w DOI: https://doi.org/10.1007/s13399-021-01657-w

Raza, M., Abu-Jdayil, B., Al-Marzouqi, A.H., and Inayat, A. (2022). Kinetic and thermodynamic analyses of date palm surface fibers pyrolysis using Coats-Redfern method. Renewable Energy, 163, 67-77. https://doi.org/10.1016/j.renene.2021.10.065 DOI: https://doi.org/10.1016/j.renene.2021.10.065

Rojas, A. F., and Flórez, C. (2019). Valorización de residuos de frutas para combustión y pirólisis. Revista Politécnica, 15(28), 42-53. https://doi.org/10.33571/rpolitec.v15n28a4 DOI: https://doi.org/10.33571/rpolitec.v15n28a4

Rony, A. H., Koug, L., Lu, W., Dejam, M., Adidharma, H., Gasem, K. A. M., Zheng, Y., Norton, U., and Fan, M. (2019). Kinetics, thermodynamics, and physical characterization of corn stover (Zea mays) for solar biomass pyrolysis potential analysis. Bioresource Technology, 284, 466-473. https://doi.org/10.1016/j.biortech.2019.03.049 DOI: https://doi.org/10.1016/j.biortech.2019.03.049

Santos, V. O., Queiroz, L. S., Araujo, R. O., Ribeiro, F. C. P., Guimaraes, M. N., Costa, C. E. F., Chaar, J. S., and Souza, L. K. C. (2020). Pyrolysis of acai seed biomass Kinetics and thermodynamic parameters using thermogravimetric analysis. Bioresource Technology Reports, 12, 100553. https://doi.org/10.1016/j.biteb.2020.100553 DOI: https://doi.org/10.1016/j.biteb.2020.100553

Singh, R. K., Patil, T., Pandey, D., and Sawarkar, A. N. (2020a). Pyrolysis of banana leaves biomass: Physico-chemical characterization, thermal decomposition behavior, kinetic and thermodynamic analyses. Bioresource Technology, 310, 123464. https://doi.org/10.1016/j.biortech.2020.123464 DOI: https://doi.org/10.1016/j.biortech.2020.123464

Singh, R. K., Patil, T., and Sawarkar, A. N. (2020b). Pyrolysis of garlic husk biomass: Physico-chemical characterization, thermodynamic and kinetic analyses. Bioresource Technology Reports, 12, 100558. https://doi.org/10.1016/j.biteb.2020.100558 DOI: https://doi.org/10.1016/j.biteb.2020.100558

Singh, R. K., Patil, T., Pandey, D., and Sawarkar, A. N. (2021). Pyrolysis of mustard oil residue: A kinetic and thermodynamic study. Bioresource Technology, 339, 125631. https://doi.org/10.1016/j.biortech.2021.125631 DOI: https://doi.org/10.1016/j.biortech.2021.125631

Vejar, A. G., Tolosa, B., Parra, J. W., and Rodríguez-Ordoñez, D. R. (2016). Uso de la cáscara de mamón (Melicoccus bijugatus) para el teñido de telas. Avances en Química, 11(3), 123-128. https://www.redalyc.org/articulo.oa?id=93349879004

Vyazovkin, S., Burnham, A. K., Criado, J. M., Pérez-Marqueda, L. A., Popescu, C., and Sbirrazzuoli, N. (2011). ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochemical Acta, 520, 1-19. https://doi.org/10.1016/j.tca.2011.03.034 DOI: https://doi.org/10.1016/j.tca.2011.03.034

Wang, C., Wang, X., Jiang, X., Li, F., Lei, Y., and Lin, Q. (2019). The thermal behavior and kinetics of co-combustion between sewage sludge and wheat straw. Fuel Processing Technology, 189, 1-14. https://doi.org/10.1016/j.fuproc.2019.02.024 DOI: https://doi.org/10.1016/j.fuproc.2019.02.024

Yang, H., Ji, G., Clough, P.T., Xu, X., and Zhao, M. (2019). Kinetics of catalytic biomass pyrolysis using Ni-based functional materials. Fuel Processing Technology, 195, 106145. https://doi.org/10.1016/j.fuproc.2019.106145 DOI: https://doi.org/10.1016/j.fuproc.2019.106145

