
Published
Neural Networks and Fuzzy Logic-Based Approaches for Precipitation Estimation: A Systematic Review
Enfoques basados en redes neuronales y lógica difusa para la estimación de la precipitación: una revisión sistemática
DOI:
https://doi.org/10.15446/ing.investig.108609Keywords:
precipitation, river basin, neural networks, fuzzy logic, machine learning, fuzzy inference systems (en)precipitación, cuenca hidrográfica, redes neuronales, lógica difusa, aprendizaje automático, sistemas de inferencia difusa (es)
Downloads
Precipitation estimation at the river basin level is essential for watershed management, the analysis of extreme events and weather and climate dynamics, and hydrologic modeling. In recent years, new approaches and tools such as artificial intelligence techniques have been used for precipitation estimation, offering advantages over traditional methods. Two major paradigms are artificial neural networks and fuzzy logic systems, which can be used in a wide variety of configurations, including hybrid and modular models. This work presents a literature review on hybrid metaheuristic and artificial intelligence models based on signal processes, focusing on the applications of these techniques in precipitation analysis and estimation. The selection and comparison criteria used were the model type, the input and output variables, the performance metrics, and the fields of application. An increase in the number of this type of studies was identified, mainly in applications involving neural network models, which tend to get more sophisticated according to the availability and quality of training data. On the other hand, fuzzy logic models tend to hybridize with neural models. There are still challenges related to prediction performance and spatial and temporal resolution at the basin and micro-basin levels, but, overall, these paradigms are very promising for precipitation analysis.
La estimación de la precipitación a nivel de cuenca hidrográfica es esencial para la gestión de cuencas, el análisis de eventos extremos y dinámicas meteorológicas y climáticas, y el modelado hidrológico. En los últimos años se han empleado nuevos enfoques y herramientas como las técnicas de inteligencia artificial para estimar la precipitación, ofreciendo ventajas sobre los métodos tradicionales. Dos paradigmas principales son las redes neuronales artificiales y los sistemas de lógica difusa, que pueden utilizarse en una amplia variedad de configuraciones, incluyendo modelos híbridos y modulares. Este trabajo presenta una revisión de la literatura sobre modelos híbridos metaheurísticos y de inteligencia artificial basados en procesos de señales, centrándose en las aplicaciones de estas técnicas en el análisis y la estimación de la precipitación. Los criterios de selección y comparación utilizados fueron el tipo de modelo, las variables de entrada y salida, las métricas de desempeño y los campos de aplicación. Se identificó un aumento en el número de este tipo de estudios, principalmente en aplicaciones que involucran modelos de redes neuronales, los cuales tienden a volverse más sofisticados según la disponibilidad y calidad de los datos de entrenamiento. Por otro lado, los modelos de lógica difusa tienden a hibridarse con modelos neuronales. Aún existen desafíos relacionados con el desempeño de las predicciones y la resolución espacial y temporal a nivel de cuenca y microcuenca, pero, en general, estos paradigmas son muy prometedores para el análisis de la precipitación.
References
[1] UNESCO, Eds., Informe mundial de las Naciones Unidas sobre el desarrollo de los recursos hídricos 2020: agua y cambio climá-tico. Paris, France: UNESCO, 2020. https://unesdoc.unesco.org/ark:/48223/pf0000372985_spa
[2] J. Wang, P. Zhai, and C. Li, "Non-uniform changes of daily precipitation in China: Observations and simulations," Weather Clim. Ext., vol. 44, Article 100665, 2024. https://doi.org/10.1016/j.wace.2024.100665
[3] MAVDT, "Política nacional para la gestión integral del recurso hídrico," 2010. [Online]. Available: https://www.minambiente.gov.co/wp-content/uploads/2021/10/Politica-nacional-Gestion-integral-de-recurso-Hidrico-web.pdf?utm_source=chatgpt.com
[4] S. Zhu, Z. Xu, X. Luo, C. Wang, and J. Wu, "Assessing coincidence probability for extreme precipitation events in the Jinsha River basin," Theor. Appl. Climatol., vol. 139, no. 1, pp. 825–835, Jan. 2020. https://doi.org/10.1007/s00704-019-03009-1
[5] R. Prudden et al., "A review of radar-based nowcasting of precipitation and applicable machine learning techniques," 2020. [Online]. Available: https://arxiv.org/abs/2005.04988v1
[6] IPCC, Eds., Climate change 2007: The physical science basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK; New York, NY, USA: Cambridge University Press, 2007. https://www.ipcc.ch/report/ar4/wg1/
[7] T. Davie, Fundamentals of hydrology, 3rd ed. London, UK; New York, NY, USA: Routledge, Taylor & Francis Group, 2019.
[8] B. Hingray, C. Picouet, A. Musy, and B. Hingray, Hydrol-ogy: A science for engineers. Boca Raton, FL, USA: CRC Press, Taylor & Francis Group, 2014.
[9] R. Buizza, "Chaos and weather prediction," 2002. [Online]. Available: https://www.ecmwf.int/node/16927
[10] D. S. Wilks, Statistical methods in the atmospheric scienc-es, 4th ed. Cambridge, UK: Elsevier, 2019.
