Published

2024-02-22

Reduction of Large Scale Linear Dynamic MIMO Systems Using ACO-PID Controller

Reducción de sistemas MIMO dinámicos lineales a gran escala mediante el controlador ACO-PID

DOI:

https://doi.org/10.15446/ing.investig.106657

Keywords:

LS-MIMO, model order reduction (MOR), PID controller, ant colony optimization (en)
LS-MIMO, reducción del orden del modelo (MOR), controlador PID, optimización por colonias de hormigas (es)

Downloads

Authors

The MIMO technique is an essential element in the standards of communication systems (IEEE 802.11n, IEEE 802.11ac, WiMAX, and LTE) because it helps to increase their capacity. This paper employs a model order reduction (MOR) technique with a PID controller, an ACO algorithm, and the ITAE fitness function to reduce the large-scale linearity of the MIMO technique. The numerator and denominator parameters are set by minimizing the ITAE fitness function between the transient responses of the original and the reduced model. The objectives are achieved with the PID controller and the ACO algorithm for the unit step input. The simulation results show a good system performance. The controller performance is presented with regard to the dynamic response in terms of rising time, settling time, and overshoot/undershoot. Moreover, the results of the proposed method are compared with four literature reports for validation purposes. Evaluating the parameters within the time frame and the error values with and without the PID controller and ACO algorithm allowed validating the functioning of the proposed method. Furthermore, the simulation results revealed that the proposed scheme exhibited sufficient robustness and demonstrated a reduction in the time-domain response and error values.

La técnica MIMO es un elemento esencial en los estándares de sistemas de comunicación (IEEE 802.11n, IEEE 802.11ac, WiMAX y LTE) porque ayuda a aumentar la capacidad del sistema. En este trabajo se utiliza una técnica de reducción del orden del modelo (MOR) con un controlador PID, un algoritmo ACO y la función fitness de ITAE para reducir la linealidad de gran escala de la técnica MIMO. Los parámetros del numerador y denominador se establecen minimizando la función de aptitud de ITAE entre las respuestas transitorias del modelo original y el modelo reducido. Se alcanzan los objetivos con el controlador PID y el algoritmo ACO para la entrada de paso unitario. Los resultados de la simulación muestran un buen rendimiento del sistema. El rendimiento del controlador se presenta con base en la respuesta dinámica en términos de tiempo de subida, tiempo de asentamiento y sobreimpulso y subimpulso. Además, los resultados del método propuesto se comparan con cuatro reportes de la literatura para su validación. La evaluación de los parámetros en el marco temporal y de los valores de error con y sin el controlador PID y el algoritmo ACO permitió comprobar el funcionamiento del método propuesto. Asimismo, los resultados de la simulación revelaron que el esquema propuesto presentaba suficiente robustez y demostraba una reducción de la respuesta en el dominio temporal y de los valores de error.

References

Al-doraiee, F., and Al-Qaraawi, H. M. S. H. J., Salih. (2013). Design and implementation of adaptive wavelet network pid controller for aqm in the tcp network. Iraqi Journal of Computers, Communications, Control and Systems Engineering, 13(1), 9–17. https://ijccce.uotechnology.edu.iq/article_78386.html/

AL-Suhail, G. A., and Miry, M. H. (2015). Combining genetic algorithm and direction of arrival for mimo wireless communication system. Iraqi Journal of Computers, Communications, Control and Systems Engineering, 15(2). https://ijccce.uotechnology.edu.iq/article_106699.html/

Aziz, G. A., Jaber, M. H., Sulttan, M. Q., and Shneen, S. W. (2022). Simulation model of enhancing performance of tcp/aqm networks by using matlab. Journal of Engineering and Technological Sciences, 54(4). https://doi.org/10.5614/j.eng.technol.sci.2022.54.4.4 DOI: https://doi.org/10.5614/j.eng.technol.sci.2022.54.4.4

Bizaki, H. K. (2011). Mimo systems: Theory and applications. BoD–Books on Demand. https://doi.org/10.5772/610 DOI: https://doi.org/10.5772/610

