
Published
Hydrodeoxygenation of Anisole via Cu supported on Zeolite: HZSM-5, MOR, and Indonesian Activated Natural Zeolite
Hidrodesoxigenación de anisol mediante Cu soportado en zeolita: HZSM-5, MOR y zeolita natural activada de Indonesia
DOI:
https://doi.org/10.15446/ing.investig.106683Keywords:
acidity, BTX, copper, metal phase, surface area (en)acidez, BTX, cobre, fase metálica, área superficial (es)
Downloads
The conversion of biomass waste into an alternative energy source requires effective and efficient hydrodeoxygenation (HDO) catalysts. This research aimed to synthesize a bifunctional zeolite-based catalyst for anisole conversion into BTX. The noble metal Cu was impregnated on HZSM-5, mordenite, and Indonesian activated natural zeolite (ANZ) to form HDO catalysts. X-ray fluorescence (XRF), X-ray diffraction (XRD), surface area and pore profile analysis, Fourier transform infrared analysis, ammonia-temperature programmed desorption (NH3-TPD), pyridine gravimetry, morphology, and scanning electron microscopy-energy dispersion elemental mapping (SEM-EDX) were used to determine the catalyst's properties. The HDO reaction test used anisole as a model compound in a semi-flow reactor with hydrogen gas at 350 and 500 °C for 1 h. Copper nanocrystals were found on the surface of the zeolites in several metal phase types, including Cu, Cu2O, CuO, and Cu(OH)2. Due to the copper bonds inside the zeolite pores, the internal pore surface area decreased. The acidity also decreased since it is strongly related to the surface area. At 350 °C, Cu was found to be less active. However, at 500 °C, copper activity increased, leading to an increase in anisole conversion and BTX selectivity. The catalyst with the highest anisole conversion and BTX selectivity was Cu/HZSM-5 (i.e., 53.28 and 13.06% v, respectively).
La conversión de residuos de biomasa en una fuente de energía alternativa requiere catalizadores de hidrodesoxigenación (HDO) efectivos y eficientes. Esta investigación tuvo como objetivo sintetizar un catalizador bifuncional a base de zeolita para la conversión de anisol en BTX. El metal noble Cu se impregnó en HZSM-5, mordenita y zeolita natural activada de Indonesia (ANZ) para formar catalizadores HDO. Se empleó fluorescencia de rayos X (XRF), difracción de rayos X (XRD), análisis de área superficial y del perfil de los poros, análisis infrarrojo por transformada de Fourier, desorción programada a temperatura de amoníaco (NH3-TPD), gravimetría de piridina, morfología y mapeo elemental de dispersión de energía por microscopía electrónica de barrido (SEM-EDX) para determinar las propiedades del catalizador. La prueba de reacción HDO utilizó anisol como compuesto modelo en un reactor de semiflujo con gas hidrógeno a 350 y 500 °C durante 1 h. Se encontraron nanocristales de cobre en la superficie de las zeolitas en varios tipos de fases metálicas, incluyendo Cu, Cu2O, CuO y Cu(OH)2. Debido a los enlaces de cobre dentro de los poros de la zeolita, el área de la superficie del poro interno disminuyó. La acidez también se redujo, pues está estrechamente relacionada con la superficie. A 350 °C, se encontró que el Cu era menos activo. Sin embargo, a 500 °C, la actividad del cobre aumentó, lo que provocó un aumento en la conversión de anisol y la selectividad de BTX. El catalizador con la mayor conversión de anisol y selectividad de BTX fue Cu/HZSM-5 (i.e., 53,28 y 13,06% v respectivamente).
