Published

2024-02-25

Influence of Expanded Clay Aggregate on the Engineering Properties of Lightweight Concrete

Influencia del agregado de arcilla expandida en las propiedades de ingeniería del hormigón ligero

DOI:

https://doi.org/10.15446/ing.investig.106174

Keywords:

expanded clay aggregate, lightweight concrete, compressive strength, splitting tensile strength, superplasticizer (en)
agregado de arcilla expandida, hormigón ligero, resistencia a la compresión, resistencia a la tracción por división (es)

Downloads

Authors

  • As'at Pujianto Universitas Muhammadiyah Yogyakarta
  • Hakas Prayuda Universitas Muhammadiyah Yogyakarta https://orcid.org/0000-0002-7202-1201
  • Farrel Asani Universitas Muhammadiyah Yogyakarta
  • Muji Basuki Santoso Universitas Muhammadiyah Yogyakarta
  • Fahriza Wirawan Universitas Muhammadiyah Yogyakarta

In seismically active locations, civil infrastructures, such as buildings, bridges, and dams, are frequently subjected to earthquakes. Using lightweight construction materials is one method for enhancing the seismic resistance of infrastructure. This study examined the engineering properties of lightweight concrete manufactured using expanded clay aggregate, with the purpose of developing sustainable and environmentally friendly building materials. Laboratory tests focused on the effects of the aggregate shape and the supplementary superplasticizer, as well as on the influence of the concrete age. Experimental studies were conducted to measure fresh (slump) and hardened properties (compressive strength, splitting tensile strength, and density). The expanded clay aggregate was produced by burning at a temperature of 800 to 1 200 °C. Cubic, oval, and round aggregate shapes with a maximum size of 20 mm were evaluated. This study also examined the effect of superplasticizers on the engineering properties of lightweight concrete. The composition of the superplasticizer varied from 0 to 2,5%. According to the experimental results, the engineering properties of lightweight concrete made with oval aggregates are advantageous in comparison with those using cubic and round shapes. It is also demonstrated that optimal amounts of superplasticizer are necessary to develop materials with adequate properties. It can be concluded that expanded clay aggregate can be used as an alternative material to produce lightweight concrete.

En lugares sísmicamente activos, las infraestructuras civiles, como edificios, puentes y represas, están frecuentemente sujetas a terremotos. El uso de materiales de construcción livianos es un método para mejorar la resistencia sísmica de la infraestructura. Este estudio examinó las propiedades de ingeniería del hormigón ligero fabricado con agregado de arcilla expandida, con el objetivo de desarrollar materiales de construcción sostenibles y respetuosos con el medio ambiente. Las pruebas de laboratorio se enfocaron en los efectos de la forma del agregado y el superplastificante suplementario, así como en la influencia de la edad del concreto. Se realizaron estudios experimentales para medir las propiedades en estado fresco (asentamiento) y endurecido (resistencia a la compresión, resistencia a la tracción por división y densidad). El agregado de arcilla expandida se produjo mediante incineración a una temperatura de 800 a 1 200 °C. Se evaluaron agregados de forma cúbica, ovalada y redonda, con un tamaño máximo de 20 mm. Este estudio también examinó el efecto de los superplastificantes en las propiedades de ingeniería del hormigón ligero. La composición del superplastificante varió de 0 a 2,5 %. De acuerdo con los resultados experimentales, las propiedades de ingeniería del hormigón ligero hecho con formas ovaladas son ventajosas en comparación con los que utilizan formas cúbicas y redondas. También se demuestra que se necesitan cantidades óptimas de superplastificante para desarrollar materiales con propiedades adecuadas. Se puede concluir que el agregado de arcilla expandida se puede utilizar como material alternativo para producir hormigón liviano.

References

ACI Committee (2014). ACI PRC-213-14: Guide for structural lightweight aggregate concrete. American Concrete Institute.

