Published

2025-01-31

Investigating the Effects of Cutting Methods for Aluminum Metallic Foams

Investigación de los efectos de los métodos de corte para espumas metálicas de aluminio

DOI:

https://doi.org/10.15446/ing.investig.110998

Keywords:

Aluminium foam metals, wire EDM cutting, secondary operations, laser cutting (en)
espumas metálicas de aluminio, operaciones secundarias, corte por láser, corte EDM por hilo (es)

Downloads

Authors

The quality of foam metal materials, which are commonly used in industrial applications due to their unique properties, increasingly relies on secondary processing. Metal foams are produced as plates or in the desired shape via direct or indirect foaming. Given their intended use, the primary challenge lies in determining how to cut them with the necessary precision and join them with sufficient strength. However, the most difficult aspect is cutting them in the required shapes and combining them with fixed or removable securing mechanisms. This work involved cutting two sample types: a 10 mm thick AlMgSi foam with a density of 0.5 g/cm³, using a laser cutter, and a 19 mm thick AlMgSi sandwich structure with a 1 mm thick aluminum outer plate via wire electric discharge machining (WEDM). In addition, the results of manual cutting and angle grinding, which are often utilized in production, were analyzed through scanning electron microscopy. Under certain suboptimal conditions, laser cutting caused aluminum to dissolve into the cavities and form burrs beneath the cutting edge. In contrast, when accurate and undistorted cellular architecture is essential, WEDM is very efficient, even though it is 200 times slower than laser cutting. Hand-sawing caused cellular fractures and frequent dispersion, so it is suitable for applications that do not necessitate accuracy.

La calidad de los materiales de espuma metálica, que se utilizan comúnmente en aplicaciones industriales debido a sus propiedades únicas, depende cada vez más del procesamiento secundario. Las espumas metálicas se producen en placas o en la forma deseada mediante espumación directa o indirecta. Dado su uso previsto, el principal desafío radica en determinar cómo cortarlas con la precisión necesaria y unirlas con la fuerza suficiente. Sin embargo, el aspecto más difícil es cortarlas en las formas requeridas y combinarlas con mecanismos de sujeción fijos o removibles. Este trabajo involucró el corte de dos tipos de muestras: una espuma de AlMgSi de 10 mm de grosor con una densidad de 0.5 g/cm³, utilizando un cortador láser, y una estructura tipo sándwich de AlMgSi de 19 mm de grosor con placa exterior de aluminio de 1 mm de grosor mediante mecanizado por electroerosión por hilo (WEDM). Además, los resultados del corte manual y del rectificado angular, que a menudo se utilizan en la producción, se analizaron a través de microscopía electrónica de barrido. En ciertas condiciones subóptimas, el corte láser hizo que el aluminio se disolviera en las cavidades y formara rebabas debajo del borde de corte. En contraste, cuando una arquitectura celular precisa y no distorsionada se hace esencial, el WEDM es muy eficiente, a pesar de ser 200 veces más lento que el corte láser. El corte manual causó fracturas celulares y dispersión frecuente, por lo que es adecuado para aplicaciones que no requieran precisión.

References

[1] C. Ensarioglu, A. Bakirci, H. Koluk, and M. C. Cakir, “Metal foams and their applications in aerospace components,” in Materials, Structures and Manufactur-ing for Aircraft, Springer Cham, 2022, ch. 2, pp. 27–64. https://doi.org/10.1007/978-3-030-91873-6_2. DOI: https://doi.org/10.1007/978-3-030-91873-6_2

[2] A. Changdar and S. S. Chakraborty, “State-of-the-art manufacturing of metal foams and processing—A re-view,” in Adv. Form., Mach. Autom., 2023, pp. 127–142. https://doi.org/10.1007/978-981-19-3866-5_11 DOI: https://doi.org/10.1007/978-981-19-3866-5_11

[3] P. De Jaeger, C. T’Joen, H. Huisseune, B. Ameel, S. De Schampheleire, and M. De Paepe, “Assessing the in-fluence of four cutting methods on the thermal con-tact resistance of open-cell aluminum foam,” Int. J. Heat. Mass Transf., vol. 55, no. 21–22, pp. 6142–6151, 2012. https://doi.org/10.1016/j.ijheatmasstransfer.2012.06.033 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2012.06.033

[4] B. S. Yilbas, The laser cutting process. Amsterdam, Netherlands: Elsevier, 2018. https://doi.org/10.1016/C2016-0-04438-8 DOI: https://doi.org/10.1016/C2016-0-04438-8

