
Published
Experimental Study of Innovative FRC Dome-Shaped Structures with Industrial, Recycled, and Alternative Reinforcing under Compressive Load
Estudio experimental de estructuras innovadoras en forma de cúpula de FRC con refuerzo industrial, reciclado y alternativo bajo cargas de compresión
DOI:
https://doi.org/10.15446/ing.investig.105266Keywords:
Fiber-reinforced concrete, Thick-walled shell, Dome-shaped structures, Experimental research, Mechanical behavior, Alternative and recycled materials (en)concreto reforzado con fibra, cascarón de paredes gruesas, estructuras en forma de cúpula, investigación experimental, comportamiento mecánico, materiales alternativos y reciclados (es)
Downloads
Arc concrete structures are aesthetic and suitable for buildings with large spans. Within the framework of this research, fiber-reinforced concrete (FRC) dome-shaped structures were studied in a lab, analyzing mechanical performance via strength, deformation, and failure mode. The studied FRC was elaborated with industrial, recycled, and alternative fibers. The mold used for producing the dome specimens was made up of two parts in order to favor extraction. This study considered 21 dome samples reinforced with fibers and one control, with replication for those with atypical behavior. The results show that the load-displacement behavior of dome-shaped elements increases with the incorporation of fibers, which depends on the fiber dose and the material. Moreover, the efficiency analysis proved that specimens with low fiber content (20 and 2 kg/m3) have the best strength-reinforcement relation. The recycled and alternative fibers exhibit good mechanical performance and ductility. The main contribution of this research is a study of the scope and limitations of different types of FRC as the only reinforcement in arched structures.
Las estructuras de concreto en arco son estéticas y adecuadas para edificios de grandes claros. En el marco de esta investigación se estudiaron las estructuras en forma de domo de concreto reforzado con fibra (FRC) en un laboratorio, analizando el rendimiento mecánico a través de la resistencia, la deformación y el modo de falla. Los FRC estudiados fueron elaborados con fibras industriales, recicladas y alternativas. El molde utilizado para elaborar los especímenes de cúpula estuvo compuesto de dos secciones para favorecer la extracción. Este estudio consideró 21 muestras de domos reforzados con fibras y un control, con replicación sobre aquellas que presentaron un comportamiento atípico. Los resultados muestran que el comportamiento carga-desplazamiento de los elementos en forma de cúpula aumenta con la incorporación de fibras, lo cual depende de la dosis de fibra y el material. Además, el análisis de eficiencia demostró que las muestras con bajo contenido de fibra (20 y 2 kg/m3) tienen la mejor relación resistencia-refuerzo. Las fibras recicladas y alternativas presentan buen desempeño mecánico y ductilidad. La principal contribución de esta investigación es el estudio de los alcances y limitaciones de diferentes tipos de FRC como único refuerzo en estructuras arqueadas.
References
Abbood, I. S., Odda, S. A., Hasan, K. F., and Jasim, M. A. (2020). Properties evaluation of fiber reinforced polymers and their constituent materials used in structures – A review. Materials Today: Proceedings, 43(2), 1003-1008. DOI: https://doi.org/10.1016/j.matpr.2020.07.636
Abhishek, J., and Arabinda, S. (2020). Experimental study on the properties of steel fibre reinforced concrete. Indian Journal of Engineering, 17(47), 151-162.
Adel, M., Matsumoto, K., and Nagai, K. (2021). Crack-bridging degradation and evolution in SFRC structural beams under variable amplitude flexural cyclic loading. Computers and Structures, 272, 114176. https://doi.org/10.1016/j.compstruct.2021.114176 DOI: https://doi.org/10.1016/j.compstruct.2021.114176
ASTM International (2017). ASTM C192: Standard practice for making and curing concrete test specimens in the laborato-ry. ASTM International.
ASTM International (2018). ASTM C39/C39M: Standard test method for compressive strength of cylindrical concrete specimens. ASTM International.
ASTM International (2018). ASTM C78/C78M Standard test method for flexural strength of concrete (using simple beam with third-point loading). ASTM International.
ASTM International (2018). ASTM C995-01: Standard test meth-od for time of flow of fiber-reinforced concrete through in-verted slump cone. ASTM International.