Adhikary, S. K., Rudzionis, Z., Tuckute, S., and Ashish, D. K. (2021). Effects of carbon nanotubes on expanded glass and silica aerogel based lightweight concrete. Scientific Report, 11, 1-11. https://doi.org/10.1038/s41598-021-81665-y DOI: https://doi.org/10.1038/s41598-021-81665-y

Adhikary, S. K., Rudzionis, Z., and Vaiciukyniene, D. (2020). Development of flowable ultra-lightweight concrete using expanded glass aggregate, silica aerogel, and prefabricated plastic bubbles. Journal of Building Engineering, 31, 1-10. https://doi.org/10.1016/j.jobe.2020.101399 DOI: https://doi.org/10.1016/j.jobe.2020.101399

Ahmad, M. R., and Chen, B. (2019). Experimental research on the performance of lightweight concrete containing foam and expanded clay aggregate. Composites Part B: Engineering, 171, 44-60. https://doi.org/10.1016/j.compositesb.2019.04.025 DOI: https://doi.org/10.1016/j.compositesb.2019.04.025

Ahmad, M. R., Chen, B., and Shah, S. F. A. (2019). Investigate the influence of expanded clay aggregate and silica fume on the properties of lightweight concrete. Construction and Building Materials, 220, 253-266. https://doi.org/10.1016/j.conbuildmat.2019.05.171 DOI: https://doi.org/10.1016/j.conbuildmat.2019.05.171

Akcaozoglu, S., Atis, C. D., and Akcaozoglu, K. (2010). In investigation on the use of shredded waste PET bottles as aggregate in lightweight concrete. Waste Management, 30(2), 285-290. https://doi.org/10.1016/j.wasman.2009.09.033 DOI: https://doi.org/10.1016/j.wasman.2009.09.033

Alqahtani, F. K., Ghataora, G., Khan, M. I., and Dirar, S. (2017). Novel lightweight concrete containing manufactured plastic aggregate. Construction and Building Materials, 148, 386-397. https://doi.org/10.1016/j.conbuildmat.2017.05.011 DOI: https://doi.org/10.1016/j.conbuildmat.2017.05.011

Arunchalam, KP., Avudaiappan, A., Flores, E. I. S., and Parra, P. F. (2023). Experimental study on the mechanical properties and microstructures of cenosphere concrete. Materials, 16(9), 1-19. https://doi.org/10.3390/ma16093518 DOI: https://doi.org/10.3390/ma16093518

Aslam, M., Shafigh, P., and Jumaat, M. Z. (2016). Oil palm by products as lightweight aggregate in concrete mixture: a review. Journal of Cleaner Production, 126, 56-73. https://doi.org/10.1016/j.jclepro.2016.03.100 DOI: https://doi.org/10.1016/j.jclepro.2016.03.100

ASTM International (2015). ASTM C150/C150M-16: Standard specification for Portland cement. ASTM International. https://doi.org/10.1520/C0150 DOI: https://doi.org/10.1520/C0150

ASTM International (2017a). ASTM C330/C330M-17a: Standard specification for lightweight aggregates for structural concrete. ASTM International. https://doi.org/10.1520/C0330_C0330M-17A DOI: https://doi.org/10.1520/C0330_C0330M-17A

ASTM International (2017b). ASTM C496/C496M-17: Standard test method for splitting tensile strength of cylindrical concrete specimens. ASTM International. https://doi.org/10.1520/C0496_C0496M-17 DOI: https://doi.org/10.1520/C0496_C0496M-17

ASTM International (2019a). ASTM C136/C136M-19: Standard test method for sieve analysis of fine and coarse aggregates. ASTM International. https://doi.org/10.1520/C0136_C0136M-19 DOI: https://doi.org/10.1520/C0136_C0136M-19

ASTM International (2019b). ASTM C494/C494M-19e1: Standard specification for chemical admixtures for concrete. ASTM International. https://doi.org/10.1520/C0494_C0494M-19E01 DOI: https://doi.org/10.1520/C0494_C0494M-19E01

