
Published
Application of Photosynthesis Models to Determine Light Requirements in Three Cacao Clones
Aplicación de los modelos de Fotosíntesis para determinar el requerimiento de luz en tres clones de cacao
DOI:
https://doi.org/10.15446/ing.investig.107078Keywords:
CO2 assimilation, maximum photosynthesis, PAR, LCP, LSP (en)asimilación de CO2, fotosíntesis máxima, PAR, PCL, PSL (es)
Downloads
Numerous articles show that light, water, CO2, and chlorophyll participate in the wonderful process of photosynthesis, and however, it is necessary to determine the conditions with which the assimilation of CO2 are optimized in the cocoa crop, a subject with conceptual divergences due to the understory origin of the plant. Photosynthesis in cocoa clones (e.g., CCN51, FSV41, and LK40) to establish their light requirements were characterized. The influence of radiation levels on CO2 assimilation (A) were evaluated. Measurements were made on the fourth leaf of mature branches using a portable infrared analysis of gas exchange (Ciras-3 PP SYSTEM ®) equipment with a light unit (universal PLC3 -RGBW), and simultaneously the soil moisture was recorded every 5 min. The A/PAR curves were created, and photosynthesis models were evaluated. The fittest models for A/PAR curves to estimate the parameters Amax, light saturation point, light compensation point, dark respiration, and photosynthetic yield (Φ) were selected. It was found that photosynthesis increased consistently when PAR increased but each clone at different rates. The highest A and (Φ) in CCN51, and the lowest in LK40 were shown. The best-fit models for A were that of Kaipiainen (2009), Smith (1935), and Ye (2007). The appropriate light range was set with relation 0.5 A max up to A max. For CCN51, it was 500–1500. For FSV41, it was 250–750. Finally, for LK40, it was 546–1000 μmol photons m2 s−1.
Cientos de artículos tratan sobre luz, agua, CO2 y clorofila participan en el proceso maravilloso de la fotosíntesis, sin embargo, es necesario determinar las condiciones que optimizan la asimilación de CO2 en el cultivo del cacao, tema en el cual se presentan divergencias conceptuales debido a su origen de sotobosque. Se caracterizó la fotosíntesis en clones de cacao para establecer sus necesidades de luz, en CCN 51, FSV 41 y LK 40 se estudió la influencia de la radiación sobre la asimilación de CO2 (A), las mediciones se realizaron en la cuarta hoja de ramas maduras, utilizando un equipo portátil de análisis de intercambio de gases por infrarrojos (Ciras-3 PP SYSTEM ®) con una unidad de luz (universal PLC3 -RGBW) y simultáneamente se registró la humedad del suelo cada cinco minutos. Se elaboraron las curvas A/PAR, y se probaron modelos de fotosíntesis. Se seleccionaron los modelos de mayor ajuste A/PAR para estimar los parámetros A máxima, punto de saturación de luz, punto de compensación de luz, respiración y rendimiento fotosintético(Φ), Se encontró que la fotosíntesis aumentó con el incremento de la PAR, pero con tasas distintas en cada clon. La A y (Φ) más altas se presentaron en CCN51 y las más bajas en LK40. Los modelos de mejor ajuste para A fueron los de Kaipiainen (2009), Smith (1935) y Ye (2007). El rango de luz apropiado a los niveles de radiación con los que se logra 0.5 Amax hasta Amax, para CCN51 está entre 500 y 1500 µmol fotones m2 s-1. Para FSV41, es de 250 a 750 µmol fotones m2 s-1. Finalmente, para LK40, fue de 546 a 1000 μmol de fotones m2 s-1.
References
Acheampong, K., Hadley, P., and Daymond, A. J. (2013). Pho-tosynthetic activity and early growth of four cacao geno-types as influenced by different shade regimes under West African dry and wet season conditions. Experimental Agricul-ture, 49(1), 31-42. https://doi.org/10.1017/S0014479712001007
Almeida, A. A. F., and Valle, R. R. (2007). Ecophysiology of the cacao tree. Brazilian Journal of Plant Physiology, 19(4), 425-448. https://doi.org/10.1590/S1677-04202007000400011
Almeida, A. A. F., Gomes, F. P., Araujo, R. P., and Valle, R. R. (2014). Leaf gas exchange in species of the Theobroma ge-nus. Photosynthetica, 52, 16-21. https://doi.org/10.1007/s11099-013-0048
Almeida, J., Tezara, W., and Herrera, A. (2016). Physiological responses to drought and experimental water deficit and waterlogging of four clones of cacao (Theobroma cacao L.) selected for cultivation in Venezuela. Agricultural Water Management, 171, 80-88. https://doi.org/10.1016/j.agwat.2016.03.012
Araque, O., Jaimez, R., Tezara, W., Coronel, I., Urich, R., and Espinoza, W. (2012). Comparative photosynthesis, water rela-tions, growth and survival rates in juvenile criollo cacao culti-vars (Theobroma cacao) during dry and wet seasons. Exper-imental Agriculture, 48(4), 513-522.
