Published

2024-12-01

An Intelligent System-Based Strategic Plan for a Humanoid Robot Playing the Game of Dominoes

Plan estratégico basado en sistemas inteligentes para el juego de dominó por parte de un robot humanoide

DOI:

https://doi.org/10.15446/ing.investig.108904

Keywords:

computer vision, decision tree, dominoes, board games, forward kinematics, human robot interaction, image processing, intelligent system, NAO robot, robotics (en)
visión por computadora, árbol de decisión, dominó, juegos de mesa, cinemática inversa, interacción humano-robot, procesamiento de imágenes, sistema inteligente, robot NAO, robótica (es)

Downloads

Authors

The application of intelligent systems in humanoid robots provides research and development alternatives, as is the case with human-robot interaction. This paper focuses on the design and implementation of an intelligent system in the NAO robot to plan and execute moves in the board game known as dominoes. This system uses the NAO robot’s vision to determine the distribution of tiles on the board, as well as those available in hand. The appropriate moves are planned using a computational intelligence technique, and a kinematics model executes them. The results show that the vision system has an average error of 5.62%, in addition to 3.37% for the decision-making system and 7.87% for the kinematics of the robot. This leads to the NAO robot being capable of making successful plays through the proposed system, with an average effectiveness of 83.15%.

La aplicación de sistemas inteligentes en robots humanoides brinda alternativas de investigación y desarrollo, como es el caso de la interacción humano-robot. Este trabajo se enfoca en el diseño e implementación de un sistema inteligente en el robot NAO para planificar y ejecutar movimientos en el juego de mesa conocido como dominó. Este sistema utiliza el sistema de visión del robot NAO para determinar la distribución de fichas en el tablero y de las disponibles en la mano. Los movimientos adecuados se calculan mediante una técnica de inteligencia computacional, y un modelo de cinemática los ejecuta. Los resultados muestran que el sistema de visión tiene un error promedio del 5.62 %, ası como del 3.37 % para el sistema de decisión y de 7.87 % para la cinemática del robot. Esto lleva a que, a través del sistema propuesto, el robot NAO sea capaz de realizar jugadas exitosas con una efectividad promedio del 83.15 %.

References

Ajani, H., Obasekore, B., Kang, and Rammohan, M. (2023). Robotic assistance in radiology: A covid-19 scenario. IEEE Access, 11, 49785–49793. DOI: https://doi.org/10.1109/ACCESS.2023.3277526

Asfour, et al. (2018). Armar-6: A collaborative humanoid robot for industrial environments. In 2018 ieee-ras 18th int. conf. humanoid robots (humanoids) (pp. 447–454). DOI: https://doi.org/10.1109/HUMANOIDS.2018.8624966

Barakeh, S., Alkork, A., Karar, S., Said, S., and Beyrouthy, T. (2019). Pepper humanoid robot as a service robot: A customer approach. In 2019 3rd int. conf. bio-eng. smart tech. (biosmart) (pp. 1–4). DOI: https://doi.org/10.1109/BIOSMART.2019.8734250

Barnes, J., FakhrHosseini, S., Vasey, E., Ryan, J., Park, C., and Jeon, M. (2019). Promoting steam education with child-robot musical theater. In 2019 14th acm/ieee int. conf. human-robot interact. (hri) (p. 366). DOI: https://doi.org/10.1109/HRI.2019.8673311

Bi, Q., Yang, M., Zhang, A., Goupil, A., and Feng, L. (2018). Accurate football detection and localization for nao robot with the improved hog svm approach. In 2018 chinese autom. cong. (cac) (pp. 567–571). DOI: https://doi.org/10.1109/CAC.2018.8623727

Budiharto, W., Cahyani, A. D., Rumondor, P. C. B., and Suhartono, D. (2017). Edurobot: intelligent humanoid robot with natural interaction for education and entertainment. Procedia Comp. Sci., 116, 564–570. DOI: https://doi.org/10.1016/j.procs.2017.10.064

Cao, J., et al. (2020). Robot-assisted joint attention: A comparative study between children with autism spectrum disorder and typically developing children in interaction with nao. IEEE Access, 8, 1–1. DOI: https://doi.org/10.1109/ACCESS.2020.3044483