References
A. R. K. K. Gollakota, M. Reddy, M. D. Subramanyam, and N. Kishore, “A review on the upgradation techniques of pyrolysis oil,” Renew. Sustain. Energy Rev., vol. 58, pp. 1543-1568, 2016, https://doi.org/10.1016/j.rser.2015.12.180 DOI: https://doi.org/10.1016/j.rser.2015.12.180
X. Li et al., “Heterogeneous sulfur-free hydrodeoxygenation catalysts for selectively upgrading the renewable bio-oils to second generation biofuels,” Renew. Sust. Energy Rev., vol. 82, pp. 3762-3797, 2018, https://doi.org/10.1016/j.rser.2017.10.091 DOI: https://doi.org/10.1016/j.rser.2017.10.091
X. Wang, B. Du, L. Pu, Y. Guo, H. Li, and J. Zhou, “Effect of particle size of HZSM-5 zeolite on the catalytic depolymerization of organosolv lignin to phenols,” J. Anal. Appl. Pyrolysis, vol. 129, pp. 13-20, Jan. 2018, https://doi.org/10.1016/j.jaap.2017.12.011 DOI: https://doi.org/10.1016/j.jaap.2017.12.011
J. Zhang, B. Fidalgo, A. Kolios, D. Shen, and S. Gu, “Mechanism of deoxygenation in anisole decomposition over single-metal loaded HZSM-5: Experimental study,” Chem. Eng. J., vol. 336, pp. 211-222, Mar. 2018, https://doi.org/10.1016/j.cej.2017.11.128 DOI: https://doi.org/10.1016/j.cej.2017.11.128
K. A. Rogers and Y. Zheng, “Selective deoxygenation of biomass-derived bio-oils within hydrogen-modest environments: A review and new insights,” ChemSusChem, vol. 9, no. 14, pp. 1750-1772, 2016, https://doi.org/10.1002/cssc.201600144 DOI: https://doi.org/10.1002/cssc.201600144
S. Popov and S. Kumar, “Rapid hydrothermal deoxygenation of oleic acid over activated carbon in a continuous flow process,” Energy and Fuels, vol. 29, no. 5, pp. 3377–3384, 2015, https://doi.org/10.1021/acs.energyfuels.5b00308 DOI: https://doi.org/10.1021/acs.energyfuels.5b00308
J. Zhang, B. Fidalgo, S. Wagland, D. Shen, X. Zhang, and S. Gu, “Deoxygenation in anisole decomposition over bimetallic catalysts supported on HZSM-5,” Fuel, vol. 238, pp. 257-266, Feb. 2019, https://doi.org/10.1016/j.fuel.2018.10.129
C. Li et al., “Catalytic cracking of Swida wilsoniana oil for hydrocarbon biofuel over Cu-modified ZSM-5 zeolite,” Fuel, vol. 218, no. January, pp. 59-66, Apr. 2018, https://doi.org/10.1016/j.fuel.2018.01.026 DOI: https://doi.org/10.1016/j.fuel.2018.01.026
E. Roduner, “Understanding catalysis,” Chem. Soc. Rev., vol. 43, no. 24, pp. 8226-8239, 2014, https://doi.org/10.1039/C4CS00210E DOI: https://doi.org/10.1039/C4CS00210E
R. Lippi et al., “Unveiling the structural transitions during activation of a CO2 methanation catalyst Ru0/ZrO2 synthesised from a MOF precursor,” Catal. Today, vol. 368, pp. 66-77, May 2021, https://doi.org/10.1016/j.cattod.2020.04.043 DOI: https://doi.org/10.1016/j.cattod.2020.04.043
J. Zhang, B. Fidalgo, A. Kolios, D. Shen, and S. Gu, “The mechanism of transmethylation in anisole decomposition over Brønsted acid sites: Density functional theory (DFT) study,” Sustain. Energy Fuels, vol. 1, no. 8, pp. 1788-1794, 2017, https://doi.org/10.1039/C7SE00280G DOI: https://doi.org/10.1039/C7SE00280G
Y. Zheng et al., “Efficient and stable Ni-Cu catalysts for ex situ catalytic pyrolysis vapor upgrading of oleic acid into hydrocarbon: Effect of catalyst support, process parameters and Ni-to-Cu mixed ratio,” Renew. Energy, vol. 154, pp. 797-812, Jul. 2020, https://doi.org/10.1016/j.renene.2020.03.058 DOI: https://doi.org/10.1016/j.renene.2020.03.058
