Published

2024-02-23

Hydrodeoxygenation of Anisole via Cu supported on Zeolite: HZSM-5, MOR, and Indonesian Activated Natural Zeolite

Hidrodesoxigenación de anisol mediante Cu soportado en zeolita: HZSM-5, MOR y zeolita natural activada de Indonesia

DOI:

https://doi.org/10.15446/ing.investig.106683

Keywords:

acidity, BTX, copper, metal phase, surface area (en)
acidez, BTX, cobre, fase metálica, área superficial (es)

Downloads

Authors

The conversion of biomass waste into an alternative energy source requires effective and efficient hydrodeoxygenation (HDO) catalysts. This research aimed to synthesize a bifunctional zeolite-based catalyst for anisole conversion into BTX. The noble metal Cu was impregnated on HZSM-5, mordenite, and Indonesian activated natural zeolite (ANZ) to form HDO catalysts. X-ray fluorescence (XRF), X-ray diffraction (XRD), surface area and pore profile analysis, Fourier transform infrared analysis, ammonia-temperature programmed desorption (NH3-TPD), pyridine gravimetry, morphology, and scanning electron microscopy-energy dispersion elemental mapping (SEM-EDX) were used to determine the catalyst's properties. The HDO reaction test used anisole as a model compound in a semi-flow reactor with hydrogen gas at 350 and 500 °C for 1 h. Copper nanocrystals were found on the surface of the zeolites in several metal phase types, including Cu, Cu2O, CuO, and Cu(OH)2. Due to the copper bonds inside the zeolite pores, the internal pore surface area decreased. The acidity also decreased since it is strongly related to the surface area. At 350 °C, Cu was found to be less active. However, at 500 °C, copper activity increased, leading to an increase in anisole conversion and BTX selectivity. The catalyst with the highest anisole conversion and BTX selectivity was Cu/HZSM-5 (i.e., 53.28 and 13.06% v, respectively).

La conversión de residuos de biomasa en una fuente de energía alternativa requiere catalizadores de hidrodesoxigenación (HDO) efectivos y eficientes. Esta investigación tuvo como objetivo sintetizar un catalizador bifuncional a base de zeolita para la conversión de anisol en BTX. El metal noble Cu se impregnó en HZSM-5, mordenita y zeolita natural activada de Indonesia (ANZ) para formar catalizadores HDO. Se empleó fluorescencia de rayos X (XRF), difracción de rayos X (XRD), análisis de área superficial y del perfil de los poros, análisis infrarrojo por transformada de Fourier, desorción programada a temperatura de amoníaco (NH3-TPD), gravimetría de piridina, morfología y mapeo elemental de dispersión de energía por microscopía electrónica de barrido (SEM-EDX) para determinar las propiedades del catalizador. La prueba de reacción HDO utilizó anisol como compuesto modelo en un reactor de semiflujo con gas hidrógeno a 350 y 500 °C durante 1 h. Se encontraron nanocristales de cobre en la superficie de las zeolitas en varios tipos de fases metálicas, incluyendo Cu, Cu2O, CuO y Cu(OH)2. Debido a los enlaces de cobre dentro de los poros de la zeolita, el área de la superficie del poro interno disminuyó. La acidez también se redujo, pues está estrechamente relacionada con la superficie. A 350 °C, se encontró que el Cu era menos activo. Sin embargo, a 500 °C, la actividad del cobre aumentó, lo que provocó un aumento en la conversión de anisol y la selectividad de BTX. El catalizador con la mayor conversión de anisol y selectividad de BTX fue Cu/HZSM-5 (i.e., 53,28 y 13,06% v respectivamente).

References

A. R. K. K. Gollakota, M. Reddy, M. D. Subramanyam, and N. Kishore, “A review on the upgradation techniques of pyrolysis oil,” Renew. Sustain. Energy Rev., vol. 58, pp. 1543-1568, 2016, https://doi.org/10.1016/j.rser.2015.12.180 DOI: https://doi.org/10.1016/j.rser.2015.12.180

X. Li et al., “Heterogeneous sulfur-free hydrodeoxygenation catalysts for selectively upgrading the renewable bio-oils to second generation biofuels,” Renew. Sust. Energy Rev., vol. 82, pp. 3762-3797, 2018, https://doi.org/10.1016/j.rser.2017.10.091 DOI: https://doi.org/10.1016/j.rser.2017.10.091

X. Wang, B. Du, L. Pu, Y. Guo, H. Li, and J. Zhou, “Effect of particle size of HZSM-5 zeolite on the catalytic depolymerization of organosolv lignin to phenols,” J. Anal. Appl. Pyrolysis, vol. 129, pp. 13-20, Jan. 2018, https://doi.org/10.1016/j.jaap.2017.12.011 DOI: https://doi.org/10.1016/j.jaap.2017.12.011