[11] Q. Yuan et al., "Deep learning in environmental remote sensing: Achievements and challenges,” Rem. Sens. Environ., vol. 241, art. 111716, May 2020. https://doi.org/10.1016/j.rse.2020.111716
[12] R. S. Khan and M. A. E. Bhuiyan, "Artificial intelligence-based techniques for rainfall estimation integrating multisource precipitation datasets,” Atmosphere, vol. 12, no. 10, art. 10, Oct. 2021. https://doi.org/10.3390/atmos12101239
[13] Md. A. Saleh, H. M. Rasel, and B. Ray, "A comprehen-sive review towards resilient rainfall forecasting models using artificial intelligence techniques,” Green Tech. Sust., vol. 2, no. 3, art. 100104, Sep. 2024. https://doi.org/10.1016/j.grets.2024.100104
[14] A. Perianes-Rodriguez, L. Waltman, and N. J. van Eck, "Constructing bibliometric networks: A comparison between full and fractional counting,” J. Informetrics, vol. 10, no. 4, pp. 1178–1195, Nov. 2016. https://doi.org/10.1016/j.joi.2016.10.006
[15] N. J. van Eck and L. Waltman, "VOSviewer Manual," 2021. [Online]. Available: https://www.vosviewer.com/getting-started
[16] K.-L. Du and M. N. S. Swamy, "Neural networks and statistical learning," 2019. [Online]. Available: https://doi.org/10.1007/978-1-4471-7452-3
[17] M. T. Hagan, H. B. Demuth, M. Hudson, and O. Jesús, "Neural network design," 2014. [Online]. Available: https://pdfs.semanticscholar.org/ee5d/5f138cb3220fbca642ec099d1bab9b41e410.pdf
[18] S. Russell and P. Norvig, Artificial intelligence: A modern approach, 3rd ed. Upper Saddle River, NJ, USA: Pearson, 2009.
[19] U. R. Anushka-Perera, "Rainfall and atmospheric tem-perature against the other climatic factors: A case study from Colombo, Sri Lanka,” Math. Prob. Eng., vol. 2019, art. 5692753, 2019. https://doi.org/10.1155/2019/5692753
[20] J. Kajornrit, K. W. Wong, and C. C. Fung, “Estimation of missing precipitation records using modular artificial neural networks,” in Int. Conf. Neural Info. Proc., 2012, pp. 52–59. [Online]. Available: https://link.springer.com/chapter/10.1007/978-3-642-34478-7_7
[21] K. C. Luk, J. E. Ball, and A. Sharma, “An application of artificial neural networks for rainfall forecasting,” Math. Comp. Model., vol. 33, no. 6, pp. 683–693, Mar. 2001. https://doi.org/10.1016/S0895-7177(00)00272-7
[22] W. Hong, “Rainfall forecasting by technological ma-chine learning models,” App. Math. Comp., vol. 200, no. 1, pp. 41–57, Jun. 2008. https://doi.org/10.1016/j.amc.2007.10.046
[23] A. Solgi, V. Nourani, and A. Pourhaghi, “Forecasting daily precipitation using hybrid model of wavelet-artificial neural network and comparison with adaptive neurofuzzy inference system (case study: Verayneh Station, Nahavand),” Adv. Civil Eng., vol. 2014, pp. 1–12, 2014. https://doi.org/10.1155/2014/279368
[24] Y. Wang, J. Liu, R. Li, X. Suo, and E. Lu, “Precipitation forecast of the Wujiang River Basin based on artificial bee colo-ny algorithm and backpropagation neural network,” Alexandria Eng. J., vol. 59, no. 3, pp. 1473–1483, Jun. 2020. https://doi.org/10.1016/j.aej.2020.04.035
[25] K. P. Moustris, I. K. Larissi, P. T. Nastos, and A. G. Paliatsos, “Precipitation forecast using artificial neural networks in specific regions of Greece,” Water Res. Manag., vol. 25, no. 8, pp. 1979–1993, Jun. 2011. https://doi.org/10.1007/s11269-011-9790-5
[26] I. Sutawinaya, I. N. G. Astawa, and N. K. Hariyanti, “Comparison of adaline and multiple linear regression methods for rainfall forecasting,” J. Phys. Conf. Ser., vol. 953, pp. 1–8, Feb. 2018. https://doi.org/10.1088/1742-6596/953/1/012046
[27] S. Araghinejad, Data-driven modeling: Using MATLAB® in water resources and environmental engineering. Dordrecht, Nether-lands: Springer, 2014. https:/doi.org/10.1007/978-94-007-7506-0
[28] P. Benevides, J. Catalao, and G. Nico, “Neural network approach to forecast hourly intense rainfall using GNSS precipi-table water vapor and meteorological sensors,” Rem. Sens., vol. 11, no. 8, art. 8, Jan. 2019. https://doi.org/10.3390/rs11080966
[29] J. Abbot and J. Marohasy, “Input selection and optimisa-tion for monthly rainfall forecasting in Queensland, Australia, using artificial neural networks,” Atmos. Res., vol. 138, pp. 166–178, Mar. 2014. https://doi.org/10.1016/j.atmosres.2013.11.002
[30] J. Abbot and J. Marohasy, “The application of artificial intelligence for monthly rainfall forecasting in the Brisbane Catchment, Queensland, Australia,” WIT Tran. Ecol. Environ., vol. 172, pp. 125–135, May 2013. https://doi.org/10.2495/RBM130111
[31] S. Azimi and M. Azhdary-Moghaddam, “Modeling short term rainfall forecast using neural networks, and Gaussian pro-cess classification based on the SPI drought index,” Water Res. Manag., vol. 34, no. 4, pp. 1369–1405, Mar. 2020. https://doi.org/10.1007/s11269-020-02507-6