Q. Che, W. Yi, Y. Liu, X. Wang, H. Yang, and H. Chen, “Effect of mesopores in ZSM-5 on the catalytic conversion of acetic acid, furfural, and guaiacol,” Energy and Fuels, vol. 35, no. 7, pp. 6022-6029, 2021, https://doi.org/10.1021/acs.energyfuels.0c04415 DOI: https://doi.org/10.1021/acs.energyfuels.0c04415
G. M. H. A. Ichsan, K. D. Nugrahaningtyas, D. M. Widjonarko, and F. Rahmawati, “Structure and morphology of the (Ni, Co) Mo/Indonesian natural zeolite,” IOP Conf. Ser. Mater. Sci. Eng., vol. 578, art. 012009, 2019, https://doi.org/10.1088/1757-899X/578/1/012009 DOI: https://doi.org/10.1088/1757-899X/578/1/012009
K. D. Nugrahaningtyas, R. S. R. Suharbiansah, W. W. Lestari, and F. Rahmawati, “Metal phase, electron density, textural properties, and catalytic activity of CoMo based catalyst applied in hydrodeoxygenation of oleic acid,” Evergreen, vol. 9, no. 2, pp. 283-291, Apr. 2022, https://doi.org/10.5109/4793665 DOI: https://doi.org/10.5109/4793665
K. D. Nugrahaningtyas, M. M. Putri, and T. E. Saraswati, “Metal phase and electron density of transition metal/HZSM-5,” AIP Conf. Proc., vol. 2237, art. 020003, 2020, https://doi.org/10.1063/5.0005561 DOI: https://doi.org/10.1063/5.0005561
K. D. Nugrahaningtyas, M. F. Kurniawati, A. Masykur, N. ’Abidah Quratul’aini, and N. ‘Abidah Quratul’aini, “Periodic trends in the character of first-row transition metals-based catalysts embedded on mordenite,” Moroccan J. Chem., vol. 10, no. 3, pp. 375-386, May 2022, https://revues.imist.ma/index.php/morjchem/article/view/32665/16923
T. Barzetti, E. Selli, D. Moscotti, and L. Forni, “Pyridine and ammonia as probes for FTIR analysis of solid acid catalysts,” J. Chem. Soc. - Faraday Trans., vol. 92, no. 8, pp. 1401-1407, 1996, https://doi.org/10.1039/ft9969201401 DOI: https://doi.org/10.1039/ft9969201401
M. A. Klunk et al., “Synthesis and characterization of mordenite zeolite from metakaolin and rice husk ash as a source of aluminium and silicon,” Chem. Pap., vol. 74, pp. 2481-2489, 2020, https://doi.org/10.1007/s11696-020-01095-4 DOI: https://doi.org/10.1007/s11696-020-01095-4
A. S. Al-Dughaither, H. De Lasa, and H. De Lasa, “HZSM‑5 zeolites with different SiO2 Al2O3 ratios. Characterization and NH3 desorption kinetics,” Ind. Eng. Chem. Res., vol. 53, no. 40, pp. 15303-15316, Oct. 2014, https://doi.org/10.1021/ie4039532 DOI: https://doi.org/10.1021/ie4039532
A. I. Sabiilagusti, K. D. Nugrahaningtyas, and Y. Hidayat, “Synthesis and metal phases characterization of mordenite supported copper catalysts,” J. Phys. Conf. Ser., vol. 1912, art. 012032, 2021, https://doi.org/10.1088/1742-6596/1912/1/012032 DOI: https://doi.org/10.1088/1742-6596/1912/1/012032
Y. Cudennec and A. Lecerf, “The transformation of Cu(OH)2 into CuO, revisited,” Solid State Sci., vol. 5, no. 11-12, pp. 1471-1474, 2003, https://doi.org/10.1016/j.solidstatesciences.2003.09.009 DOI: https://doi.org/10.1016/j.solidstatesciences.2003.09.009
W. B. Widayatno et al., “Upgrading of bio-oil from biomass pyrolysis over Cu-modified β-zeolite catalyst with high selectivity and stability,” Appl. Catal. B Environ., vol. 186, pp. 166-172, 2016, https://doi.org/10.1016/j.apcatb.2016.01.006 DOI: https://doi.org/10.1016/j.apcatb.2016.01.006