Ávila-Lovera, E., Coronel, I., Jaimez, R., Urich, R., Pereyra, G., Araque, O., Chacón, I., and Tezara, W. (2016). Ecophysiologi-cal traits of adult trees of criollo cocoa cultivars (Theobroma cacao L.) from a germplasm bank in Venezuela. Experimental Agriculture, 52(1), 137-153. https://doi.org/10.1017/S0014479714000593
Ávila-Lovera, E., Blanco, H., Móvil, O., Santiago, L. S., and Te-zara, W. (2021). Shade tree species affect gas exchange and hydraulic conductivity of cacao cultivars in an agroforestry system. Tree Physiology, 41(2), 240-253. https://doi.org/10.1093/treephys/tpaa119
Banguero-García, Y., Mosquera-Figueroa, G. Toro-Giraldo, S., Leiva-Rojas, E. I., and Ramírez-Pisco, R. (2015). Respuesta fisio-lógica de plántulas de cacao (Theobroma cacao L.) some-tidas a sombreamiento y a la aplicación de una enmienda orgánica. Bioetnia, 12, 52-59. https://doi.org/10.51641/bioetnia.v12i1.169
Connor, D. J., Loomis, R. S., and Cassman, K. G. (2011). Crop ecology: Productivity and management in agricultural sys-tems. Cambridge University Press. https://doi.org/10.1017/cbo9780511974199.014
Daymond, A. J., Tricker, P., and Hadley, P. (2011). Genotypic variation in photosynthesis in cacao is correlated with sto-matal conductance and leaf nitrogen. Biologia Plantarum, 55(1), 99-104.
Duan, A., and Zhang, J. (2009). Selection of models of photo-synthesis in response to irradiance definition of the attribute of weak light. Forest Research, 22(6), 765-771. https://doi.org/1001-1498(2009)06-0765-07
Espinosa, J., Mite, F., Cedeño, S., Barriga, S., and Andino, J. (2006). Manejo por sitio específico del cacao basado en sistemas de Información Geográfica. Informaciones Agronó-micas, 60, 10-14.
Gómez, A. (2002). Efecto de diferentes intensidades de luz sobre el intercambio gaseoso y desarrollo del cacao criollo Guasare [Master’s thesis, Universidad de Los Andes, Mérida, Venezuela].
Hernández, C. (2020). Caracterización de la fotosíntesis del cacao (Theobroma cacao L.) [Master’s thesis, Universidad Nacional de Colombia, Medellín campus].
Isaac, M. E., Timmer, V. R., and Quashie-Sam, S. J. (2007). Shade tree effects in an 8-year-old cocoa agroforestry system: Bio-mass and nutrient diagnosis of Theobroma cacao by vector analysis. Nutrient Cycling and Agroecosystem, 78, 155-165. https://doi.org/10.1007/s10705-006-9081-3
Jaimez, R. E., Amores Puyutaxi, F., Vasco, A., Loor, R. G. Tarqui, O., Quijano, G., Jiménez, J.C., and Tezara, W. (2018). Photo-synthetic response to low and high light of cacao growing without shade in an area of low evaporative demand. Acta Biológica. Colombiana, 23(1), 95-103. https://doi.org/10.15446/abc.v23n1.64962
Kaipiainen, E. L. (2009). Parameters of photosynthesis light curve in Salix dasyclados and their changes during the growth season. Russian Journal of Plant Physiology, 56, 445-453. https://doi.org/10.1134/S1021443709040025
Köhler, M., Hanf, A., Barus, H., Hendrayanto, and Hölscher, D. (2014). Cacao trees under different shade tree shelter: Ef-fects on water use. Agroforestry Systems, 1, 63-73. https://doi.org/10.1007/s10457-013-9656-3
Lambers, H., Chapin, F. S., and Pons, T. L. (2008). Plant physio-logical ecology (2nd ed.). Springer. https://doi.org/10.1007/978-0- 387-78341-3
Lahive, F., Hadley, P., and Daymond, A. (2019). The physiologi-cal responses of cacao to the environment and the implica-tions for climate change resilience. A review. Agronomy for Sustainable Development, 39, 05. https://doi.org/10.1007/s13593-018-0552-0
Lee, D. W., Oberbauer, S. F., and Johnson, P. (2000). Effects of irradiance and spectral quality on leaf structure and function in seedlings of two Southeast Asian Hopea (Dipterocarpace-ae) species. American Journal of Botany, 87(4), 447-455. https://doi.org/10.2307/2656588
Leiva, L., Sigindioy, L. M., and R. Ramírez-Pisco. (2017). Dinámica hídrica del cacao (Theobroma cacao L.) [Conference pa-per]. 2017 International Symposium on Cocoa Research (ISCR), Lima, Peru. https://www.icco.org/wp-content/uploads/T2.237.DINAMICA-HIDRICA-DEL-CACAO-Theobroma-cacao-L..pdf
Leiva, E. I., Gutiérrez-Brito, E. E., Pardo-Macea, C. J., and Ramí-rez-Pisco, R. (2019). Comportamiento vegetativo y reproduc-tivo del cacao (Theobroma cacao L.) por efecto de la po-da. Revista Fitotecnia Mexicana, 42(02), 137-146. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0187-73802019000200137&lng=es&tlng=es
Leiva, E. I., Ramírez Pisco, R., and Sigindioy Chindoy, L. M. (2024). Ciencia para la cacaocultura (vol. 1). Universidad Nacional de Colombia.