[5] S. Krajewski and J. Nowacki, “Preparation of Aluminium Foam Edges for Welding,” Adv. Mat. Sci, vol. 13, no. 3, 2013. https://doi.org/10.2478/adms-2013-0012 DOI: https://doi.org/10.2478/adms-2013-0012

[6] A. Changdar and S. S. Chakraborty, “Laser processing of metal foam - A review,” J. Manuf. Process., vol. 61, pp. 208–225, 2021. https://doi.org/10.1016/j.jmapro.2020.10.012 DOI: https://doi.org/10.1016/j.jmapro.2020.10.012

[7] M. S. Raza, S. Datta, and P. Saha, “Thermal and mor-phological analysis of the interaction effect of differ-ent assist gases with gas-filled closed-cell aluminium foam during laser cutting process,” Proc. Inst. Mech. Eng. B J. Eng. Manuf., vol. 237, no. 13, pp. 1958–1969, Nov. 2023. https://doi.org/10.1177/0954405420917252 DOI: https://doi.org/10.1177/0954405420917252

[8] A. Rabiei, J. Cance, and Z. Chacko, “A study on weld-ing of porous metals and metallic foams,” Adv. Eng. Mater., vol. 26, no. 4, Feb. 2024. https://doi.org/10.1002/adem.202301430 DOI: https://doi.org/10.1002/adem.202470008

[9] J. Zhang, Q. Qin, X. Han, and W. Ai, “The initial plastic failure of fully clamped geometrical asymmetric metal foam core sandwich beams,” Compos. B Eng., vol. 87, pp. 233–244, 2016. https://doi.org/10.1016/j.compositesb.2015.10.027 DOI: https://doi.org/10.1016/j.compositesb.2015.10.027

[10] M. Khokhlov, D. Ishchenko, and J. Khokhlova, “Peculi-arities of forming diffusion bimetallic joints of aluminum foam with a monolithic magnesium alloy,” J. Mag. Al-loys, vol. 4, no. 4, pp. 326–329, 2016. https://doi.org/10.1016/j.jma.2016.11.001 DOI: https://doi.org/10.1016/j.jma.2016.11.001

[11] N. Chen, Y. Feng, J. Chen, B. Li, F. Chen, and J. Zhao, “Vacuum brazing processes of aluminum foam,” Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Mat. Eng., vol. 42, no. 6, pp. 1118–1122, 2013. https://doi.org/10.1016/s1875-5372(13)60072-7. DOI: https://doi.org/10.1016/S1875-5372(13)60072-7

[12] C. Yao, Z. Hu, F. Mo, and Y. Wang, “Fabrication and fatigue behavior of aluminum foam sandwich panel via liquid diffusion welding method,” Metals, vol. 9, no. 5, pp. 1–11, 2019. https://doi.org/10.3390/met9050582 DOI: https://doi.org/10.3390/met9050582

[13] P. Peng et al., “High-performance aluminium foam sandwich prepared through friction stir welding,” Ma-ter. Lett., vol. 236, pp. 295–298, 2019. https://doi.org/10.1016/j.matlet.2018.10.125 DOI: https://doi.org/10.1016/j.matlet.2018.10.125

[14] M. Bušić, Z. Kožuh, D. Klobčar, and I. Samardžić, “Fric-tion stir welding (FSW) of aluminium foam sandwich panels,” Metalurgija, vol. 55, no. 3, pp. 473–476, 2016. https://hrcak.srce.hr/153688

[15] J. Banhart, C. Schmoll, and U. Neumann, “Light-weight aluminium foam structures for ships,” Proc. Conf. Mat. Ocean. Environ., vol. 1, no. January 1998, pp. 55–63, 1998.

[16] J. Nowacki, S. Krajewski, and J. Grabian, “Problems of aluminum foam soldering,” Przegląd Spawalnictwa – Weld. Tech. Rev., vol. 86, no. 1, 2014. https://doi.org/10.26628/ps.v86i1.114 DOI: https://doi.org/10.26628/ps.v86i1.114

[17] T. Bernard, H. W. Bergmann, C. Haberling, and H. G. Haldenwanger, “Joining technologies for Al-foam-Al-sheet compound structures,” Adv. Eng. Mater., vol. 4, no. 10, pp. 798–802, 2002. DOI: https://doi.org/10.1002/1527-2648(20021014)4:10<798::AID-ADEM798>3.0.CO;2-Z

[18] B. Castanie, C. Bouvet, and M. Ginot, “Review of composite sandwich structure in aeronautic applica-tions,” Comp. P. C: Open Acc., vol. 1, 2020. https://doi.org/10.1016/j.jcomc.2020.100004 DOI: https://doi.org/10.1016/j.jcomc.2020.100004

[19] J. Feldhusen, C. Warkotsch, and A. Kempf, “Develop-ment of a mechanical technology for joining sand-wich elements,” J. Sand. Struct. Mater., vol. 11, no. 6, pp. 471–486, 2009. https://doi.org/10.1177/1099636209105378 DOI: https://doi.org/10.1177/1099636209105378

[20] A. M. Joesbury, “New approaches to composite met-al joining”, PhD dissertation, School Aerosp., Trans. Manuf. Cranfield Univ., Cranfield, UK, 2015. http://dspace.lib.cranfield.ac.uk/handle/1826/10009.