Yuan, X., He, T., Cao, H., and Yuan, Q. (2017). Cattle manure pyrolysis process: kinetic and thermodynamic analysis with isoconversional methods. Renewable Energy, 107, 489-496. https://doi.org/10.1016/j.renene.2017.02.026 DOI: https://doi.org/10.1016/j.renene.2017.02.026

How to Cite

APA

Rojas-González, A. F. and Velasco-Sarria, F. J. (2024). Thermal Degradation Analysis of Mamoncillo (Melicoccus bijugatus) Waste: Thermal Behaviors, Kinetics, and Thermodynamics. Ingeniería e Investigación, 44(1), e103068. https://doi.org/10.15446/ing.investig.103068

ACM

[1]
Rojas-González, A.F. and Velasco-Sarria, F.J. 2024. Thermal Degradation Analysis of Mamoncillo (Melicoccus bijugatus) Waste: Thermal Behaviors, Kinetics, and Thermodynamics. Ingeniería e Investigación. 44, 1 (Jan. 2024), e103068. DOI:https://doi.org/10.15446/ing.investig.103068.

ACS

(1)
Rojas-González, A. F.; Velasco-Sarria, F. J. Thermal Degradation Analysis of Mamoncillo (Melicoccus bijugatus) Waste: Thermal Behaviors, Kinetics, and Thermodynamics. Ing. Inv. 2024, 44, e103068.

ABNT

ROJAS-GONZÁLEZ, A. F.; VELASCO-SARRIA, F. J. Thermal Degradation Analysis of Mamoncillo (Melicoccus bijugatus) Waste: Thermal Behaviors, Kinetics, and Thermodynamics. Ingeniería e Investigación, [S. l.], v. 44, n. 1, p. e103068, 2024. DOI: 10.15446/ing.investig.103068. Disponível em: https://revistas.unal.edu.co/index.php/ingeinv/article/view/103068. Acesso em: 25 mar. 2025.

Chicago

Rojas-González, Andrés Felipe, and Francisco Javier Velasco-Sarria. 2024. “Thermal Degradation Analysis of Mamoncillo (Melicoccus bijugatus) Waste: Thermal Behaviors, Kinetics, and Thermodynamics”. Ingeniería E Investigación 44 (1):e103068. https://doi.org/10.15446/ing.investig.103068.

Harvard

Rojas-González, A. F. and Velasco-Sarria, F. J. (2024) “Thermal Degradation Analysis of Mamoncillo (Melicoccus bijugatus) Waste: Thermal Behaviors, Kinetics, and Thermodynamics”, Ingeniería e Investigación, 44(1), p. e103068. doi: 10.15446/ing.investig.103068.

IEEE

[1]
A. F. Rojas-González and F. J. Velasco-Sarria, “Thermal Degradation Analysis of Mamoncillo (Melicoccus bijugatus) Waste: Thermal Behaviors, Kinetics, and Thermodynamics”, Ing. Inv., vol. 44, no. 1, p. e103068, Jan. 2024.

MLA

Rojas-González, A. F., and F. J. Velasco-Sarria. “Thermal Degradation Analysis of Mamoncillo (Melicoccus bijugatus) Waste: Thermal Behaviors, Kinetics, and Thermodynamics”. Ingeniería e Investigación, vol. 44, no. 1, Jan. 2024, p. e103068, doi:10.15446/ing.investig.103068.

Turabian

Rojas-González, Andrés Felipe, and Francisco Javier Velasco-Sarria. “Thermal Degradation Analysis of Mamoncillo (Melicoccus bijugatus) Waste: Thermal Behaviors, Kinetics, and Thermodynamics”. Ingeniería e Investigación 44, no. 1 (January 2, 2024): e103068. Accessed March 25, 2025. https://revistas.unal.edu.co/index.php/ingeinv/article/view/103068.

Vancouver

1.
Rojas-González AF, Velasco-Sarria FJ. Thermal Degradation Analysis of Mamoncillo (Melicoccus bijugatus) Waste: Thermal Behaviors, Kinetics, and Thermodynamics. Ing. Inv. [Internet]. 2024 Jan. 2 [cited 2025 Mar. 25];44(1):e103068. Available from: https://revistas.unal.edu.co/index.php/ingeinv/article/view/103068

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

  • Captures
  • Mendeley - Readers: 2
  • Mendeley - Readers: 1

Article abstract page views

373

Downloads