Chebli, S., Elakkary, A., and Sefiani, N. (2018). Ant colony optimization based on pareto optimality: application to a congested router controlled by pid regulation. Systems Science and Control Engineering, 6(1), 360–369. https://doi.org/10.1080/21642583.2018.1509395 DOI: https://doi.org/10.1080/21642583.2018.1509395

Dang, H. N., Nguyen, H. T., and Nguyen, T. V. (2021). Joint detection and decoding of mixed-adc large-scale mimo communication systems with protograph ldpc codes. IEEE, 101013–101029. https://doi.org/10.1109/ACCESS.2021.3097444 DOI: https://doi.org/10.1109/ACCESS.2021.3097444

Daraji, A., and Hale, J. (2014). Reduction of structural weight, costs and complexity of a control system in the active vibration reduction of flexible structures. SmartMaterials and Structures, 23(9), 095013. https://doi.org/10.1088/0964-1726/23/9/095013 DOI: https://doi.org/10.1088/0964-1726/23/9/095013

Dhanraj, A. V., and Nanjundappan, D. (2014). Design of optimized pi controller with ideal decoupler for a non linear multivariable system using particle swarm optimization technique. International Journal of Innovative Computing, Information and Control, 10(1), 341–355. https://api.semanticscholar.org/CorpusID:16599826/

Goss, S., Aron, S., Deneubourg, J., and Pasteels, J. (1989). Selforganized shortcuts in the argentine ant. Naturwissenschaften, 76(12), 579–581. https://doi.org/10.1007/BF00462870 DOI: https://doi.org/10.1007/BF00462870

Goyal, R., Parmar, G., and Sikander, A. (2019). A new approach for simplification and control of linear time invariant systems. Microsystem Technologies, 25, 599–607. https://doi.org/10.1007/s00542-018-4004-1 DOI: https://doi.org/10.1007/s00542-018-4004-1

Han, Y., Jin, S., Wen, C.-K., and Ma, X. (2020). Channel estimation for extremely large-scale massive mimo systems. IEEE Wireless Communications Letters, 9(5), 633–637. https://doi.org/10.1109/LWC.2019.2963877 DOI: https://doi.org/10.1109/LWC.2019.2963877

Hanifah, R., Toha, S., and Ahmad, S. (2013). Pid-ant colony optimization (aco) control for electric power assist steering system for electric vehicle. In 2013 IEEE International Conference on Smart Instrumentation, Measurement and Applications (ICSIMA) (pp. 1–5). https://doi.org/10.1109/ICSIMA.2013.6717979 DOI: https://doi.org/10.1109/ICSIMA.2013.6717979

Hassanzadeh, I., and Mobayen, S. (2011). Controller design for rotary inverted pendulum system using evolutionary algorithms. Mathematical Problems in Engineering, 2011, 1-17. https://doi.org/10.1155/2011/572424 DOI: https://doi.org/10.1155/2011/572424

Hu, W., Cai, W.-J., and Xiao, G. (2010). Decentralized control system design for mimo processes with integrators/differentiators. Industrial and Engineering Chemistry Research, 49(24), 12521–12528. https://doi.org/10.1021/ie1005838 DOI: https://doi.org/10.1021/ie1005838

Jalden, J., and Ottersten, B. (2005). On the complexity of sphere decoding in digital communications. IEEE Transactions on Signal Processing, 53(4), 1474–1484. https://doi.org/10.1109/TSP.2005.843746 DOI: https://doi.org/10.1109/TSP.2005.843746

Juneja,M., and Nagar, S. (2015). Comparative study of model order reduction using combination of PSO with conventional reduction techniques. In 2015 International Conference on Industrial Instrumentation and Control (ICIC) (pp. 406–411). https://doi.org/10.1109/IIC.2015.7150776 DOI: https://doi.org/10.1109/IIC.2015.7150776