[21] L. Wan, Y. Huang, T. Huang, Z. Lv, and J. Feng, “Inter-facial behavior and mechanical properties of alumi-num foam joint fabricated by surface self-abrasion flux-less soldering,” J. Alloys Comp., vol. 671, pp. 346–353, 2016. https://doi.org/10.1016/j.jallcom.2016.01.246 DOI: https://doi.org/10.1016/j.jallcom.2016.01.246

[22] J. Líska, K. Kun, and K. Líska, “MMC materials ultrasonic machining and its economic aspects,” Proc. Eng., vol. 149, pp. 245–256, 2016. https://doi.org/10.1016/j.proeng.2016.06.663 DOI: https://doi.org/10.1016/j.proeng.2016.06.663

[23] J. Líska et al., “Evaluation of material structure chang-ing after ultrasonic milling of aluminum foam by Com-puted Tomography (CT),” 16th IMEKO TC10 Conf. 2019 Test. Diag. Insp. Comp. Value Chain Qual. Safe., pp. 45–49, 2019. https://www.imeko.org/publications/tc10-2019/IMEKO-TC10-2019-005.pdf

[24] J. Shi, H. Du, Z. Chen, and S. Lei, “Review of phase change heat transfer enhancement by metal foam,” Appl. Therm. Eng., vol. 219, art. 119427, Jan. 2023. https://doi.org/10.1016/j.applthermaleng.2022.119427 DOI: https://doi.org/10.1016/j.applthermaleng.2022.119427

[25] P. Samudre and S. V. Kailas, “Thermal performance enhancement in open-pore metal foam and foam-fin heat sinks for electronics cooling,” Appl. Therm. Eng., vol. 205, art. 117885, Mar. 2022. https://doi.org/10.1016/j.applthermaleng.2021.117885 DOI: https://doi.org/10.1016/j.applthermaleng.2021.117885

[26] Ç. Bolat, B. Ergene, U. Karakılınç, and A. Gökşenli, “Investigating on the machinability assessment of pre-cision machining pumice reinforced AA7075 syntactic foam,” Proc. Inst. Mech. Eng. C. J. Mech. Eng. Sci., vol. 236, no. 5, pp. 2380–2394, Mar. 2022. https://doi.org/10.1177/09544062211027613 DOI: https://doi.org/10.1177/09544062211027613

[27] H. P. Degischer and B. Kriszt, eds., Handbook of Cellu-lar Metals - Production, Processing, Applications. Ho-boken, NJ, USA: Wiley, 2002. DOI: https://doi.org/10.1002/3527600558

[28] V. Thulasikanth and R. Padmanabhan, “Fabrication of sustainable closed-cell aluminium foams using recy-cled fly ash and eggshell powder,” Mater. Today Commun., vol. 37, p. 107302, Dec. 2023. https://doi.org/10.1016/j.mtcomm.2023.107302 DOI: https://doi.org/10.1016/j.mtcomm.2023.107302

[29] S. Sunder Sharma, S. Yadav, A. Joshi, A. Goyal, and R. Khatri, “Application of metallic foam in vehicle struc-ture: A review,” Mater. Today Proc., vol. 63, pp. 347–353, 2022. https://doi.org/10.1016/j.matpr.2022.03.201 DOI: https://doi.org/10.1016/j.matpr.2022.03.201

[30] M. Sharaf, M. S. Yousef, and A. S. Huzayyin, “Year-round energy and exergy performance investigation of a photovoltaic panel coupled with metal foam/phase change material composite,” Renew. Energy, vol. 189, pp. 777–789, Apr. 2022. https://doi.org/10.1016/j.renene.2022.03.071 DOI: https://doi.org/10.1016/j.renene.2022.03.071

[31] M. S. Yousef, M. Sharaf, and A. S. Huzayyin, “Energy, exergy, economic, and enviroeconomic assessment of a photovoltaic module incorporated with a paraf-fin-metal foam composite: An experimental study,” Energy, vol. 238, art. 121807, Jan. 2022. https://doi.org/10.1016/j.energy.2021.121807 DOI: https://doi.org/10.1016/j.energy.2021.121807