ASTM International (2020). ASTM C143/C143M-20: Standard test method for slump of hydraulic cement concrete. ASTM International. https://doi.org/10.1520/C0143_C0143M-20 DOI: https://doi.org/10.1520/C0143_C0143M-20

ASTM International (2021). ASTM C39/C39M-21: Standard test method for compressive strength of cylindrical concrete specimens. ASTM International. https://doi.org/10.1520/C0039_C0039M-21 DOI: https://doi.org/10.1520/C0039_C0039M-21

ASTM International (2021). ASTM C642-21: Standard test method for density absorption and voids in hardened concrete. ASTM International. https://doi.org/10.1520/C0642-21 DOI: https://doi.org/10.1520/C0642-21

Augonis, A., Ivanauskas, E., Bocullo, V., Kantautas, A., and Vaiciukyniene. (2022). The influence of expanded glass and expanded clay on lightweight aggregate shotcrete properties. Materials, 15(5), 1-13. https://doi.org/10.3390/ma15051674 DOI: https://doi.org/10.3390/ma15051674

Aungatichart, O., Nawaukkaratharnant, N., and Wasanapiarnpong, T. (2022). The potential use of cold-bonded lightweight aggregate derived from various types of biomass fly ash for preparation of lightweight concrete. Materials Letters, 327, 1-12. https://doi.org/10.1016/j.matlet.2022.133019 DOI: https://doi.org/10.1016/j.matlet.2022.133019

Bogas, J. A., Brito, J. D., and Cabaco, J. (2014). Long term behaviour of concrete produced with recycled lightweight expanded clay aggregate concrete. Construction and Building Materials, 65, 470-479. http://dx.doi.org/10.1016/j.conbuildmat.2014.05.003 DOI: https://doi.org/10.1016/j.conbuildmat.2014.05.003

Bogas J. A., Brito, J. D., and Figueiredo, J. M. (2015). Mechanical characterization of concrete produced with recycled lightweight expanded clay aggregate concrete. Journal of Cleaner Production, 89, 187-195. http://dx.doi.org/10.1016/j.jclepro.2014.11.015 DOI: https://doi.org/10.1016/j.jclepro.2014.11.015

Brooks, A. L., Fang, Y., Shen, Z., Wang, J., and Shou, H. (2021). Enabling high-strength cement-based materials for thermal energy storage via fly-ash cenosphere encapsulated phase change materials. Cement and Concrete Composites, 120, 1-15. https://doi.org/10.1016/j.cemconcomp.2021.104033 DOI: https://doi.org/10.1016/j.cemconcomp.2021.104033

Campione, G., Miraglia, N., and Papia, M. (2001). Mechanical properties of steel fibre reinforced lightweight concrete with pumice stone or expanded clay aggregates. Materials and Structures, 34, 210-210. https://doi.org/10.1007/BF02480589 DOI: https://doi.org/10.1007/BF02480589

Castillo, E. D. R., Almesfer, N., Saggi, O., and Ingham, J. M. (2020). Lightweight concrete with artificial aggregate manufactured from plastic waste. Construction and Building Materials, 265, 1-10. https://doi.org/10.1016/j.conbuildmat.2020.120199 DOI: https://doi.org/10.1016/j.conbuildmat.2020.120199

Chen, W., and Huang, Z. (2019). Experimental study of the mechanical properties and microstructures of lightweight toughness cement-based composites. Materials, 12(23), 1-19. https://doi.org/10.3390/ma12233891 DOI: https://doi.org/10.3390/ma12233891

Dabbaghi, F., Dehestani, M., and Yousefpour, H. (2021). Residual mechanical properties of concrete containing lightweight expanded clay aggregate (LECA) after exposure to elevated temperatures. Structural Concrete, 23(4), 2162-2184. https://doi.org/10.1002/suco.202000821 DOI: https://doi.org/10.1002/suco.202000821

Du, H., Du, S., and Liu, X. (2015). Effect of nano-silica on the mechanical and transport properties of lightweight concrete. Construction and Building Materials, 82, 114-122. https://doi.org/10.1016/j.conbuildmat.2015.02.026 DOI: https://doi.org/10.1016/j.conbuildmat.2015.02.026