Khudhair, A. A., Jabbar, S. Q., Sulttan, M. Q., and Wang, D. (2016). Wireless indoor localization systems and techniques: survey and comparative study. Indonesian Journal of Electrical Engineering and Computer Science, 3(2), 392-409. https://doi.org/10.11591/ijeecs.v3.i2.pp392-409 DOI: https://doi.org/10.11591/ijeecs.v3.i2.pp392-409

Labibi, B., Marquez, H. J., and Chen, T. (2009). Decentralized robust pi controller design for an industrial boiler. Journal of Process Control, 19(2), 216–230. https://doi.org/10.1016/j.jprocont.2008.04.013 DOI: https://doi.org/10.1016/j.jprocont.2008.04.013

Larsson, E. G. (2009). Mimo detection methods: How they work [Lecture notes]. IEEE Signal Processing Magazine, 26(3), 91–95. https://doi.org/10.1109/MSP.2009.932126 DOI: https://doi.org/10.1109/MSP.2009.932126

Lengare, M., Chile, R., and Waghmare, L. M. (2012). Design of decentralized controllers for mimo processes. Computers and Electrical Engineering, 38(1), 140–147. https://doi.org/10.1016/j.compeleceng.2011.11.027 DOI: https://doi.org/10.1016/j.compeleceng.2011.11.027

Liu, G., Yang, J., and Whidborne, J. (2003). Multiobjective optimization and control. Baldock, Hertfordshire„ England: Research Studies Press Limited, 15(2), 77–78.

Lones, M. A. (2014). Metaheuristics in nature-inspired algorithms. In Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation (pp. 1419–1422). https://doi.org/10.1145/2598394.2609841 DOI: https://doi.org/10.1145/2598394.2609841

Lyu, S., Wen, J., Weng, J., and Ling, C. (2019). On low-complexity lattice reduction algorithms for large-scale mimo detection: The blessing of sequential reduction. IEEE Transactions on Signal Processing, 68, 257–269. https://doi.org/10.1109/TSP.2019.2959194 DOI: https://doi.org/10.1109/TSP.2019.2959194

Muhsen, A. N., and Raafat, S. M. (2021). Optimized pid control of quadrotor system using extremum seeking algorithm. Engineering and Technology Journal, 39(6), 996–1010. https://doi.org/10.30684/etj.v39i6.1850 DOI: https://doi.org/10.30684/etj.v39i6.1850

Nagaraj, B., and Murugananth, N. (2010). A comparative study of pid controller tuning using ga, ep, pso and aco. In 2010 International Conference on Communication Control and Computing Technologies (pp. 305–313). https://doi.org/10.1109/ICCCCT.2010.5670571 DOI: https://doi.org/10.1109/ICCCCT.2010.5670571

Oudah, M. K., Sulttan, M. Q., and Shneen, S. W. (2021). Fuzzy type 1 pid controllers design for tcp/aqm wireless networks. Indonesian Journal of Electrical Engineering and Computer Science, 21(1), 118–127. https://doi.org/10.11591/ijeecs.v21.i1.pp118-127 DOI: https://doi.org/10.11591/ijeecs.v21.i1.pp118-127

Ouyang, C., and Yang, H. (2018). Massive MIMO antenna selection: Asymptotic upper capacity bound and partial CSI. https://doi.org/10.48550/arXiv.1812.06595

Parmar, G., Prasad, R., and Mukherjee, S. (2007). Order reduction of linear dynamic systems using stability equation method and ga. International Journal of Electrical and Computer Engineering, 1(2), 244–250. https://doi.org/10.1504/IJICA.2007.016794 DOI: https://doi.org/10.1504/IJICA.2007.016794

Prainetr, S., Phurahong, T., Janprom, K., and Prainetr, N. (2019). Design tuning pid controller for temperature control using ant colony optimization. In 2019 IEEE 2nd International Conference on Power and Energy Applications (ICPEA) (pp. 124–127). https://doi.org/10.1109/ICPEA.2019.8818517 DOI: https://doi.org/10.1109/ICPEA.2019.8818517

Prasad, R., and Pal, J. (1991). Stable reduction of linear systems by continued fractions. Journal-Institution of Engineers India, Part El, Electrical Engineering Division, 72, 113–113.