Berger, J., Gericke, O., Feix, J., and Sobek, W. (2020). Actively bent concrete shells. Structural Concrete, 1(11), 2282-2292. https://doi.org/10.1002/suco.201900505 DOI: https://doi.org/10.1002/suco.201900505
Berger, J., Gericke, O., Feix, J., and Sobek, W. (2020). Experimental investigations on actively bent concrete shells. Structural Concrete, 21(6), 2268-2281. https://doi.org/10.1002/suco.202000045 DOI: https://doi.org/10.1002/suco.202000045
Bhosale, A. B., and Prakash, S. S. (2020). Crack propagation analysis of synthetic vs. steel vs. hybrid fibre‑reinforced concrete beams using digital image correlation technique. Inter-national Journal of Concrete Structures and Materials, 14, 57. https://doi.org/10.1186/s40069-020-00427-8 DOI: https://doi.org/10.1186/s40069-020-00427-8
Breitenbücher, R., Meschke, G., Song, F., and Zhan, Y. (2014). Experimental, analytical and numerical analysis of the pullout behaviour of steel fibres considering different fibre types, inclinations and concrete strengths. Structural Concrete, 15(2), 126-135. https://doi.org/10.1002/suco.201300058 DOI: https://doi.org/10.1002/suco.201300058
Cadoni, E., Meda, A., and Plizzari, G.A. (2009). Tensile behaviour of FRC under high strain-rate. Materials and Structures, 42, 1283-1294. https://doi.org/10.1617/s11527-009-9527-6 DOI: https://doi.org/10.1617/s11527-009-9527-6
Caycedo, M. S., Siqueira, G. H., Vieira, L. C. M., and Vizotto, I. (2019). Evaluation of structural capacity of triangular and hexagonal reinforced concrete free-form shells. Engineering Structures, 188, 519-537. https://doi.org/10.1016/j.engstruct.2019.03.044 DOI: https://doi.org/10.1016/j.engstruct.2019.03.044
Chiaia, B., Fantilli, A. P., and Vallini, P. (2007). Evaluation of minimum reinforcement ratio in FRC members and application to tunnel linings. Materials and Structures, 40, 593-604. https://doi.org/10.1617/s11527-006-9166-0 DOI: https://doi.org/10.1617/s11527-006-9166-0
Chiaia, B., Fantilli, A. P., and Vallini P. (2009). Evaluation of crack width in FRC structures and application to tunnel linings. Materials and Structures, 42, 339. https://doi.org/10.1617/s11527-008-9385-7 DOI: https://doi.org/10.1617/s11527-008-9385-7
Chun, N. H. (2005). Ultimate strength of large scale reinforced concrete thin shell structures. Thin Walled Structures, 43, 1418-144. DOI: https://doi.org/10.1016/j.tws.2005.04.004
Cocchetti, G., Colasante, G., and Rizzi, E. (2011). On the analysis of minimum thickness in circular masonry arches. Applied Mechanics Reviews, 64(5), 050802. https://doi.org/10.1115/1.4007417 DOI: https://doi.org/10.1115/1.4007417
Daud, R. A., Daud, S. A., and Al-Azzawi, A. A. (2020). Tension stiffening evaluation of steel fibre concrete beams with smooth and deformed reinforcement. Journal of King Saud University, 33(3), 147-152. http://doi.org/10.1016/j.jksues.2020.03.002 DOI: https://doi.org/10.1016/j.jksues.2020.03.002
Emon, M. A. B., Manzur, T., and Sharif, M. S. (2017). Suitability of locally manufactured galvanized iron (GI) wire fiber as reinforcing fiber in brick chip concrete. Case Studies in Construction Materials, 7, 217-227. https://doi.org/10.1016/j.cscm.2017.08.003 DOI: https://doi.org/10.1016/j.cscm.2017.08.003
Gere, M. J. and Barry, J. G. (2009). Mechanics of materials (7th ed.). Cengage Learing.