[32] F. Neira, “Elaboración de la cartografía climática de temperaturas y precipitación mediante redes neuronales artifi-ciales: caso de estudio en la Región del Libertador Bernardo O"Higgins,” 2010, [Online]. Available: http://repositorio.uchile.cl/handle/2250/112354
[33] P. S. Lucio, F. C. Conde, I. F. A. Cavalcanti, A. I. Serra-no, A. M. Ramos, and A. O. Cardoso, “Spatiotemporal monthly rainfall reconstruction via artificial neural network -case study: South of Brazil,” Adv. Geosci., vol. 10, pp. 67–76, 2007. https://doi.org/10.5194/adgeo-10-67-2007
[34] Y. Seo, S. Kim, and V. P. Singh, “Estimating spatial precipitation using regression kriging and artificial neural net-work residual kriging (RKNNRK) hybrid approach,” Water Res. Manag., vol. 29, no. 7, pp. 2189–2204, May 2015. https://doi.org/10.1007/s11269-015-0935-9
[35] T. B. Trafalis, M. B. Richman, A. White, and B. Santosa, “Data mining techniques for improved WSR-88D rainfall estima-tion,” Comp. Ind. Eng., vol. 43, no. 4, pp. 775–786, Sep. 2002. https://doi.org/10.1016/S0360-8352(02)00139-0
[36] K. L. Hsu, X. Gao, S. Sorooshian, and H. V. Gupta, “Precipitation estimation from remotely sensed information using artificial neural networks,” J. Appl. Meteorol., vol. 36, no. 9, pp. 1176–1190, Sep. 1997. https://doi.org/10.1175/1520-0450(1997)036<1176:PEFRSI>2.0.CO;2
[37] V. Kolluru, S. Kolluru, N. Wagle, and T. D. Acharya, “Secondary precipitation estimate merging using machine learn-ing: Development and evaluation over Krishna River Basin, In-dia,” Rem. Sens., vol. 12, no. 18, art. 18, Jan. 2020. https://doi.org/10.3390/rs12183013
[38] H. Li et al., “A neural network-based approach for the detection of heavy precipitation using GNSS observations and surface meteorological data,” J. Atmos. Solar-Terres. Phys., vol. 225, art. 105763, Nov. 2021. https://doi.org/10.1016/j.jastp.2021.105763
[39] D. Z. Haq et al., “Long short-term memory algorithm for rainfall prediction based on El-Nino and IOD data,” Proc. Comp. Sci., vol. 179, pp. 829–837, 2021. https://doi.org/10.1016/j.procs.2021.01.071
[40] A. Tch, “The mostly complete chart of neural net-works, explained,” Medium. [Online]. Available: https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464
[41] Y. Tao, X. Gao, A. Ihler, K. Hsu, and S. Sorooshian, “Deep neural networks for precipitation estimation from re-motely sensed information,” in 2016 IEEE Cong. Evol. Comp. (CEC), 2016, pp. 1349–1355. [Online]. Available: http://ieeexplore.ieee.org/abstract/document/7743945/
[42] H. G. Damavandi and R. Shah, “A learning framework for an accurate prediction of rainfall rates,” 2019. [Online]. Available: http://arxiv.org/abs/1901.05885
[43] M. Sangiorgio et al., “A comparative study on machine learning techniques for intense convective rainfall events fore-casting,” in Theory and Applications of Time Series Analysis, O. Valenzuela, F. Rojas, L. J. Herrera, H. Pomares, and I. Rojas, Eds. Cham, Germany: Springer International Publishing, 2020, pp. 305–317.
[44] Y. Tao, X. Gao, A. Ihler, S. Sorooshian, and K. Hsu, “Precipitation identification with bispectral satellite information using deep learning approaches,” J. Hydrometeorol., vol. 18, no. 5, pp. 1271–1283, May 2017. https://doi.org/10.1175/JHM-D-16-0176.1
[45] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, art. 7553, May 2015. https://doi.org/10.1038/nature14539
[46] X. X. Zhu et al., “Deep learning in remote sensing: A comprehensive review and list of resources,” IEEE Geosci. Rem. Sens. Mag., vol. 5, no. 4, pp. 8–36, Dec. 2017. https://doi.org/10.1109/MGRS.2017.2762307
[47] A. Moraux, S. Dewitte, B. Cornelis, and A. Munteanu, “Deep learning for precipitation estimation from satellite and rain gauges measurements,” Rem. Sens., vol. 11, no. 21, art. 21, Jan. 2019. https://doi.org/10.3390/rs11212463
[48] A. Moraux, S. Dewitte, B. Cornelis, and A. Munteanu, “A deep learning multimodal method for precipitation estima-tion,” Rem. Sens., vol. 13, no. 16, art. 16, Jan. 2021. https://doi.org/10.3390/rs13163278
[49] W. Fang, F. Zhang, V. S. Sheng, and Y. Ding, “SCENT: A new precipitation nowcasting method based on sparse corre-spondence and deep neural network,” Neurocomputing, art. S0925231221003283, Mar. 2021. https://doi.org/10.1016/j.neucom.2021.02.072
[50] X.-H. Le, Y. Kim, D.-V. Binh, S. Jung, and D.-H. Ngu-yen, “Improving rainfall-runoff modeling in the Mekon river basin using bias-correct satellite precipitation products by convolu-tional neural networks,” J. Hydrol., vol. 630, art. 130762, 2024. https://doi.org/10.1016/j.jhydrol.2024.130762