Rajinikanth, V., and Latha, K. (2012). Setpoint weighted pid controller tuning for unstable system using heuristic algorithm. Archives of Control Sciences, 22(4), 481–505. https://doi.org/10.2478/v10170-011-0037-8 DOI: https://doi.org/10.2478/v10170-011-0037-8

Rusek, F., Persson, D., Lau, B. K., Larsson, E. G., Marzetta, T. L., Edfors, O., and Tufvesson, F. (2012). Scaling up mimo: Opportunities and challenges with very large arrays. IEEE Signal Processing Magazine, 30(1), 40–60. https://doi.org/10.1109/MSP.2011.2178495 DOI: https://doi.org/10.1109/MSP.2011.2178495

Saad, M. S., Jamaluddin, H., and Darus, I. Z. (2012). Pid controller tuning using evolutionary algorithms. Wseas Transactions on Systems and Control, 7(4), 139–149.

Saraswat, P., Parmar, G., and Bhatt, R. (2015). Application of differential evolution in order reduction of large scale systems. In 4th International Conference, icatetr-2015, bkit kota (pp. 124–127).

Saroja, K., Stefka Sharon, R., Meena, S., and Chitra, K. (2017). Multi-loop pid controller design for distillation column using firefly algorithm. International Journal of Engineering and Technology (IJET), 9(2), 1404–1410. https://doi.org/10.21817/ijet/2017/v9i2/170902290 DOI: https://doi.org/10.21817/ijet/2017/v9i2/170902290

Sharma, P., Tiwari, R. N., Singh, P., Kumar, P., and Kanaujia, B. K. (2022). Mimo antennas: Design approaches, techniques and applications. Sensors, 22(20), 7813. https://doi.org/10.3390/s22207813 DOI: https://doi.org/10.3390/s22207813

Sivakumar, R., Rajinikanth, V., and Sankaran, D. (2015). Multi-loop pi controller design for tito system: An analysis with ba fa pso and bfo. Australian Journal of Basic and Applied Sciences, 9(16), 249–254.

Sulttan, M. Q. (2016). A new approach of detection algorithm for reducing computation complexity of mimo systems. Indonesian Journal of Electrical Engineering and Computer Science, 1(1), 159–167. https://doi.org/10.11591/ijeecs.v1.i1.pp159-167 DOI: https://doi.org/10.11591/ijeecs.v1.i1.pp159-167

Sulttan, M. Q. (2019). Enhancement of k-best sphere detection algorithm performance in mimo systems. In IOP Conference Series: Materials Science and Engineering (Vol. 518, p. 052007). https://doi.org/10.1088/1757-899X/518/5/052007 DOI: https://doi.org/10.1088/1757-899X/518/5/052007

Suresh, A., Meena, S., and Chitra, K. (2017). Controller design for mimo process using optimization algorithm. International Journal of Pure and Applied Mathematics, 117, 163–170.

Vasu, G., Santosh, K., and Sandeep, G. (2012). Reduction of large scale linear dynamic siso and mimo systems using differential evolution optimization algorithm. In 2012 IEEE Students’ Conference on Electrical, Electronics and Computer Science (pp. 1–6). https://doi.org/10.1109/SCEECS.2012.6184732 DOI: https://doi.org/10.1109/SCEECS.2012.6184732

Vu, T. N. L., Lee, J.-T., and Lee, M.-Y. (2007). Design of multi-loop pid controllers based on the generalized imc-pid method with mp criterion. International Journal of Control, Automation, and Systems, 5(2), 212–217.

Xu, Z. (2010). A novel robust pid controller design method. In 2010 International Conference on Computer Application and System Modeling (iccasm 2010) (Vol. 6, pp. V6–332).