J. Zhang, B. Fidalgo, A. Kolios, D. Shen, and S. Gu, “Mechanism of deoxygenation in anisole decomposition over single-metal loaded HZSM-5: Experimental study,” Chem. Eng. J., vol. 336, pp. 211-222, Mar. 2018, https://doi.org/10.1016/j.cej.2017.11.128 DOI: https://doi.org/10.1016/j.cej.2017.11.128

K. A. Rogers and Y. Zheng, “Selective deoxygenation of biomass-derived bio-oils within hydrogen-modest environments: A review and new insights,” ChemSusChem, vol. 9, no. 14, pp. 1750-1772, 2016, https://doi.org/10.1002/cssc.201600144 DOI: https://doi.org/10.1002/cssc.201600144

S. Popov and S. Kumar, “Rapid hydrothermal deoxygenation of oleic acid over activated carbon in a continuous flow process,” Energy and Fuels, vol. 29, no. 5, pp. 3377–3384, 2015, https://doi.org/10.1021/acs.energyfuels.5b00308 DOI: https://doi.org/10.1021/acs.energyfuels.5b00308

J. Zhang, B. Fidalgo, S. Wagland, D. Shen, X. Zhang, and S. Gu, “Deoxygenation in anisole decomposition over bimetallic catalysts supported on HZSM-5,” Fuel, vol. 238, pp. 257-266, Feb. 2019, https://doi.org/10.1016/j.fuel.2018.10.129

C. Li et al., “Catalytic cracking of Swida wilsoniana oil for hydrocarbon biofuel over Cu-modified ZSM-5 zeolite,” Fuel, vol. 218, no. January, pp. 59-66, Apr. 2018, https://doi.org/10.1016/j.fuel.2018.01.026 DOI: https://doi.org/10.1016/j.fuel.2018.01.026

E. Roduner, “Understanding catalysis,” Chem. Soc. Rev., vol. 43, no. 24, pp. 8226-8239, 2014, https://doi.org/10.1039/C4CS00210E DOI: https://doi.org/10.1039/C4CS00210E

R. Lippi et al., “Unveiling the structural transitions during activation of a CO2 methanation catalyst Ru0/ZrO2 synthesised from a MOF precursor,” Catal. Today, vol. 368, pp. 66-77, May 2021, https://doi.org/10.1016/j.cattod.2020.04.043 DOI: https://doi.org/10.1016/j.cattod.2020.04.043

J. Zhang, B. Fidalgo, A. Kolios, D. Shen, and S. Gu, “The mechanism of transmethylation in anisole decomposition over Brønsted acid sites: Density functional theory (DFT) study,” Sustain. Energy Fuels, vol. 1, no. 8, pp. 1788-1794, 2017, https://doi.org/10.1039/C7SE00280G DOI: https://doi.org/10.1039/C7SE00280G

Y. Zheng et al., “Efficient and stable Ni-Cu catalysts for ex situ catalytic pyrolysis vapor upgrading of oleic acid into hydrocarbon: Effect of catalyst support, process parameters and Ni-to-Cu mixed ratio,” Renew. Energy, vol. 154, pp. 797-812, Jul. 2020, https://doi.org/10.1016/j.renene.2020.03.058 DOI: https://doi.org/10.1016/j.renene.2020.03.058

Q. Che, W. Yi, Y. Liu, X. Wang, H. Yang, and H. Chen, “Effect of mesopores in ZSM-5 on the catalytic conversion of acetic acid, furfural, and guaiacol,” Energy and Fuels, vol. 35, no. 7, pp. 6022-6029, 2021, https://doi.org/10.1021/acs.energyfuels.0c04415 DOI: https://doi.org/10.1021/acs.energyfuels.0c04415

G. M. H. A. Ichsan, K. D. Nugrahaningtyas, D. M. Widjonarko, and F. Rahmawati, “Structure and morphology of the (Ni, Co) Mo/Indonesian natural zeolite,” IOP Conf. Ser. Mater. Sci. Eng., vol. 578, art. 012009, 2019, https://doi.org/10.1088/1757-899X/578/1/012009 DOI: https://doi.org/10.1088/1757-899X/578/1/012009

K. D. Nugrahaningtyas, R. S. R. Suharbiansah, W. W. Lestari, and F. Rahmawati, “Metal phase, electron density, textural properties, and catalytic activity of CoMo based catalyst applied in hydrodeoxygenation of oleic acid,” Evergreen, vol. 9, no. 2, pp. 283-291, Apr. 2022, https://doi.org/10.5109/4793665 DOI: https://doi.org/10.5109/4793665