[51] M. Sadeghi, P. Nguyen, K. Hsu, and S. Sorooshian, “Improving near real-time precipitation estimation using a U-Net convolutional neural network and geographical information,” Environ. Model. Soft., vol. 134, art. 104856, Dec. 2020. https://doi.org/10.1016/j.envsoft.2020.104856
[52] J. Wang, L. Lin, Z. Zhang, S. Gao, and H. Yu, “Deep neural network based on dynamic attention and layer attention for meteorological data downscaling,” ISPRS J. Photogramm. Rem. Sens., vol. 215, pp. 157–176, Sep. 2024. https://doi.org/10.1016/j.isprsjprs.2024.06.020
[53] X. Yang et al., “Correcting the bias of daily satellite precipitation estimates in tropical regions using deep neural network,” J. Hydrol., art. 608 127656, 2022. https://doi.org/10.1016/j.jhydrol.2022.127656
[54] R. Adewoyin, P. Dueben, P. A. G. Watson, Y. He, and R. Dutta, “TRU-NET: A deep learning approach to high resolu-tion prediction of rainfall,” 2020. [Online]. Available: https://research-information.bris.ac.uk/en/publications/tru-net-a-deep-learning-approach-to-high-resolution-prediction-of
[55] L. Espeholt et al., “Skillful twelve hour precipitation forecasts using large context neural networks,” 2021. [Online]. Available: http://arxiv.org/abs/2111.07470
[56] Q. Jiang, F. Cioffi, W. Li, J. Tan, X. Pan, and X. Li, “Hybrid multilayer perceptron and convolutional neural net-work model to predict extreme regional precipitation dominat-ed by the large-scale atmospheric circulation,” Atmos. Res., vol. 304, art. 107362, 2024. https://doi.org/10.1016/j.atmosres.2024.107362
[57] Y. Tian, Y. Ji, X. Gao, X. Yuan, and X. Zhi, “Post-processing of short-term quantitative precipitation forecast with the multi-stream convolutional neural network,” Atmos. Res., vol. 309, art. 107584, Oct. 2024. https://doi.org/10.1016/j.atmosres.2024.107584
[58] S. Ravuri et al., “Skilful precipitation nowcasting using deep generative models of radar,” Nature, vol. 597, no. 7878, pp. 672–677, Sep. 2021. https://doi.org/10.1038/s41586-021-03854-z
[59] S. Agrawal, L. Barrington, C. Bromberg, J. Burge, C. Gazen, and J. Hickey, “Machine learning for precipitation now-casting from radar images,” 2019. [Online]. Available: https://doi.org/10.48550/arXiv.1912.12132
[60] V. A. Gorooh, A. A. Asanjan, P. Nguyen, K. Hsu, and S. Sorooshian, “Deep neural network high spatiotemporal resolu-tion precipitation estimation (Deep-STEP) using passive micro-wave and infrared data,” J. Hydrometeorol., vol. 23, no. 4, pp. 597–617, Apr. 2022. https://doi.org/10.1175/JHM-D-21-0194.1
[61] W. Li, B. Pan, J. Xia, and Q. Duan, “Convolutional neural network-based statistical post-processing of ensemble precipitation forecasts,” J. Hydrol., vol. 605, art. 127301, Feb. 2022. https://doi.org/10.1016/j.jhydrol.2021.127301
[62] X. Shi et al., “Deep learning for precipitation nowcast-ing: A benchmark and a new model,” NeurIPS, vol. 30, art. 11, 2017. https://doi.org/10.48550/arXiv.1706.03458
[63] C. K. Sønderby et al., “MetNet: A neural weather mod-el for precipitation forecasting,” 2020. [Online]. Available: https://arxiv.org/abs/2003.12140
[64] M. Jiang, B. Weng, J. Chen, T. Huang, F. Ye, and L. You, “Transformer-enhanced spatiotemporal neural network for post-processing of precipitation forecasts,” J. Hydrol., vol. 630, art. 130720, 2024. https://doi.org/10.1016/j.jhydrol.2024.130720
[65] L. Fathollahi, F. Wu, R. Melaki, P. Jamshidi, and S. Sarwar, “Global normalized difference vegetation index fore-casting from air temperature, soil moisture and precipitation using a deep neural network,” App. Comp. Geosci., vol. 23, art. 100174, 2024. https://doi.org/10.1016/j.acags.2024.100174
[66] M. C. Bakkay et al., “Precipitaion nowcasting using deep neural network,” 2022. [Online]. Available: http://arxiv.org/abs/2203.13263
[67] R. Xu, N. Chen, Y. Chen, and Z. Chen, “Downscaling and projection of multi-CMIP5 precipitation using machine learn-ing methods in the Upper Han River Basin,” Adv. Meteorol., vol. 2020, pp. 1–17, Mar. 2020. https://doi.org/10.1155/2020/8680436
[68] X. Shi, “Enabling smart dynamical downscaling of ex-treme precipitation events with machine learning,” Geophys. Res. Lett., vol. 47, no. 19, Oct. 2020. https://doi.org/10.1029/2020GL090309
[69] B. Kumar, R. Chattopadhyay, M. Singh, N. Chaudhari, K. Kodari, and A. Barve, “Deep-learning based down-scaling of summer monsoon rainfall data over Indian region,” 2020. [Online]. Available: http://arxiv.org/abs/2011.11313
[70] H. Hu and B. M. Ayyub, “Machine learning for project-ing extreme precipitation intensity for short durations in a changing climate,” Geosciences, vol. 9, no. 5, art. 209, May 2019. https://doi.org/10.3390/geosciences9050209