Elaty, M. A. A. A. (2014). Compressive strength prediction of Portland cement concrete with age using a new model. Housing and Building National Research Center Journal, 10(2), 145-155. https://doi.org/10.1016/j.hbrcj.2013.09.005 DOI: https://doi.org/10.1016/j.hbrcj.2013.09.005

Elrahman, M. A., Chung, S. Y., Sikora, P., Rucinska, T., and Stephan, D. (2019). Influence of nanosilica on mechanical properties, sorptivity, and microstructure of lightweight concrete. Materials, 12(19), 1-16. https://doi.org/10.3390/ma12193078 DOI: https://doi.org/10.3390/ma12193078

Faraj, R. H., Mohammed, A. A., Omer, K. H., and Ahmed, H. U. (2022a). Soft computing techniques to predict the compressive strength of green self-compacting concrete incorporating recycled plastic aggregates and industrial waste ashes. Clean Technologies and Environmental Policy, 24, 2253-2281. https://doi.org/10.1007/s10098-022-02318-w DOI: https://doi.org/10.1007/s10098-022-02318-w

Faraj, R. H., Mohammed, A. A., and Omer, K. M. (2022b). Modeling the compressive strength of eco-friendly self-compacting concrete incorporating ground granulated blast furnace slag using soft computing techniques. Environmental Science and Pollution Research, 29, 71338-71357. https://doi.org/10.1007/s11356-022-20889-5 DOI: https://doi.org/10.1007/s11356-022-20889-5

Faraj, R. H., Mohammed, A. A., Mohammed, A., Omer, K. M., and Ahmed, H. U. (2022c). Systematic multiscale models to predict the compressive strength of self-compacting concretes modified with nanosilica at different curing ages. Engineering with Computers, 38, 2365-2388. https://doi.org/10.1007/s00366-021-01385-9 DOI: https://doi.org/10.1007/s00366-021-01385-9

Gayathiri, K., and Praveenkumar, S. (2022). Influence of nano silica on fresh and hardened properties of cement-based materials – A review. Silicon, 14, 8327-8357. https://doi.org/10.1007/s12633-021-01598-z DOI: https://doi.org/10.1007/s12633-021-01598-z

Gu, C., Yao, J., Yang, Y., Huang, J., Ma, L., Ni, T., and Liu, J. (2021). The relationship of compressive strength and chemically bound water content of high-volume fly ash-cement mortar. Materials, 14(21), 1-16. https://doi.org/10.3390/ma14216273 DOI: https://doi.org/10.3390/ma14216273

Hanif, A., Lu, Z., and Li, Z. (2017). Utilization of fly ash cenosphere as lightweight filler in cement-based composites – A review. Construction and Building Materials, 144, 373-384. https://doi.org/10.1016/j.conbuildmat.2017.03.188 DOI: https://doi.org/10.1016/j.conbuildmat.2017.03.188

Hassan, A. A. A., Ismail, M. K., and Mayo, J. (2015). Mechanical properties of self-consolidating concrete containing lightweight recycled aggregate in different mixture compositions. Journal of Building Engineering, 4, 113-126. https://doi.org/10.1016/j.jobe.2015.09.005 DOI: https://doi.org/10.1016/j.jobe.2015.09.005

Hossain, K. M. A. (2004). Properties of volcanic pumice based cement and lightweight concrete. Cement and Concrete Research, 34(2), 283-291. https://doi.org/10.1016/j.cemconres.2003.08.004 DOI: https://doi.org/10.1016/j.cemconres.2003.08.004

Hubertova, M., and Hela, R. (2013). Durability of lightweight expanded clay aggregate concrete. Procedia Engineering, 65, 2-6, https://doi.org/10.1016/j.proeng.2013.09.002 DOI: https://doi.org/10.1016/j.proeng.2013.09.002