K. D. Nugrahaningtyas, M. M. Putri, and T. E. Saraswati, “Metal phase and electron density of transition metal/HZSM-5,” AIP Conf. Proc., vol. 2237, art. 020003, 2020, https://doi.org/10.1063/5.0005561 DOI: https://doi.org/10.1063/5.0005561

K. D. Nugrahaningtyas, M. F. Kurniawati, A. Masykur, N. ’Abidah Quratul’aini, and N. ‘Abidah Quratul’aini, “Periodic trends in the character of first-row transition metals-based catalysts embedded on mordenite,” Moroccan J. Chem., vol. 10, no. 3, pp. 375-386, May 2022, https://revues.imist.ma/index.php/morjchem/article/view/32665/16923

T. Barzetti, E. Selli, D. Moscotti, and L. Forni, “Pyridine and ammonia as probes for FTIR analysis of solid acid catalysts,” J. Chem. Soc. - Faraday Trans., vol. 92, no. 8, pp. 1401-1407, 1996, https://doi.org/10.1039/ft9969201401 DOI: https://doi.org/10.1039/ft9969201401

M. A. Klunk et al., “Synthesis and characterization of mordenite zeolite from metakaolin and rice husk ash as a source of aluminium and silicon,” Chem. Pap., vol. 74, pp. 2481-2489, 2020, https://doi.org/10.1007/s11696-020-01095-4 DOI: https://doi.org/10.1007/s11696-020-01095-4

A. S. Al-Dughaither, H. De Lasa, and H. De Lasa, “HZSM‑5 zeolites with different SiO2 Al2O3 ratios. Characterization and NH3 desorption kinetics,” Ind. Eng. Chem. Res., vol. 53, no. 40, pp. 15303-15316, Oct. 2014, https://doi.org/10.1021/ie4039532 DOI: https://doi.org/10.1021/ie4039532

A. I. Sabiilagusti, K. D. Nugrahaningtyas, and Y. Hidayat, “Synthesis and metal phases characterization of mordenite supported copper catalysts,” J. Phys. Conf. Ser., vol. 1912, art. 012032, 2021, https://doi.org/10.1088/1742-6596/1912/1/012032 DOI: https://doi.org/10.1088/1742-6596/1912/1/012032

Y. Cudennec and A. Lecerf, “The transformation of Cu(OH)2 into CuO, revisited,” Solid State Sci., vol. 5, no. 11-12, pp. 1471-1474, 2003, https://doi.org/10.1016/j.solidstatesciences.2003.09.009 DOI: https://doi.org/10.1016/j.solidstatesciences.2003.09.009

W. B. Widayatno et al., “Upgrading of bio-oil from biomass pyrolysis over Cu-modified β-zeolite catalyst with high selectivity and stability,” Appl. Catal. B Environ., vol. 186, pp. 166-172, 2016, https://doi.org/10.1016/j.apcatb.2016.01.006 DOI: https://doi.org/10.1016/j.apcatb.2016.01.006

Z. He and X. Wang, “Hydrodeoxygenation of model compounds and catalytic systems for pyrolysis bio-oils upgrading,” Catal. Sustain. Energy, Versita, vol. 1, no. 2013, pp. 28-52, Oct. 2012, https://doi.org/10.2478/cse-2012-0004 DOI: https://doi.org/10.2478/cse-2012-0004

X. Zhu, R. G. Mallinson, and D. E. Resasco, “Role of transalkylation reactions in the conversion of anisole over HZSM-5,” Appl. Catal. A Gen., vol. 379, no. 1-2, pp. 172-181, May 2010, https://doi.org/10.1016/j.apcata.2010.03.018 DOI: https://doi.org/10.1016/j.apcata.2010.03.018

J. Albo, M. Perfecto-Irigaray, G. Beobide, and A. Irabien, “Cu/Bi metal-organic framework-based systems for an enhanced electrochemical transformation of CO2 to alcohols,” J. CO2 Util., vol. 33, pp. 157-165, 2019, https://doi.org/10.1016/j.jcou.2019.05.025 DOI: https://doi.org/10.1016/j.jcou.2019.05.025

X. Zhu, L. L. Lobban, R. G. Mallinson, and D. E. Resasco, “Bifunctional transalkylation and hydrodeoxygenation of anisole over a Pt/HBeta catalyst,” J. Catal., vol. 281, no. 1, pp. 21-29, 2011, https://doi.org/10.1016/j.jcat.2011.03.030 DOI: https://doi.org/10.1016/j.jcat.2011.03.030

J. Zhang, B. Fidalgo, S. Wagland, D. Shen, X. Zhang, and S. Gu, “Deoxygenation in anisole decomposition over bimetallic catalysts supported on HZSM-5,” Fuel, vol. 238, pp. 257-266, 2019, https://doi.org/10.1016/j.fuel.2018.10.129 DOI: https://doi.org/10.1016/j.fuel.2018.10.129