Lenon, A. M., Lewis, V. R., Farrell, A. D., and Umaharan, P. (2021). Photochemical responses to light in sun and shade leaves of Theobroma cacao L. (West African Amelonado). Scientia Horticulturae, 276, 109747. https://doi.org/10.1016/j.scienta.2020.109747
Liao, L., Ronga, Y., Qiua, X., Donga, T., and Wang, Z. (2020). Photosynthetic model for citrus cultivar Huangguogan. Semi-na: Ciências Agrárias, 41(1), 61-72. https://doi.org/10.5433/1679-0359.2020v41n1p61
Lima, M. A., Bezerra, M. A., Gomes-Filho, E., Pinto, C. M., and Enéas-Filho, J. (2010). Trocas gasosas em folhas de sol e som-breadas de cajueiro anão em diferentes regimes hídricos. Revista Ciência Agronômica, 41(4), 654-663. https://doi.org/10.1590/S1806-66902010000400020
Liu, Y., Dawson, W., Prati, D., Haeuser, E., Feng, Y., and van Kleunen, M. (2016). Does greater specific leaf area plasticity help plants to maintain a high performance when shaded. Annals of Botany, 118(7), 1329-1336. https://doi.org/10.1093/aob/mcw180
Lobo, F., Barros, M. P., Dalmagro, H. J., Pereira, W. E., Souza, É. C., Vourlitis, G. L., and Rodríguez Ortíz, C. E. (2013). Fitting net photosynthetic light-response curves with Microsoft Excel, a critical look at the models. Photosynthetica, 51(3), 445-456. https://doi.org/10.1007/s11099-013-0045-y
Madountsap, T. N., Zapfack, L., Chimi Djomo, C., Kabelong Banoho, L. P., Forbi Preasious, F., Tsopmejio Temfack, I., Tajeu-kem Vice, C., Amandine Flore, N. Y., Roger Bruno. T. M., and Mancho, N. J. (2018) Carbon storage potential of cacao ag-roforestry systems of different age and management intensity. Climate and Development, 11(7), 543-554. https://doi.org/10.1080/17565529.2018.1456895
Moser, G., Leuschner, C., Hertel, D., Hölscher, D., Köhler, M., Leitner, D., Michalzik, B., Prihastanti, E., Tjitrosemito, S., and Schwendenmann, L. (2010) Response of cocoa trees (Theo-broma cacao) to a 13-month desiccation period in Sulawesi, Indonesia. Agroforestry Systems, 79, 171-187. https://doi.org/10.1007/s10457-010-9303-1
Niether, W., Armengot, L., Andres, C. Schneider, M., and Gerold, G. (2019). Shade trees and tree pruning alter throughfall and microclimate in cocoa (Theobroma cacao L.) production systems. Annals of Forest Science, 75, 38 https://doi.org/10.1007/s13595-018-0723-9.
Norgrove, L., and Hauser, S. (2013) Carbon stocks in shaded Theobroma cacao farms and adjacent secondary forests of similar age in Cameroon. Tropical Ecology 54(1), 15-22.
Perea Villamil, A., Aranzazu Hernández, F., and Martínez Guerre-ro, N. (2013). Características de calidad del cacao Colom-bia. Catálogo de 26 cultivares. Universidad Industrial de San-tander, Federación Nacional de Cacaoteros.