Karthika, R. B., Vidyapriya, V., Sri, K. V. N., Beaula, K. M. G., Harini, R., and Sriram, M. (2021). Experimental study on lightweight concrete using pumice aggregate, Materials Today: Proceedings 43(2), 1060-1613. https://doi.org/10.1016/j.matpr.2020.09.762 DOI: https://doi.org/10.1016/j.matpr.2020.09.762

Kavinkumar, V., Priya, A. K., and Praneeth, R. (2023). Strength of light weight concrete containing fly ash cenosphere. Materials Today: Proceedings, 17, 1-6. https://doi.org/10.1016/j.matpr.2023.04.094 DOI: https://doi.org/10.1016/j.matpr.2023.04.094

Kulkarni, P., and Muthadhi, A. (2020). Improving thermal and mechanical property of lightweight concrete using N-Butyl stearate/expanded clay aggregate with alccofine1203. International Journal of Engineering Transactions A: Basics, 33(10), 1842-1851. https://doi.org/10.5829/ije.2020.33.10a.03 DOI: https://doi.org/10.5829/ije.2020.33.10a.03

Kurt, M., Gul, M. S., Gul, R., Aydin, A. C., and Kotan, T. (2016). The effect of pumice powder on the self-compactability of pumice aggregate lightweight concrete. Construction and Building Materials, 103, 36-46. https://doi.org/10.1016/j.conbuildmat.2015.11.043 DOI: https://doi.org/10.1016/j.conbuildmat.2015.11.043

Liu, B., Shi, J., Jiang. J., Wu, X., and He, Z. (2021). New perspectives on utilization of CO2 sequestration technologies in cement-based materials. Construction and Building Materials, 272, 1-17. https://doi.org/10.1016/j.conbuildmat.2020.121660 DOI: https://doi.org/10.1016/j.conbuildmat.2020.121660

Mannan, m. A., Alexander, J., Ganapathy, C., and Teo, D. C. L. (2006). Quality improvement of oil palm shell (OPS) as coarse aggregate in lightweight concrete. Building and Environment, 41(9), 1239-1242. https://doi.org/10.1016/j.buildenv.2005.05.018 DOI: https://doi.org/10.1016/j.buildenv.2005.05.018

Meyer, C. (2009). The greening of the concrete industry. Cement and Concrete Composites, 31, 601-605. https://doi.org/10.1016/j.cemconcomp.2008.12.010 DOI: https://doi.org/10.1016/j.cemconcomp.2008.12.010

Mohammed, T., Aguayo, F., Nodehi, M., and Ozbakkaloglu, T. (2022). Engineering properties of structural lightweight concrete containing expanded shale and clay with high volume class F and class C fly ash. Structural Concrete, 24(3), 4029-4046. https://doi.org/10.1002/suco.202200562 DOI: https://doi.org/10.1002/suco.202200562

Monika, F., Prayuda, H., Cahyati, M. D., Augustin, e. N., Rahman H. A., and Prasintasari, A. D. (2022). Engineering properties of concrete made with coal bottom ash as sustainable construction materials. Civil Engineering Journal, 8(1), 181-194. http://dx.doi.org/10.28991/CEJ-2022-08-01-014 DOI: https://doi.org/10.28991/CEJ-2022-08-01-014

Nahhab, A. H., and Ketab, A. K. (2020). Influence of content and maximum size of light expanded clay aggregate on the fresh, strength and durability properties of self-compacting lightweight concrete reinforced with micro steel fibres. Construction and Building Materials, 233, 1-14. https://doi.org/10.1016/j.conbuildmat.2019.117922 DOI: https://doi.org/10.1016/j.conbuildmat.2019.117922

Nawel, S., Mounir, L., and Hedi, H. (2017). Characterisation of lightweight concrete of Tunisian expanded clay: Mechanical and durability study. European Journal of Environmental and Civil Engineering, 21(6), 670-695. https://doi.org/10.1080/19648189.2016.1150893 DOI: https://doi.org/10.1080/19648189.2016.1150893