[71] D. D. Montenegro Murillo, M. A. Pérez Ortiz, and V. Vargas Franco, “Predicción de precipitación mensual mediante redes neuronales artificiales para la cuenca del río Cali, Colom-bia,” DYNA, vol. 86, no. 211, pp. 122–130, Oct. 2019. https://doi.org/10.15446/dyna.v86n211.76079
[72] T. Trinh, N. Do, V. T. Nguyen, and K. Carr, “Modeling high-resolution precipitation by coupling a regional climate model with a machine learning model: an application to Sai Gon–Dong Nai Rivers Basin in Vietnam,” Clim. Dyn., vol. 57, no. 9, pp. 2713–2735, Nov. 2021. https://doi.org/10.1007/s00382-021-05833-6
[73] A. Y. Sun and G. Tang, “Downscaling satellite and reanalysis precipitation products using attention-based deep convolutional neural nets,” Front. Water, vol. 2, art. 536743, 2020. [Online]. Available: https://www.frontiersin.org/article/10.3389/frwa.2020.536743
[74] B. Pan, K. Hsu, A. AghaKouchak, and S. Sorooshian, “Improving precipitation estimation using convolutional neural network,” Water Resour. Res., vol. 55, no. 3, pp. 2301–2321, Mar. 2019. https://doi.org/10.1029/2018WR024090
[75] A. Talei, L. H. C. Chua, and C. Quek, “A novel applica-tion of a neuro-fuzzy computational technique in event-based rain-fall–runoff modeling,” Exp. Sys. App., vol. 37, pp. 7456–7468, 2010. https://doi.org/10.[1016/j.eswa.2010.04.015
[76] M. A. Rahman, “Improvement of rainfall prediction model by using fuzzy logic,” Am. J. Clim. Change, vol. 9, no. 4, art. 4, Nov. 2020. https://doi.org/10.4236/ajcc.2020.94024
[77] A. Sözen, M. Kurt, M. A. Akçayol, and M. Özalp, “Per-formance prediction of a solar driven ejector-absorption cycle using fuzzy logic,” Renew. Energy, vol. 29, no. 1, pp. 53–71, Jan. 2004. https://doi.org/10.1016/S0960-1481(03)00172-1
[78] J. Kaiornrit, K. W. Wong, and C. C. Fung, “A modular technique for monthly rainfall time series prediction,” in 2013 IEEE Symp. Comp. Intel. Dyn. Uncert. Environ. (CIDUE), 2013, pp. 76–83. https://doi.org/10.1109/CIDUE.2013.6595775
[79] C. Tzimopoulo, L. Mpallas, and C. Evangelide, “Fuzzy model comparison to extrapolate rainfall data,” J. Environ. Sci. Tech., vol. 1, no. 4, pp. 214–224, Sep. 2008. https://doi.org/10.3923/jest.2008.214.224
[80] R. Janarthanan, R. Balamurali, A. Annapoorani, and V. Vimala, “Prediction of rainfall using fuzzy logic,” Mater. Today Proc., vol. 37, pp. 959–963, 2021. https://doi.org/10.1016/j.matpr.2020.06.179
[81] M. Silver, T. Svoray, A. Karnieli, and E. Fred, “Improv-ing weather radar precipitation maps: A fuzzy logic approach,” Atmos. Res., vol. 234, art. 104710, Oct. 2019. https://doi.org/10.1016/j.atmosres.2019.104710
[82] A. Helen, A. Gabriel, A. E., and B. Alese, “Develop-ment of a fuzzy logic based rainfall prediction model,” Int. J. Eng. Tech., vol. 3, pp. 427–435, Jan. 2013. https://www.researchgate.net/publication/285799840_Development_of_a_fuzzy_logic_based_rainfall_prediction_model
[83] M. Hasan, T. Tsegaye, X. Shi, G. Schaefer, and G. Tay-lor, “Model for predicting rainfall by fuzzy set theory using USDA scan data,” Agri. Water Manag., vol. 95, no. 12, pp. 1350–1360, Dec. 2008. https://doi.org/10.1016/j.agwat.2008.07.015
[84] S. Asklany, K. Elhelow, I. Youssef, and M. El-Wahab, “Rainfall events prediction using rule-based fuzzy inference sys-tem,” Atmos. Res., vol. 101, pp. 228–236, Jul. 2011. https://doi.org/10.1016/j.atmosres.2011.02.015
[85] G. Abbas Fall, M. Mousavi-Ba, and M. Habibi Nok, “Annual rainfall forecasting by using mamdani fuzzy inference system,” Res. J. Environ. Sci., vol. 3, no. 4, pp. 400–413, Apr. 2009. https://doi.org/10.3923/rjes.2009.400.413
[86] S. Rakkasagi, M. K. Goyal, and S. Jha, “Evaluating the future risk of coastal Ramsar wetlands in India to extreme rain-falls using fuzzy logic,” J. Hydrol., vol. 632, art. 130869, 2024. https://doi.org/10.1016/j.jhydrol.2024.130869
[87] G. M. M. M. A. Senaviratne, R. P. Udawatta, S. H. An-derson, C. Baf-faut, and A. Thompson, “Use of fuzzy rainfall–runoff predictions for claypan watersheds with conservation buffers in Northeast Missouri,” J. Hydrol., vol. 517, pp. 1008–1018, 2014. https://doi.org/10.1016/j.jhydrol.2014.06.023
[88] P. Mani, S. Allen, S. Kotlarski, and M. Stoffel, “Climate sensitivity of natural hazards processes in mountain regions: A fuzzy logic approach,” Geomorphology, vol. 461, art. 109329, 2024. https://doi.org/10.1016/j.geomorph.2024.109329
[89] C. L. Chang, S. L. Lo, and S. L. Yu, “Applying fuzzy theory and genetic algorithm to interpolate precipitation,” J. Hydrol., vol. 314, no. 1, pp. 92–104, Nov. 2005. https://doi.org/10.1016/j.jhydrol.2005.03.034
[90] J. Kajornrit and K. W. Wong, “Cluster validation methods for localization of spatial rainfall data in the northeast region of Thailand,” in 2013 Int. Conf. Mach. Learn. Cyber., 2013, pp. 1637–1642. https://doi.org/10.1109/ICMLC.2013.6890861