Skillman, J. B., Griffin, K. L., Earll, S., and Kusam, M. (2011). Photo-synthetic productivity: Can plants do better? In J. C. Moreno-Piraján, Thermodynamics - Systems in Equilibrium and Non-Equilibrium (art. 21498). IntechOpen. https://doi.org/10.5772/20192
Suárez, J. C., Melgarejo, L. M., Casanoves, F., Di Rienzo, J. A., DaMatta, F. M., and Armas, C. (2018). Photosynthesis limita-tions in cacao leaves under different agroforestry systems in the Colombian Amazon. PLoS One, 13(1), e0206149. https://doi.org/10.1371/journal.pone.0206149
Tezara, W., Almeida, J. Valencia, E., Cortes, J., and Bolaños, M. (2015). Actividad fotoquímica de clones elites de cacao (Theobroma cacao L.) ecuatoriano en el norte de la provin-cia Esmeraldas. Investigación y Saberes, 4(3), 37-52. http://revistasdigitales.utelvt.edu.ec/revista/index.php/investigacion_y_saberes/article/view/90
Tezara, W., Urich, R., Jaimez, R., Coronel, I., Araque, O., Azocar, C., and Chacón, I. (2016). Does criollo cocoa have the same ecophysiological characteristics than Forastero. Botanical Sciences, 94(3), 563-574. https://doi.org/10.17129/botsci.552
Tezara, W., Pereyra, G., Ávila-Lovera, E., and Herrera, A. (2020a). Variability in physiological responses of Venezuelan cacao to drought. Experimental Agriculture, 56(3), 407-421. https://doi.org/10.1017/S0014479720000058
Tezara. W., Valencia, E. E., Reynel, V. H., Bolaños, M. J., and Blanco, H. (2020b). Actividad fotosintética de diez clones de cacao nacional y su relación con el rendimiento. Es-pamciencia, 11(1), 19-27. https://doi.org/10.51260/revista_espamciencia.v11i1.202
Thomas, E., van Zonneveld, M., Loo, J., Hodgkin, T., Galluzi, G., and van Etten, J. (2012). Present spatial diversity patterns of Theobroma cacao L. in the neotropics reflect genetic differ-entiation in Pleistocene refugia followed by human-influenced dispersal. PLoS One, 7(10), e47676. https://doi.org/10.1371/journal.pone.0047676
Woittiez, L. S., van Wijk, M. T., Slingerland, M., van Noordwijk, M., and Giller, K. E. (2017). Yield gaps in oil palm: A quantitative review of contributing factors. European Journal of Agrono-my, 83, 57-77. https://doi.org/10.1016/j.eja.2016.11.002
Xu, D. Q., and Shen, Y.G. (2002). Photosynthetic efficiency and crop yield. In M. Pessarakli (Ed.), Handbook of Plant and Crop Physiology (pp. 821-834). Marcel Dekker Inc.
Ye, Z.-P. (2007). A new model for relationship between irradi-ance and the rate of photosynthesis in Oryza sativa. Photo-synthetica, 45(4), 637-640. https://doi.org/10.1007/s11099-007-0110-5
Ye, Z.-P. (2010). A review on modeling of responses of photo-synthesis to light and CO2. Chinese Journal of Plant Ecology, 34(6), 727-740. https://doi.org/10.3773/j.issn.1005-264x.2010.06.012
Zhou, S., Medlyn, B., Sabaté, S., Sperlich, D., Prentice, C., and Whitehead, D. (2014). Short-term water stress impacts on sto-matal, mesophyll and biochemical limitations to photosynthe-sis differ consistently among tree species from contrasting cli-mates. Tree Physiology, 34(10), 1035-1046 https://doi.org/10.1093/treephys/tpu072
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2024 Edna I. Leiva-Rojas, Claider Hernández-Taborda, Ramiro Ramirez

This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors or holders of the copyright for each article hereby confer exclusive, limited and free authorization on the Universidad Nacional de Colombia's journal Ingeniería e Investigación concerning the aforementioned article which, once it has been evaluated and approved, will be submitted for publication, in line with the following items:
1. The version which has been corrected according to the evaluators' suggestions will be remitted and it will be made clear whether the aforementioned article is an unedited document regarding which the rights to be authorized are held and total responsibility will be assumed by the authors for the content of the work being submitted to Ingeniería e Investigación, the Universidad Nacional de Colombia and third-parties;
2. The authorization conferred on the journal will come into force from the date on which it is included in the respective volume and issue of Ingeniería e Investigación in the Open Journal Systems and on the journal's main page (https://revistas.unal.edu.co/index.php/ingeinv), as well as in different databases and indices in which the publication is indexed;
3. The authors authorize the Universidad Nacional de Colombia's journal Ingeniería e Investigación to publish the document in whatever required format (printed, digital, electronic or whatsoever known or yet to be discovered form) and authorize Ingeniería e Investigación to include the work in any indices and/or search engines deemed necessary for promoting its diffusion;
4. The authors accept that such authorization is given free of charge and they, therefore, waive any right to receive remuneration from the publication, distribution, public communication and any use whatsoever referred to in the terms of this authorization.