Nepomuceno, M. C. S., Oliveira, L. A. P., and Pereira, S. F. (2018). Mix design of structural lightweight self compacting concrete incorporating coarse lightweight expanded clay aggregates. Construction and Building Materials, 116, 373-385. https://doi.org/10.1016/j.conbuildmat.2018.01.161 DOI: https://doi.org/10.1016/j.conbuildmat.2018.01.161

Ozguven, A., and Gunduz, L. (2012). Examination of effective parameters for the production of expanded clay aggregate. Cement and concrete Composites, 34, 781-787. http://dx.doi.org/10.1016/j.cemconcomp.2012.02.007 DOI: https://doi.org/10.1016/j.cemconcomp.2012.02.007

Pelisser, F., Barcodes, A., Santos, D., Peterson, M., and Bernardin, A. M. (2012). Lightweight concrete production with low Portland cement consumption. Journal of Cleaner Production, 23(1), 68-74. https://doi.org/10.1016/j.jclepro.2011.10.010 DOI: https://doi.org/10.1016/j.jclepro.2011.10.010

Posi, P., Teerachanwit, C., Tanutong, C., Limkamoltip, S., Lertnimoolchai, S., Sata, V., and Chindaprasirt, P. (2013). Lightweight geopolymer concrete containing aggregate from recycle lightweight block. Materials and Design, 52, 580-586. https://doi.org/10.1016/j.matdes.2013.06.001 DOI: https://doi.org/10.1016/j.matdes.2013.06.001

Pujianto, A., and Prayuda, H. (2012). Fresh and hardened properties of lightweight concrete made with pumice as coarse aggregate. International Journal of Geomate, 21(87), 110-117, https://doi.org/10.21660/2021.87.j2365 DOI: https://doi.org/10.21660/2021.87.j2365

Rashad, A. M. (2018). Lightweight expanded clay aggregate as a building material – An overview. Construction and Building Materials, 170, 757-775. https://doi.org/10.1016/j.conbuildmat.2018.03.009 DOI: https://doi.org/10.1016/j.conbuildmat.2018.03.009

Rashad, A. M. (2019). A short manual on natural pumice as a lightweight aggregate. Journal of Building Engineering, 25, 1-10. https://doi.org/10.1016/j.jobe.2019.100802 DOI: https://doi.org/10.1016/j.jobe.2019.100802

Rumsys, D., Bacinskas D., Spudulis, E., and Meskenas, A. (2017). Comparison of material properties of lightweight concrete with recycled polyethylene and expanded clay aggregates. Procedia Engineering, 172, 937-944. https://doi.org/10.1016/j.proeng.2017.02.105 DOI: https://doi.org/10.1016/j.proeng.2017.02.105

Rumsys, D., Spudulis, E., Bacinkas, D., and Kaklauskas, G. (2018). Compressive strength and durability properties of structural lightweight concrete with fine expanded glass and/or clay aggregates. Materials, 11(12), 1-14. https://doi.org/10.3390/ma11122434 DOI: https://doi.org/10.3390/ma11122434

Saha, A. K., Majhi, S., Sarker, P. K., Mukherjee, A., Siddika, A., Aslani, F., and Zhuge. Y. (2021). Non-destructive prediction of strength of concrete made by lightweight recycled aggregates and nickel slag. Journal of Building Engineering, 33, 1-10, https://doi.org/10.1016/j.jobe.2020.101614 DOI: https://doi.org/10.1016/j.jobe.2020.101614

Saleh, F., Gunawan, M. A., Yolanda, T. I., Monika F., Prayuda, H., Cahyati, M. D., and Pratama, M. M. A. (2022). Properties of mortar made with bottom ash and silica fume as sustainable construction materials. World Journal of Engineering, 20(5), 835-845. http://dx.doi.org/10.1108/WJE-08-2021-0481 DOI: https://doi.org/10.1108/WJE-08-2021-0481