Gomes, C., Parente, M., Azenha, M., and Lino, J.C. (2018). An integrated framework for multi-criteria optimization of thin concrete shells at early design stages. Advanced Engineering Informatics, 38, 330–342. https://doi.org/10.1016/j.aei.2018.08.003 DOI: https://doi.org/10.1016/j.aei.2018.08.003
Małek, M., Jackowski, M., Łasica, W., and Kadela, M. (2020). Characteristics of recycled polypropylene fibers as an addition to concrete fabrication based on Portland cement. Materials, 13(8), 1827. https://doi.org/10.3390/ma13081827 DOI: https://doi.org/10.3390/ma13081827
Meza, A., Ortiz, J. A., Peralta, L., Pacheco, J., Soto, J. J., Rangel, S. H., Padilla, R., and Alvarado, J. (2014). Experimental mechanical characterization of steel and polypropylene fiber reinforced concrete. Revista Técnica Facultad de Ingeniería Universidad de Zulia, 37(2), 106–115.
Meza, A., Pujadas, P., Meza, L. M., Pardo-Bosch, F., and López-Carreño, R. D. (2021). Mechanical optimization of concrete with recycled PET fibres based on a statistical-experimental study. Materials, 14(2), 240. https://doi.org/10.3390/ma14020240 DOI: https://doi.org/10.3390/ma14020240
Meza, A. and Shaikh, F. U. A. (2020). Anisotropy and bond behaviour of recycled polyethylene terephthalate (PET) fibre as concrete reinforcement. Construction and Building Mate-rials, 265, 120331. https://doi.org/10.1016/j.conbuildmat.2020.120331 DOI: https://doi.org/10.1016/j.conbuildmat.2020.120331
Meza, A., and Siddique, S. (2019). Effect of aspect ratio and dosage on the flexural response of FRC with recycled fiber. Construction and Building Materials, 213, 286-291. https://doi.org/10.1016/j.conbuildmat.2019.04.081 DOI: https://doi.org/10.1016/j.conbuildmat.2019.04.081
Ming, Y., Chen, P., Li, L., Gan, G., and Pan, G. (2021). A comprehensive review on the utilization of recycled waste fibers in cement-based composites. Materials, 14(13), 3643. https://doi.org/doi.org/10.3390/ma14133643 DOI: https://doi.org/10.3390/ma14133643
Nehdi, M. L., Abbas, S., and Soliman, A. M. (2015). Exploratory study of ultra-high performance fiber reinforced concrete tunnel lining segments with varying steel fiber lengths and dosages. Engineering Structures, 101, 733-742. https://doi.org/10.1016/j.engstruct.2015.07.012 DOI: https://doi.org/10.1016/j.engstruct.2015.07.012
NMX-C-128-ONNCCE (2013). Determination of modulus of elasticity and Poisson ratio. https://www.dof.gob.mx/nota_detalle.php?codigo=5577342&fecha=31/10/2019#gsc.tab=0
NMX-C-414-ONNCCE (2017). Construction industry-hydraulic cementants-specifications and test methods. https://www.onncce.org.mx/es/venta-normas/fichas-tecnicas?view=item&id=1879
Pereira, M. (2022, September 10). Cáscaras de hormigón: principios de diseño y ejemplos construidos. Arch Daily. https://www.archdaily.mx/mx/895405/cascaras-de-hormigon-principios-de-diseno-y-ejemplos-construidos
Poveda, E., Yu, R. C., Tarifa, M., Ruiz, G., Cunha, V. M. C. F., and Barros, J. A. O. (2020). Rate effect in inclined fibre pull-out for smooth and hooked-end fibres: A numerical study. International Journal of Fracture, 223, 135-149. https://doi.org/10.1007/s10704-019-00404-7 DOI: https://doi.org/10.1007/s10704-019-00404-7
Qi, J., Wu, Z., Zhongguo, J.M., and Wang, J. (2018). Pullout behavior of straight and hooked-end steel fibers in UHPC matrix with various embedded angles. Construction and Building Materials, 191, 764-774. https://doi.org/10.1016/j.conbuildmat.2018.10.067 DOI: https://doi.org/10.1016/j.conbuildmat.2018.10.067
Sharei, E., Scholzen, A., Hegger, J., and Chudoba, R. (2017). Structural behavior of a lightweight, textile-reinforced con-crete barrel vault shell. Composite Structures, 171, 505-514. https://doi.org/10.1016/j.compstruct.2017.03.069 DOI: https://doi.org/10.1016/j.compstruct.2017.03.069