Dı́az, J., Shaik, J., Santofimio, J., and Quintero, M. (2018). Intelligent execution of behaviors in a nao robot exposed to audiovisual stimulus. In 2018 ieee 2nd colombian conf. robotics automat. (ccra) (pp. 1–6). DOI: https://doi.org/10.1109/CCRA.2018.8588149

Feidakis, I., Gkolompia, A., Marnelaki, K., Marathaki, S., Emmanouilidou, S., and Agrianiti, E. (2023). Nao robot, an educational assistant in training, educational and therapeutic sessions. In 2023 ieee global eng. educ. conf. (educon) (pp. 1–6). DOI: https://doi.org/10.1109/EDUCON54358.2023.10125229

Goenaga, L., Navarro, C., Quintero, M., and Pardo, M. (2020). Imitating human emotions with a nao robot as interviewer playing the role of vocational tutor. Electronics, 9. DOI: https://doi.org/10.3390/electronics9060971

Hu, F., Zhao, J., Meng, and Wu, S. (2020). Application of deep reinforcement learning in the board game. In 2020 ieee int. conf. info. tech. big data art. intel. (iciba) (Vol. 1, pp. 809–812). DOI: https://doi.org/10.1109/ICIBA50161.2020.9277188

Inoue, F., Jimenez, T., Haruta, M., and Oonuki, M. (2022). Effect of impression on learners during partnered robots learning programming while playing board games against each other. In 2022 joint 12th int. conf. soft comp. intel. syst. and 23rd int. symp. adv. intel. syst. (scis&isis) (pp. 1–4). DOI: https://doi.org/10.1109/SCISISIS55246.2022.10001985

Jeon, M., et al. (2017). Robot opera: A modularized afterschool program for steam education at local elementary school. In 2017 14th int. conf. ubiquitous robots ambient intel. (urai) (pp. 935–936). DOI: https://doi.org/10.1109/URAI.2017.7992869

Juang. (2022, Jan.). Humanoid robots play chess using visual control. Multimedia Tools App., 81, 1–22. DOI: https://doi.org/10.1007/s11042-021-11636-y

Juang, and Zhang, J. (2019). Visual tracking control of humanoid robot. IEEE Access, 7, 29213–29222. DOI: https://doi.org/10.1109/ACCESS.2019.2901009

Karmanova, V., Serpiva, S., Perminov, A., Fedoseev, A., and Tsetserukou, D. (2021). Swarmplay: Interactive tic-tac-toe board game with swarm of nano-uavs driven by reinforcement learning. In 2021 30th ieee int. conf. robot human interac. comm. (ro-man) (pp. 1269–1274). DOI: https://doi.org/10.1109/RO-MAN50785.2021.9515355

Karunanayake, et al. (2020). Towards a smart opponent for board games: Learning beyond simulations. In 2020 ieee int. conf. syst. man cyber. (smc) (pp. 1943–1950). DOI: https://doi.org/10.1109/SMC42975.2020.9283458

Knox, and Watanabe, K. (2018). Aibo robot mortuary rites in the japanese cultural context. In 2018 ieee/rsj int. conf. intel. robots syst. (iros) (pp. 2020–2025). DOI: https://doi.org/10.1109/IROS.2018.8594066

Kofinas, E., Orfanoudakis, M., and Lagoudakis, M. (2013). Complete analytical inverse kinematics for nao. In 2013 13th int. conf. autonom. robot syst. (pp. 1–6). DOI: https://doi.org/10.1109/Robotica.2013.6623524

Kołosowski, A., Wolniakowski, K., and Miatliuk, K. (2020). Collaborative robot system for playing chess. In 2020 int. conf. mechatronic sys. mat. (msm) (pp. 1–6). DOI: https://doi.org/10.1109/MSM49833.2020.9202398

Lestriandoko, and Sadikin, R. (2016). Circle detection based on hough transform and mexican hat filter. In 2016 int. conf. control infor. app. (ic3ina) (pp. 153–157). DOI: https://doi.org/10.1109/IC3INA.2016.7863041

Li, E., Imeokparia, M., Ketzner, M., and Tsahai, T. (2019). Teaching the nao robot to play a human-robot interactive game. In 2019 int. conf. comp. sci. comp. intel. (csci) (pp. 712–715). DOI: https://doi.org/10.1109/CSCI49370.2019.00134