[91] L. B. Franco, C. D. G. C. de Almeida, M. M. Freire, G. B. Franco, and S. de A. Silva, “Rainfall zoning for cocoa growing in Bahia state (Brazil) using fuzzy logic,” Eng. Agríc., vol. 39, spe-cial no., pp. 48–55, Sep. 2019. https://doi.org/10.1590/1809-4430-eng.agric.v39nep48-55/2019
[92] M. Zare, G. J.-P. Schumann, F. N. Teferle, and R. Man-sorian, “Generating flood hazard maps based on an innovative spatial interpolation methodology for precipitation,” Atmosphere, vol. 12, no. 10, art. 10, Oct. 2021. https://doi.org/10.3390/atmos12101336
[93] P. Sinha et al., “Downscaled rainfall projections in south Florida using self-organizing maps,” Sci. Total Environ., vol. 635, pp. 1110–1123, Sep. 2018. https://doi.org/10.1016/j.scitotenv.2018.04.144
[94] P. Singh, “Rainfall and financial forecasting using fuzzy time series and neural networks based model,” Int. J. Mach. Learn. Cyber., vol. 9, no. 3, pp. 491–506, Mar. 2018. https://doi.org/10.1007/s13042-016-0548-5
[95] J. Kajornrit, K. W. Wong, and C. C. Fung, “Rainfall prediction in the northeast region of Thailand using Modular Fuzzy Inference System,” in 2012 IEEE Int. Conf. Fuzzy Syst., 2012, pp. 1–6. https://doi.org/10.1109/FUZZ-IEEE.2012.6250785
[96] S. Dani and S. Sharma, “Forecasting rainfall of a region by using fuzzy time series,” Asian J. Math. App., vol. 2013, 2013. https://scienceasia.asia/files/65.pdf
[97] J. Kajornrit, “Interpretable fuzzy systems for monthly rainfall spatial interpolation and time series prediction,” PhD dissertation, Murdoch Univ., Perth, Australia, 2014. [Online]. Available: https://researchrepository.murdoch.edu.au/id/eprint/26220/
[98] J.-S. R. Jang, “ANFIS: adaptive-network-based fuzzy inference system,” IEEE Trans. Syst. Man. Cyber., no. 3, art. 665, 1993. https://doi.org/10.1109/21.256541
[99] K. W. Wong, P. M. Wong, T. D. Gedeon, and C. C. Fung, “Rainfall prediction model using soft computing tech-nique,” Soft Comp., vol. 7, no. 6, pp. 434–438, May 2003. https://doi.org/10.1007/s00500-002-0232-4
[100] P. V. de Campos Souza, L. Batista de Oliveira, and L. A. Ferreira do Nascimento, “Fuzzy rules to help predict rains and temperatures in a Brazilian capital state based on data collected from satellites,” App. Sci., vol. 9, no. 24, art. 5476, Dec. 2019. https://doi.org/10.3390/app9245476
[101] F. Chang, Y.-M. Chiang, M.-J. Tsai, M.-C. Shieh, K.-L. Hsu, and S. Sorooshian, “Watershed rainfall forecasting using neuro-fuzzy networks with the assimilation of multi-sensor information,” J. Hydrol., vol. 508, pp. 374–384, Jan. 2014. https://doi.org/10.1016/j.jhydrol.2013.11.011
[102] D. Petković, M. Gocić, and S. Shamshirband, “Adaptive neuro-fuzzy computing technique for precipitation estimation,” Facta Univ. Ser. Mech. Eng., vol. 14, no. 2, pp. 209–218, 2016. https://doi.org/10.22190/FUME1602209P
[103] R. Hashim et al., “Selection of meteorological parame-ters affecting rainfall estimation using neuro-fuzzy computing methodology,” Atmos. Res., vol. 171, supp. C, pp. 21–30, May 2016. https://doi.org/10.1016/j.atmosres.2015.12.002
[104] M. Hessami, F. Anctil, and A. A. Viau, “An adaptive neuro-fuzzy inference system for the post-calibration of weather radar rainfall estimation,” J. Hydroinfo., vol. 5, no. 1, pp. 63–70, Jan. 2003. https://doi.org/10.2166/hydro.2003.0005
[105] S. Sharma, P. Srivastava, X. Fang, and L. Kalin, “Hydro-logic simulation approach for El Niño Southern Oscillation (ENSO)-affected watershed with limited raingauge stations,” Hydrol. Sci. J., vol. 61, no. 6, pp. 991–1000, Apr. 2016. https://doi.org/10.1080/02626667.2014.952640
[106] A. Rahman et al., “Rainfall prediction system using ma-chine learning fusion for smart cities,” Sensors, vol. 22, pp. 1–14, May 2022. https://doi.org/10.3390/s22093504
[107] Y. Morales, M. Querales, H. Rosas, H. Allende-Cid, and R. Salas, "A self-identification Neuro-Fuzzy inference frame-work for modeling rainfall-runoff in a Chilean watershed," J. Hydrol., vol. 23, art 125910, Aug. 2020. https://doi.org/10.1016/j.jhydrol.2020.125910
[108] Shahfahad, M. W. Naikoo, S. Talukdar, T. Das, and A. Rahman, “Identification of homogenous rainfall regions with trend analysis using fuzzy logic and clustering approach coupled with advanced trend analysis techniques in Mumbai city,” Urb. Clim., vol. 46, art. 101306, Dec. 2022. https://doi.org/10.1016/j.uclim.2022.101306
[109] A. Talei, L. H. C. Ghua, and T. S. W. Wong, “Evalua-tion of rainfall and discharge inputs used by adaptive network-based fuzzy inference systems (ANFIS) in rainfall-runoff model-ing,” J. Hydrol., vol. 391, no. 3-4, pp. 248–262, 2010. https://doi.org/10.1016/j.jhydrol.2010.07.023