Shafigh, P., Jumaat, M. Z., and Mahmud, H. (2011). Oil palm shell as a lightweight aggregate for production high strength lightweight concrete. Construction and Building Materials, 25(4), 1848-1853. https://doi.org/10.1016/j.conbuildmat.2010.11.075 DOI: https://doi.org/10.1016/j.conbuildmat.2010.11.075

Shafigh, P., Mahmud, H. B., Jumaat, M. Z. B., Ahmmad, R., and Bahri, S. (2014). Structural lightweight aggregate concrete using two types of waste from the palm oil industry as aggregate. Journal of Cleaner Production, 81, 187-196. https://doi.org/10.1016/j.jclepro.2014.05.051 DOI: https://doi.org/10.1016/j.jclepro.2014.05.051

Shi, J., Liu, Y., Wang, E., Wang, L., Li, C., Xu, H., Zheng, X., and Yuan, Q. (2022). Physico-mechanical, thermal properties and durability of foamed geopolymer concrete containing cenospheres. Construction and Building Materials, 325, 1-13. https://doi.org/10.1016/j.conbuildmat.2022.126841 DOI: https://doi.org/10.1016/j.conbuildmat.2022.126841

Sikora, P., Rucinska, T., Stephan, D., Chung, S. Y., and Elrahman, M. A. (2020). Evaluating the effects of nanosilica on the material properties of lightweight and ultra-lightweight concrete using image-based approaches. Construction and Building Materials, 264, 1-15. https://doi.org/10.1016/j.conbuildmat.2020.120241 DOI: https://doi.org/10.1016/j.conbuildmat.2020.120241

Souza, F. B. D., Montedo, O. R. K., Grassi, R. L., and Antunes, E. G. P. (2019). Lightweight high-strength concrete with the use of waste cenosphere as fine aggregate. Revista Materia, 24(4), 1-12. https://doi.org/10.1590/S1517-707620190004.0834 DOI: https://doi.org/10.1590/s1517-707620190004.0834

Tang, X., Zhao, C., Yang, Y., Dong, F., and Lu, X. (2020). Amphoteric polycarboxylate superplasticizers with enhanced clay tolerance: preparation, performance and mechanism. Construction and Building Materials. 252, 1-9. https://doi.org/10.1016/j.conbuildmat.2020.119052 DOI: https://doi.org/10.1016/j.conbuildmat.2020.119052

Tawfik, T. A., Alsaffar, D. M., Tayeh, B. A., Metwally, K. A., and Elkattan I. M. (2021). Role of expanded clay aggregate, metakaolin, and silica fume on the of modified lightweight concrete properties. Geosystem Engineering, 24(3), 146-156. https://doi.org/10.1080/12269328.2021.1887002 DOI: https://doi.org/10.1080/12269328.2021.1887002

Varga, I. D. L., Bentz, D. P., Weiss, W. J., Castro, J., Barrett, T. J., Spragg, R. P., Bella, C. D., Obla, K. H., Kim, H., Schindler, A. Keith, K. P., and Sato, T. (2012) Increased use of fly ash in hydraulic cement concrete (HCC) for pavement layers and transportation structures. Purdue University. https://doi.org/10.5703/1288284316554 DOI: https://doi.org/10.5703/1288284316554

Vijayalakshi, R., and Ramanagopal, S. (2018). Structural concrete using expanded clay aggregate: S review. Indian Journal od Science and Technology, 11(16), 1-12. https://doi.org/10.17485/ijst/2018/v11i16/121888 DOI: https://doi.org/10.17485/ijst/2018/v11i16/121888

Vivek, S. S., Karthikeyan, B., Kanna, G. R., Selvaraj, S. K., Jose, S., Palanisamy, P., and Adane, T. M. (2022). Study on fresh and mechanical properties of polyblend self-compacting concrete with metakaolin, lightweight expanded clay aggregate, and SAP as alternative resources. Advances in Civil Engineering, 2022, 2350447. https://doi.org/10.1155/2022/2350447 DOI: https://doi.org/10.1155/2022/2350447