Lin, S., Ng, and Sebo, S. (2022). Benefits of an interactive robot character in immersive puzzle games. In 2022 31st ieee int. conf. robot human interac. comm. (ro-man) (pp. 37–44). DOI: https://doi.org/10.1109/RO-MAN53752.2022.9900828

Lobos-Tsunekawa, F., Leiva, S., and Solar, J. (2018). Visual navigation for biped humanoid robots using deep reinforcement learning. IEEE Robotics Automat. Lett., 3, 3247–3254. DOI: https://doi.org/10.1109/LRA.2018.2851148

Mercier, and Lubart, T. (2021, Feb.). The effects of board games on creative potential. J. Creat. Behavior, 55. DOI: https://doi.org/10.31234/osf.io/zb74h

Mohan, and Kuchenbecker, K. (2019). A design tool for therapeutic social-physical human-robot interactions. In 2019 14th acm/ieee int. conf. human-robot interac. (hri) (pp. 727–729). DOI: https://doi.org/10.1109/HRI.2019.8673202

Moya, E., Slawiñski, V., Mut, B., and Wagner, B. (2021, May). Intercontinental bilateral-by-phases teleoperation of a humanoid robot. IEEE Latin Amer. Trans., 20, 64–72. DOI: https://doi.org/10.1109/TLA.2022.9662174

Ovalle-Magallanes, R., et al. (2021). Transfer learning for humanoid robot appearance-based localization in a visual map. IEEE Access, 9, 6868–6877. DOI: https://doi.org/10.1109/ACCESS.2020.3048936

Patil, D., Fegade, A., Kadam, P., Patil, N., and Singhaniya, N. (2021). A novel framework for robotic chess. In 2021 2nd int. smart elec. comm. (icosec) (pp. 1–6). DOI: https://doi.org/10.1109/ICOSEC51865.2021.9591961

Piperakis, M., Koskinopoulou, A., and Trahanias, P. (2018). Nonlinear state estimation for humanoid robot walking. IEEE Robotics Automat. Lett., 3, 3347–3354. DOI: https://doi.org/10.1109/LRA.2018.2852788

Raghavan, H. M. B., Srinivasan, R., Dey, S., and Chandar, T. (2021). Automated laser alignment and image processing-based robotic carrom player. In 2021 20th int. conf. adv. robotics (icar) (pp. 499–504). DOI: https://doi.org/10.1109/ICAR53236.2021.9659332

Rath, N., Mahapatro, P., Nath, P., and Dash, R. (2019). Autonomous chess playing robot. In 2019 28th ieee int. conf. robot human interac. comm. (ro-man) (pp. 1–6). DOI: https://doi.org/10.1109/RO-MAN46459.2019.8956389

Schadenberg. (2019). Predictability in human-robot interactions for autistic children. In 2019 14th acm/ieee int. conf. human-robot interac. (hri) (pp. 748–750). DOI: https://doi.org/10.1109/HRI.2019.8673135

Sun, C., Wang, T., Zheng, H., and Liu, H. (2023). An improved object detection method based on nao robot. In 2023 ieee 3rd int. conf. power elec. comp. app. (icpeca) (pp. 1184–1188). DOI: https://doi.org/10.1109/ICPECA56706.2023.10076034

Tres. (2014). Estudio e implementación de algoritmos de resolución del juego del dominó para un robot antropomórfico (Unpublished master’s thesis). Universidad Politécnica de Cataluña, Spain.

Wang, X., Xue, B., and Chen, B. (2020). Matsuoka’s cpg with desired rhythmic signals for adaptive walking of humanoid robots. IEEE Trans. Cyber., 50, 613–626. DOI: https://doi.org/10.1109/TCYB.2018.2870145

Wei. (2020). A comprehensive approach to the generation of human-like arm movements on robot nao. IEEE Access, 8, 172869–172881. DOI: https://doi.org/10.1109/ACCESS.2020.3025532

Yan, S., Li, C., Liu, M., Liu, M., and Chen, Q. (2022). Roboseg: Real-time semantic segmentation on computationally constrained robots. IEEE Trans. Syst. Man Cyber. Syst., 52, 1567–1577. DOI: https://doi.org/10.1109/TSMC.2020.3032437