[110] M. C. Valverde, E. Araujo, and H. Campos Velho, “Neural network and fuzzy logic statistical downscaling of at-mospheric circulation-type specific weather pattern for rainfall forecasting,” App. Soft Comp., vol. 22, pp. 681–694, 2014. https://doi.org/10.1016/j.asoc.2014.02.025
[111] S. Askar et al., “Flood susceptibility mapping using remote sensing and integration of decision table classifier and metaheuristic algorithms,” Water, vol. 14, no. 19, art. 3062, 2022. https://doi.org/10.3390/w14193062
[112] N.-D. Hoang and X.-L. Tran, “Remote sensing–based urban green space detection using marine predators algorithm optimized machine learning approach,” Math. Probl. Eng, art. 5586913, 2021. https://doi.org/10.1155/2021/5586913
[113] H. E. Khairan, S. L. Zubaidi, S. F. Raza, M. Hameed, N. Al-Ansari, and H. M. Ridha, “Examination of Single- and hybrid-based metaheuristic algorithms in ANN reference evapotranspi-ration estimating,” Sustainability, vol. 15, art. 14222, 2023. https://doi.org/10.3390/su151914222
[114] R. Adnan et al., “Advanced hybrid metaheuristic ma-chine learning models application for reference crop evapotran-spiration prediction,” Agronomy, vol. 13, art. 98 10 3390 13010098, 2022. https://doi.org/10.3390/agronomy13010098
[115] D. T. Bui et al., “Novel hybrid evolutionary algorithms for spatial prediction of floods,” Sci. Rep., vol. 8, p. 15364, 2018. https://doi.org/10.1038/s41598-018-33620-1
[116] S. V. R. Termeh, A. Kornejady, H. R. Pourghasemi, and S. Keesstra, “Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms,” Sci. Total Environ., vol. 615, pp. 438–451, 2018. https://doi.org/10.1016/j.scitotenv.2017.09.262Get rights and content
[117] A. Arora et al., “Optimization of state-of-the-art fuzzy-metaheuristic anfis-based machine learning models for flood susceptibility prediction mapping in the middle Ganga plain, India,” Sci. Total Environ., vol. 750, art. 141565, 2021. https://doi.org/10.1016/j.scitotenv.2020.141565
[118] O. Rahmati et al., “Development of novel hybridized models for urban flood susceptibility mapping,” Sci. Rep., vol. 10, art. 12937, 2020. https://doi.org/10.1038/s41598-020-69703-7
[119] F. Rezaie, M. Panahi, S. M. Bateni, C. Jun, C. M. Neale, and S. Lee, “Novel hybrid models by coupling support vector regression (SVR) with meta-heuristic algorithms (WOA and GWO) for flood susceptibility mapping,” Nat. Haz., pp. 1–37, 2022. https://doi.org/10.1007/s11069-022-05424-6
[120] M. Panahi et al., “Flood spatial prediction modeling using a hybrid of meta-optimization and support vector regres-sion modeling,” Catena, vol. 199, art. 105114, 2021. https://doi.org/10.1016/j.catena.2020.105114
[121] E. Dodangeh et al., “Novel hybrid intelligence models for flood-susceptibility prediction: Meta optimization of the GMDH and SVR models with the genetic algorithm and harmony search,” J. Hydrol., vol. 590, art. 125423, 2020.
https://doi.org/10.1016/j.jhydrol.2020.125423
[122] F. Rezaie, S. M. Bateni, E. Heggy, and S. Lee, “Utilizing the SAR, GIS, and novel hybrid metaheuristic-GMDH algorithm for flood susceptibility mapping,” in Proc. 2021 IEEE Int. Geosci. Rem. Sens. Symp. IGARSS, 2021, pp. 11-16. https://doi.org/10.1109/IGARSS47720.2021.9553468
[123] B. T. Pham, K.-T. T. Bui, I. Prakash, and B.-B. Ly, “Hy-brid artificial intelligence models based on adaptive neuro fuzzy inference system and metaheuristic optimization algorithms for prediction of daily rainfall,” Phys. Chem. Earth, vol. 134, art. 103563, 2024. https://doi.org/10.1016/j.pce.2024.103563
[124] C. Peláez-Rodríguez et al., “A general explicable fore-casting framework for weather events based on ordinal classifi-cation and inductive rules combined with fuzzy logic,” Knowledge-Based Syst., vol. 291, art. 111556, 2024. https://doi.org/10.1016/j.knosys.2024.111556
[125] B. Mohammadi, S. Vazifehkhah, and Z. Duan, “A con-ceptual metaheuristic-based framework for improving runoff time series simulation in glacierized catchments,” Eng. App. Art. Intel., vol. 127, art. 107302, Jan. 2024. https://doi.org/10.1016/j.engappai.2023.107302
[126] B. Zerouali et al., “Artificial intelligent systems opti-mized by metaheuristic algorithms and teleconnection indices for rainfall modeling: The case of a humid region in the mediter-ranean basin,” Heliyon, vol. 9, no. 4, art. e15355, Apr. 2023. https://doi.org/10.1016/j.heliyon.2023.e15355
[127] U. Okkan, Z. B. Ersoy, A. A. Kumanlioglu, and O. Fistikoglu, “Embedding machine learning techniques into a con-ceptual model to improve monthly runoff simulation: A nested hybrid rainfall runoff modeling,”. J. Hydrol., vol. 598, art. 126433, 2021.