Zhang, P., Xie, N., Cheng X., Feng L., Hou, P., and Wu, Y. (2018). Low dosage nano-silica modification on lightweight aggregate concrete. Nanomaterials and Nanotechnology, 8, 1-8. https://doi.org/10.1177/1847980418761283 DOI: https://doi.org/10.1177/1847980418761283

How to Cite

APA

Pujianto, A., Prayuda, H., Asani, F., Santoso, M. B. and Wirawan, F. (2024). Influence of Expanded Clay Aggregate on the Engineering Properties of Lightweight Concrete. Ingeniería e Investigación, 44(1), e106174. https://doi.org/10.15446/ing.investig.106174

ACM

[1]
Pujianto, A., Prayuda, H., Asani, F., Santoso, M.B. and Wirawan, F. 2024. Influence of Expanded Clay Aggregate on the Engineering Properties of Lightweight Concrete. Ingeniería e Investigación. 44, 1 (Feb. 2024), e106174. DOI:https://doi.org/10.15446/ing.investig.106174.

ACS

(1)
Pujianto, A.; Prayuda, H.; Asani, F.; Santoso, M. B.; Wirawan, F. Influence of Expanded Clay Aggregate on the Engineering Properties of Lightweight Concrete. Ing. Inv. 2024, 44, e106174.

ABNT

PUJIANTO, A.; PRAYUDA, H.; ASANI, F.; SANTOSO, M. B.; WIRAWAN, F. Influence of Expanded Clay Aggregate on the Engineering Properties of Lightweight Concrete. Ingeniería e Investigación, [S. l.], v. 44, n. 1, p. e106174, 2024. DOI: 10.15446/ing.investig.106174. Disponível em: https://revistas.unal.edu.co/index.php/ingeinv/article/view/106174. Acesso em: 17 jul. 2024.

Chicago

Pujianto, As’at, Hakas Prayuda, Farrel Asani, Muji Basuki Santoso, and Fahriza Wirawan. 2024. “Influence of Expanded Clay Aggregate on the Engineering Properties of Lightweight Concrete”. Ingeniería E Investigación 44 (1):e106174. https://doi.org/10.15446/ing.investig.106174.

Harvard

Pujianto, A., Prayuda, H., Asani, F., Santoso, M. B. and Wirawan, F. (2024) “Influence of Expanded Clay Aggregate on the Engineering Properties of Lightweight Concrete”, Ingeniería e Investigación, 44(1), p. e106174. doi: 10.15446/ing.investig.106174.

IEEE

[1]
A. Pujianto, H. Prayuda, F. Asani, M. B. Santoso, and F. Wirawan, “Influence of Expanded Clay Aggregate on the Engineering Properties of Lightweight Concrete”, Ing. Inv., vol. 44, no. 1, p. e106174, Feb. 2024.

MLA

Pujianto, A., H. Prayuda, F. Asani, M. B. Santoso, and F. Wirawan. “Influence of Expanded Clay Aggregate on the Engineering Properties of Lightweight Concrete”. Ingeniería e Investigación, vol. 44, no. 1, Feb. 2024, p. e106174, doi:10.15446/ing.investig.106174.

Turabian

Pujianto, As’at, Hakas Prayuda, Farrel Asani, Muji Basuki Santoso, and Fahriza Wirawan. “Influence of Expanded Clay Aggregate on the Engineering Properties of Lightweight Concrete”. Ingeniería e Investigación 44, no. 1 (February 22, 2024): e106174. Accessed July 17, 2024. https://revistas.unal.edu.co/index.php/ingeinv/article/view/106174.

Vancouver

1.
Pujianto A, Prayuda H, Asani F, Santoso MB, Wirawan F. Influence of Expanded Clay Aggregate on the Engineering Properties of Lightweight Concrete. Ing. Inv. [Internet]. 2024 Feb. 22 [cited 2024 Jul. 17];44(1):e106174. Available from: https://revistas.unal.edu.co/index.php/ingeinv/article/view/106174

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

232

Downloads

Download data is not yet available.