Signorini, C., and Volpini, V.D. (2021). Mechanical performance of fiber reinforced cement composites including fully-recycled plastic fibers. Fibers, 9(3), 16. https://doi.org/10.3390/fib9030016 DOI: https://doi.org/10.3390/fib9030016
Stähli, P., Custer, R., and Van-Mier, J. G. M. (2008). On flow properties, fibre distribution, fibre orientation and flexural behavior of FRC. Materials and Structures, 41, 189-196. https://doi.org/10.1617/s11527-007-9229-x DOI: https://doi.org/10.1617/s11527-007-9229-x
Tamayo, J. L. P., Morsch, I. B., and Awruch, A. M. (2013). Static and dynamic analysis of reinforced concrete shells. Latin American Journal of Solids and Structures, 10, 1109-1134. DOI: https://doi.org/10.1590/S1679-78252013000600003
Tomás, A., and Martí, P. (2010). Shape and size optimization of concrete shells. Engineering Structures, 32(6), 1650-1658. https://doi.org/10.1016/j.engstruct.2010.02.013 DOI: https://doi.org/10.1016/j.engstruct.2010.02.013
Verwimp, E., Tysmans, T., Mollaert, M., and Wozniak, M. (2016). Prediction of the buckling behavior of thin cement composite shells: Parameter study. Thin Walled Structures, 108, 20-29. https://doi.org/10.1016/j.tws.2016.07.011 DOI: https://doi.org/10.1016/j.tws.2016.07.011
Wenfeng, D., Qi, L., Zhiyong, Z., and Nasim, U. (2019). Experimental investigation of innovative composite folded thin cylindrical concrete shell structures. Thin Walled Structures, 137, 224-230. https://doi.org/10.1016/j.tws.2019.01.014 DOI: https://doi.org/10.1016/j.tws.2019.01.014
Zingoni, A., Mudenda, K., French, V., and Mokhothu, B. (2013). Buckling strength of thin-shell concrete arch dams. Thin Walled Structures, 64, 94-102. https://doi.org/10.1016/j.tws.2012.12.001 DOI: https://doi.org/10.1016/j.tws.2012.12.001
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Alejandro Meza‐de Luna, Rogelio Salinas Gutierrez, Vítor M. C. F. Cunha, Jianan Qi. (2024). Mechanical characterization of SFRC with annealed and galvanized steel fibers by different test typologies. Structural Concrete, https://doi.org/10.1002/suco.202300051.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2024 Alejandro Meza-de Luna, Elia Mercedes Alonso-Guzman, Adrián Bonilla-Petriciolet

This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors or holders of the copyright for each article hereby confer exclusive, limited and free authorization on the Universidad Nacional de Colombia's journal Ingeniería e Investigación concerning the aforementioned article which, once it has been evaluated and approved, will be submitted for publication, in line with the following items:
1. The version which has been corrected according to the evaluators' suggestions will be remitted and it will be made clear whether the aforementioned article is an unedited document regarding which the rights to be authorized are held and total responsibility will be assumed by the authors for the content of the work being submitted to Ingeniería e Investigación, the Universidad Nacional de Colombia and third-parties;
2. The authorization conferred on the journal will come into force from the date on which it is included in the respective volume and issue of Ingeniería e Investigación in the Open Journal Systems and on the journal's main page (https://revistas.unal.edu.co/index.php/ingeinv), as well as in different databases and indices in which the publication is indexed;
3. The authors authorize the Universidad Nacional de Colombia's journal Ingeniería e Investigación to publish the document in whatever required format (printed, digital, electronic or whatsoever known or yet to be discovered form) and authorize Ingeniería e Investigación to include the work in any indices and/or search engines deemed necessary for promoting its diffusion;
4. The authors accept that such authorization is given free of charge and they, therefore, waive any right to receive remuneration from the publication, distribution, public communication and any use whatsoever referred to in the terms of this authorization.