How to Cite

APA

Nugrahaningtyas, K., Sabiilagusti, A. I., Rahmawati, F., Heraldy, E. and Hidayat, Y. (2024). Hydrodeoxygenation of Anisole via Cu supported on Zeolite: HZSM-5, MOR, and Indonesian Activated Natural Zeolite. Ingeniería e Investigación, 44(1), e106683. https://doi.org/10.15446/ing.investig.106683

ACM

[1]
Nugrahaningtyas, K., Sabiilagusti, A.I., Rahmawati, F., Heraldy, E. and Hidayat, Y. 2024. Hydrodeoxygenation of Anisole via Cu supported on Zeolite: HZSM-5, MOR, and Indonesian Activated Natural Zeolite. Ingeniería e Investigación. 44, 1 (Jan. 2024), e106683. DOI:https://doi.org/10.15446/ing.investig.106683.

ACS

(1)
Nugrahaningtyas, K.; Sabiilagusti, A. I.; Rahmawati, F.; Heraldy, E.; Hidayat, Y. Hydrodeoxygenation of Anisole via Cu supported on Zeolite: HZSM-5, MOR, and Indonesian Activated Natural Zeolite. Ing. Inv. 2024, 44, e106683.

ABNT

NUGRAHANINGTYAS, K.; SABIILAGUSTI, A. I.; RAHMAWATI, F.; HERALDY, E.; HIDAYAT, Y. Hydrodeoxygenation of Anisole via Cu supported on Zeolite: HZSM-5, MOR, and Indonesian Activated Natural Zeolite. Ingeniería e Investigación, [S. l.], v. 44, n. 1, p. e106683, 2024. DOI: 10.15446/ing.investig.106683. Disponível em: https://revistas.unal.edu.co/index.php/ingeinv/article/view/106683. Acesso em: 25 mar. 2025.

Chicago

Nugrahaningtyas, Khoirina, Aji Indo Sabiilagusti, Fitria Rahmawati, Eddy Heraldy, and Yuniawan Hidayat. 2024. “Hydrodeoxygenation of Anisole via Cu supported on Zeolite: HZSM-5, MOR, and Indonesian Activated Natural Zeolite”. Ingeniería E Investigación 44 (1):e106683. https://doi.org/10.15446/ing.investig.106683.

Harvard

Nugrahaningtyas, K., Sabiilagusti, A. I., Rahmawati, F., Heraldy, E. and Hidayat, Y. (2024) “Hydrodeoxygenation of Anisole via Cu supported on Zeolite: HZSM-5, MOR, and Indonesian Activated Natural Zeolite”, Ingeniería e Investigación, 44(1), p. e106683. doi: 10.15446/ing.investig.106683.

IEEE

[1]
K. Nugrahaningtyas, A. I. Sabiilagusti, F. Rahmawati, E. Heraldy, and Y. Hidayat, “Hydrodeoxygenation of Anisole via Cu supported on Zeolite: HZSM-5, MOR, and Indonesian Activated Natural Zeolite”, Ing. Inv., vol. 44, no. 1, p. e106683, Jan. 2024.

MLA

Nugrahaningtyas, K., A. I. Sabiilagusti, F. Rahmawati, E. Heraldy, and Y. Hidayat. “Hydrodeoxygenation of Anisole via Cu supported on Zeolite: HZSM-5, MOR, and Indonesian Activated Natural Zeolite”. Ingeniería e Investigación, vol. 44, no. 1, Jan. 2024, p. e106683, doi:10.15446/ing.investig.106683.

Turabian

Nugrahaningtyas, Khoirina, Aji Indo Sabiilagusti, Fitria Rahmawati, Eddy Heraldy, and Yuniawan Hidayat. “Hydrodeoxygenation of Anisole via Cu supported on Zeolite: HZSM-5, MOR, and Indonesian Activated Natural Zeolite”. Ingeniería e Investigación 44, no. 1 (January 2, 2024): e106683. Accessed March 25, 2025. https://revistas.unal.edu.co/index.php/ingeinv/article/view/106683.

Vancouver

1.
Nugrahaningtyas K, Sabiilagusti AI, Rahmawati F, Heraldy E, Hidayat Y. Hydrodeoxygenation of Anisole via Cu supported on Zeolite: HZSM-5, MOR, and Indonesian Activated Natural Zeolite. Ing. Inv. [Internet]. 2024 Jan. 2 [cited 2025 Mar. 25];44(1):e106683. Available from: https://revistas.unal.edu.co/index.php/ingeinv/article/view/106683

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

  • Citations
  • Scopus - Citation Indexes: 1
  • Captures
  • Mendeley - Readers: 8
  • Mendeley - Readers: 2
  • Mentions
  • News: 1

Article abstract page views

287

Downloads