Yang, M., Shyu, H., Yu, S., Sun, N., Yin, W., and Chen,

W. (2019). Integrating image and textual information in human–robot interactions for children with autism spectrum disorder. IEEE Trans. Multimedia, 21, 746–759. DOI: https://doi.org/10.1109/TMM.2018.2865828

Zhai, S., Wen, J., Zhu, J., and Guo, G. (2017). Trajectory planning of nao robot arm based on target recognition. In 2017 int. conf. adv. mechatronic syst. (icamechs) (pp. 403–407). DOI: https://doi.org/10.1109/ICAMechS.2017.8316507

Zhu, H., Yi, R., Chellali, and Feng, L. (2018). Object recognition and localization algorithm based on nao robot. In 2018 27th ieee int. symp. robot human interac. comm. (roman) (pp. 483–486). DOI: https://doi.org/10.1109/ROMAN.2018.8525656

How to Cite

APA

Medina, Álex, Charris, D., Pardo, M. & Quintero M., C. G. (2024). An Intelligent System-Based Strategic Plan for a Humanoid Robot Playing the Game of Dominoes. Ingeniería e Investigación, 44(3), e108904. https://doi.org/10.15446/ing.investig.108904

ACM

[1]
Medina, Álex, Charris, D., Pardo, M. and Quintero M., C.G. 2024. An Intelligent System-Based Strategic Plan for a Humanoid Robot Playing the Game of Dominoes. Ingeniería e Investigación. 44, 3 (Dec. 2024), e108904. DOI:https://doi.org/10.15446/ing.investig.108904.

ACS

(1)
Medina, Álex; Charris, D.; Pardo, M.; Quintero M., C. G. An Intelligent System-Based Strategic Plan for a Humanoid Robot Playing the Game of Dominoes. Ing. Inv. 2024, 44, e108904.

ABNT

MEDINA, Álex; CHARRIS, D.; PARDO, M.; QUINTERO M., C. G. An Intelligent System-Based Strategic Plan for a Humanoid Robot Playing the Game of Dominoes. Ingeniería e Investigación, [S. l.], v. 44, n. 3, p. e108904, 2024. DOI: 10.15446/ing.investig.108904. Disponível em: https://revistas.unal.edu.co/index.php/ingeinv/article/view/108904. Acesso em: 24 dec. 2025.

Chicago

Medina, Álex, Daniela Charris, Mauricio Pardo, and Christian G. Quintero M. 2024. “An Intelligent System-Based Strategic Plan for a Humanoid Robot Playing the Game of Dominoes”. Ingeniería E Investigación 44 (3):e108904. https://doi.org/10.15446/ing.investig.108904.

Harvard

Medina, Álex, Charris, D., Pardo, M. and Quintero M., C. G. (2024) “An Intelligent System-Based Strategic Plan for a Humanoid Robot Playing the Game of Dominoes”, Ingeniería e Investigación, 44(3), p. e108904. doi: 10.15446/ing.investig.108904.

IEEE

[1]
Álex Medina, D. Charris, M. Pardo, and C. G. Quintero M., “An Intelligent System-Based Strategic Plan for a Humanoid Robot Playing the Game of Dominoes”, Ing. Inv., vol. 44, no. 3, p. e108904, Dec. 2024.

MLA

Medina, Álex, D. Charris, M. Pardo, and C. G. Quintero M. “An Intelligent System-Based Strategic Plan for a Humanoid Robot Playing the Game of Dominoes”. Ingeniería e Investigación, vol. 44, no. 3, Dec. 2024, p. e108904, doi:10.15446/ing.investig.108904.

Turabian

Medina, Álex, Daniela Charris, Mauricio Pardo, and Christian G. Quintero M. “An Intelligent System-Based Strategic Plan for a Humanoid Robot Playing the Game of Dominoes”. Ingeniería e Investigación 44, no. 3 (December 1, 2024): e108904. Accessed December 24, 2025. https://revistas.unal.edu.co/index.php/ingeinv/article/view/108904.

Vancouver

1.
Medina Álex, Charris D, Pardo M, Quintero M. CG. An Intelligent System-Based Strategic Plan for a Humanoid Robot Playing the Game of Dominoes. Ing. Inv. [Internet]. 2024 Dec. 1 [cited 2025 Dec. 24];44(3):e108904. Available from: https://revistas.unal.edu.co/index.php/ingeinv/article/view/108904

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

253

Downloads

Download data is not yet available.