Yang, X., Cao, F., Matthaiou, M., and Jin, S. (2020). On the uplink transmission of extra-large scale massive mimo systems. IEEE Transactions on Vehicular Technology, 69(12), 15229–15243. https://doi.org/10.1109/TVT.2020.3037317 DOI: https://doi.org/10.1109/TVT.2020.3037317

Yang, X.-S. (2009). Firefly algorithms for multimodal optimization. In International Symposium on Stochastic Algorithms (pp. 169–178). https://doi.org/10.1007/978-3-642-04944-6_14 DOI: https://doi.org/10.1007/978-3-642-04944-6_14

How to Cite

APA

Alkhasraji, J. M., Shneen, S. W. and Sulttan, M. Q. (2024). Reduction of Large Scale Linear Dynamic MIMO Systems Using ACO-PID Controller. Ingeniería e Investigación, 44(1), e106657. https://doi.org/10.15446/ing.investig.106657

ACM

[1]
Alkhasraji, J.M., Shneen, S.W. and Sulttan, M.Q. 2024. Reduction of Large Scale Linear Dynamic MIMO Systems Using ACO-PID Controller. Ingeniería e Investigación. 44, 1 (Feb. 2024), e106657. DOI:https://doi.org/10.15446/ing.investig.106657.

ACS

(1)
Alkhasraji, J. M.; Shneen, S. W.; Sulttan, M. Q. Reduction of Large Scale Linear Dynamic MIMO Systems Using ACO-PID Controller. Ing. Inv. 2024, 44, e106657.

ABNT

ALKHASRAJI, J. M.; SHNEEN, S. W.; SULTTAN, M. Q. Reduction of Large Scale Linear Dynamic MIMO Systems Using ACO-PID Controller. Ingeniería e Investigación, [S. l.], v. 44, n. 1, p. e106657, 2024. DOI: 10.15446/ing.investig.106657. Disponível em: https://revistas.unal.edu.co/index.php/ingeinv/article/view/106657. Acesso em: 21 nov. 2024.

Chicago

Alkhasraji, Jafaar Mohammed, Salam W. Shneen, and Mohammed Q. Sulttan. 2024. “Reduction of Large Scale Linear Dynamic MIMO Systems Using ACO-PID Controller”. Ingeniería E Investigación 44 (1):e106657. https://doi.org/10.15446/ing.investig.106657.

Harvard

Alkhasraji, J. M., Shneen, S. W. and Sulttan, M. Q. (2024) “Reduction of Large Scale Linear Dynamic MIMO Systems Using ACO-PID Controller”, Ingeniería e Investigación, 44(1), p. e106657. doi: 10.15446/ing.investig.106657.

IEEE

[1]
J. M. Alkhasraji, S. W. Shneen, and M. Q. Sulttan, “Reduction of Large Scale Linear Dynamic MIMO Systems Using ACO-PID Controller”, Ing. Inv., vol. 44, no. 1, p. e106657, Feb. 2024.

MLA

Alkhasraji, J. M., S. W. Shneen, and M. Q. Sulttan. “Reduction of Large Scale Linear Dynamic MIMO Systems Using ACO-PID Controller”. Ingeniería e Investigación, vol. 44, no. 1, Feb. 2024, p. e106657, doi:10.15446/ing.investig.106657.

Turabian

Alkhasraji, Jafaar Mohammed, Salam W. Shneen, and Mohammed Q. Sulttan. “Reduction of Large Scale Linear Dynamic MIMO Systems Using ACO-PID Controller”. Ingeniería e Investigación 44, no. 1 (February 22, 2024): e106657. Accessed November 21, 2024. https://revistas.unal.edu.co/index.php/ingeinv/article/view/106657.

Vancouver

1.
Alkhasraji JM, Shneen SW, Sulttan MQ. Reduction of Large Scale Linear Dynamic MIMO Systems Using ACO-PID Controller. Ing. Inv. [Internet]. 2024 Feb. 22 [cited 2024 Nov. 21];44(1):e106657. Available from: https://revistas.unal.edu.co/index.php/ingeinv/article/view/106657

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

244

Downloads

Download data is not yet available.