Z. He and X. Wang, “Hydrodeoxygenation of model compounds and catalytic systems for pyrolysis bio-oils upgrading,” Catal. Sustain. Energy, Versita, vol. 1, no. 2013, pp. 28-52, Oct. 2012, https://doi.org/10.2478/cse-2012-0004 DOI: https://doi.org/10.2478/cse-2012-0004
X. Zhu, R. G. Mallinson, and D. E. Resasco, “Role of transalkylation reactions in the conversion of anisole over HZSM-5,” Appl. Catal. A Gen., vol. 379, no. 1-2, pp. 172-181, May 2010, https://doi.org/10.1016/j.apcata.2010.03.018 DOI: https://doi.org/10.1016/j.apcata.2010.03.018
J. Albo, M. Perfecto-Irigaray, G. Beobide, and A. Irabien, “Cu/Bi metal-organic framework-based systems for an enhanced electrochemical transformation of CO2 to alcohols,” J. CO2 Util., vol. 33, pp. 157-165, 2019, https://doi.org/10.1016/j.jcou.2019.05.025 DOI: https://doi.org/10.1016/j.jcou.2019.05.025
X. Zhu, L. L. Lobban, R. G. Mallinson, and D. E. Resasco, “Bifunctional transalkylation and hydrodeoxygenation of anisole over a Pt/HBeta catalyst,” J. Catal., vol. 281, no. 1, pp. 21-29, 2011, https://doi.org/10.1016/j.jcat.2011.03.030 DOI: https://doi.org/10.1016/j.jcat.2011.03.030
J. Zhang, B. Fidalgo, S. Wagland, D. Shen, X. Zhang, and S. Gu, “Deoxygenation in anisole decomposition over bimetallic catalysts supported on HZSM-5,” Fuel, vol. 238, pp. 257-266, 2019, https://doi.org/10.1016/j.fuel.2018.10.129 DOI: https://doi.org/10.1016/j.fuel.2018.10.129
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2024 Khoirina Nugrahaningtyas, Aji Indo Sabiilagusti, Fitria Rahmawati, Eddy Heraldy, Yuniawan Hidayat

This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors or holders of the copyright for each article hereby confer exclusive, limited and free authorization on the Universidad Nacional de Colombia's journal Ingeniería e Investigación concerning the aforementioned article which, once it has been evaluated and approved, will be submitted for publication, in line with the following items:
1. The version which has been corrected according to the evaluators' suggestions will be remitted and it will be made clear whether the aforementioned article is an unedited document regarding which the rights to be authorized are held and total responsibility will be assumed by the authors for the content of the work being submitted to Ingeniería e Investigación, the Universidad Nacional de Colombia and third-parties;
2. The authorization conferred on the journal will come into force from the date on which it is included in the respective volume and issue of Ingeniería e Investigación in the Open Journal Systems and on the journal's main page (https://revistas.unal.edu.co/index.php/ingeinv), as well as in different databases and indices in which the publication is indexed;
3. The authors authorize the Universidad Nacional de Colombia's journal Ingeniería e Investigación to publish the document in whatever required format (printed, digital, electronic or whatsoever known or yet to be discovered form) and authorize Ingeniería e Investigación to include the work in any indices and/or search engines deemed necessary for promoting its diffusion;
4. The authors accept that such authorization is given free of charge and they, therefore, waive any right to receive remuneration from the publication, distribution, public communication and any use whatsoever referred to in the terms of this authorization.