https://doi.org/10.1016/j.jhydrol.2020.125423
[128] S. E. Priestly, K. Raimond, Y. Cohen, J. Brema, and D. J. Hemanth, “Evaluation of a novel hybrid lion swarm optimization – AdaBoostRegressor model for forecasting monthly precipita-tion,” Sust. Comp. Info. Syst., vol. 39, art. 100884, 2023. https://doi.org/10.1016/j.suscom.2023.100884
[129] T. Anuradha, P. S. G. Aruna Sri Formal, and J. Ra-maDevi, “Hybrid model for rainfall prediction with statistical and technical indicator feature set,” Exp. Syst. App., vol. 249, art. 123260, Sep. 2024. https://doi.org/10.1016/j.eswa.2024.123260
[130] X. Qiao et al., “Metaheuristic evolutionary deep learn-ing model based on temporal convolutional network, improved aquila optimizer and random forest for rainfall-runoff simulation and multi-step runoff prediction,” Exp. Syst. App., vol. 229, art. 120616, Nov. 2023. https://doi.org/10.1016/j.eswa.2023.120616
[131] S. D. Latif et al., “Assessing rainfall prediction models: Exploring the advantages of machine learning and remote sensing approaches,” Alexandria Eng. J., vol. 82, pp. 16–25, Nov. 2023. https://doi.org/10.1016/j.aej.2023.09.060
[132] E. Gomaa et al., “Assessment of hybrid machine learn-ing algorithms using TRMM rainfall data for daily inflow forecast-ing in Três Marias Reservoir, eastern Brazil,” Heliyon, vol. 9, no. 8, art. e18819, Aug. 2023. https://doi.org/10.1016/j.heliyon.2023.e18819
[133] T. Li, C. Xie, C. Xu, W. Qi, Y. Huang, and L. Li, “Au-tomated machine learning for rainfall-induced landslide hazard mapping in Luhe County of Guangdong Province, China,” China Geol., vol. 7, art. 315 329, 2024. https://doi.org/10.31035/cg2024064
[134] A. I. Pathan et al., “Comparative assessment of rainfall-based water level prediction using machine learning (ML) tech-niques,” Ain Shams Eng. J., vol. 15, art. 102854, 2024. https://doi.org/10.1016/j.asej.2024.102854
[135] Y. Yin, J. He, J. Guo, W. Song, H. Zheng, and J. Dan, “Enhancing precipitation estimation accuracy: An evaluation of traditional and machine learning approaches in rainfall predic-tions,” J. Atmos. Solar-Terres. Phys, vol. 255, art. 106175, Feb. 2024. https://doi.org/10.1016/j.jastp.2024.106175
[136] W. Dai et al., “Estimation of rainfall erosivity on the Chinese Loess Plateau: A new combination of the ERA5 dataset and machine learning,” J. Hydrol., vol. 624, art. 129892, Sep. 2023. https://doi.org/10.1016/j.jhydrol.2023.129892
[137] J. Diez-Sierra and M. Del Jesus, “Long-term rainfall prediction using atmospheric synoptic patterns in semi-arid climates with statistical and machine learning methods,” J. Hydrol., vol. 586, art. 124789, Jul. 2020. https://doi.org/10.1016/j.jhydrol.2020.124789
[138] U. Rasool et al., “Rainfall-driven machine learning mod-els for accurate flood inundation mapping in Karachi, Pakistan,” Urb. Clim., vol. 49, art. 101573, May 2023. https://doi.org/10.1016/j.uclim.2023.101573
[139] D. Pirone, L. Cimorelli, G. Del Giudice, and D. Pi-anese, “Short-term rainfall forecasting using cumulative precipi-tation fields from station data: A probabilistic machine learning approach,” J. Hydrol., vol. 617, art. 128949, Feb. 2023. https://doi.org/10.1016/j.jhydrol.2022.128949
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2024 Andres Felipe Ruiz Hurtado, Viviana Vargas-Franco, Luis Octavio González-Salcedo

This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors or holders of the copyright for each article hereby confer exclusive, limited and free authorization on the Universidad Nacional de Colombia's journal Ingeniería e Investigación concerning the aforementioned article which, once it has been evaluated and approved, will be submitted for publication, in line with the following items:
1. The version which has been corrected according to the evaluators' suggestions will be remitted and it will be made clear whether the aforementioned article is an unedited document regarding which the rights to be authorized are held and total responsibility will be assumed by the authors for the content of the work being submitted to Ingeniería e Investigación, the Universidad Nacional de Colombia and third-parties;
2. The authorization conferred on the journal will come into force from the date on which it is included in the respective volume and issue of Ingeniería e Investigación in the Open Journal Systems and on the journal's main page (https://revistas.unal.edu.co/index.php/ingeinv), as well as in different databases and indices in which the publication is indexed;
3. The authors authorize the Universidad Nacional de Colombia's journal Ingeniería e Investigación to publish the document in whatever required format (printed, digital, electronic or whatsoever known or yet to be discovered form) and authorize Ingeniería e Investigación to include the work in any indices and/or search engines deemed necessary for promoting its diffusion;
4. The authors accept that such authorization is given free of charge and they, therefore, waive any right to receive remuneration from the publication, distribution, public communication and any use whatsoever referred to in the terms of this authorization.