[32] R. Thiyagarajan and M. Senthil kumar, “A review on closed cell metal matrix syntactic foams: A green ini-tiative towards eco-sustainability,” Mat. Manuf. Proc., vol. 36, no. 12, pp. 1333–1351, Sep. 2021. https://doi.org/10.1080/10426914.2021.1928696 DOI: https://doi.org/10.1080/10426914.2021.1928696

[33] M. Madgule, C. G. Sreenivasa, and A. V Borgaonkar, “Aluminium metal foam production methods, proper-ties and applications- a review,” Mater. Today Proc., vol. 77, pp. 673–679, 2023. https://doi.org/10.1016/j.matpr.2022.11.287 DOI: https://doi.org/10.1016/j.matpr.2022.11.287

[34] Mechanical testing of metals — Ductility testing — Compression test for porous and cellular metals, ISO 13314:2011 2011.

[35] O. Cavusoglu, “The 3D surface morphological investi-gation of laser cutting process of 2024-T3 aluminum al-loy sheet,” Optik, vol. 238, art. 166739, 2021. https://doi.org/10.1016/j.ijleo.2021.166739 DOI: https://doi.org/10.1016/j.ijleo.2021.166739

[36] M. S. Raza, S. Datta, J. Singh, and P. Saha, “Fibre laser cutting of thick closed cell aluminium foam: Morpho-logical analysis and its parametric optimisation,” Int. J. Prec. Tech., vol. 8, no. 2/3/4, art. 279, 2019. https://doi.org/10.1504/ijptech.2019.10022603

[37] P. S. Mohammad Shahid Raza, S. Datta, and J. Singh, “Fibre laser cutting of thick closed cell aluminium foam,” in Proc. 10th Int. Conf. Prec. Meso, Micro Nano Eng., 2017, pp. 400-403. https://doi.org/10.1504/ijptech.2019.10022603. DOI: https://doi.org/10.1504/IJPTECH.2019.10022603

[38] G. Doğan, A. Özkiş, and M. H. Arslan, “A new method-ology based on artificial intelligence for estimating the compressive strength of concrete from surface imag-es,” Ing. Inv., vol. 44, no. 1, art. e99526, Jan. 2024. https://doi.org/10.15446/ing.investig.99526 DOI: https://doi.org/10.15446/ing.investig.99526

[39] M. Paksoy, H. Çandar, and N. F. Yılmaz, “The ad-vancement of waterjet-guided laser cutting system for enhanced surface quality in AISI 1020 steel sheets,” Materials, vol. 17, no. 14, p. 3458, Jul. 2024. https://doi.org/10.3390/ma17143458 DOI: https://doi.org/10.3390/ma17143458

[40] C. Zhao et al., “Multi-focus water-jet guided laser: For improving efficiency in cutting superalloys,” J. Manuf. Process, vol. 119, pp. 729–743, Jun. 2024. https://doi.org/10.1016/j.jmapro.2024.04.002 DOI: https://doi.org/10.1016/j.jmapro.2024.04.002

How to Cite

APA

BAKIRCI, A., SIGIRTMAC, T., CAKIR, M. C. and UGUZ, A. (2024). Investigating the Effects of Cutting Methods for Aluminum Metallic Foams. Ingeniería e Investigación, 44(3), 110998. https://doi.org/10.15446/ing.investig.110998

ACM

[1]
BAKIRCI, A., SIGIRTMAC, T., CAKIR, M.C. and UGUZ, A. 2024. Investigating the Effects of Cutting Methods for Aluminum Metallic Foams. Ingeniería e Investigación. 44, 3 (Dec. 2024), 110998. DOI:https://doi.org/10.15446/ing.investig.110998.

ACS

(1)
BAKIRCI, A.; SIGIRTMAC, T.; CAKIR, M. C.; UGUZ, A. Investigating the Effects of Cutting Methods for Aluminum Metallic Foams. Ing. Inv. 2024, 44, 110998.

ABNT

BAKIRCI, A.; SIGIRTMAC, T.; CAKIR, M. C.; UGUZ, A. Investigating the Effects of Cutting Methods for Aluminum Metallic Foams. Ingeniería e Investigación, [S. l.], v. 44, n. 3, p. 110998, 2024. DOI: 10.15446/ing.investig.110998. Disponível em: https://revistas.unal.edu.co/index.php/ingeinv/article/view/110998. Acesso em: 24 mar. 2025.

Chicago

BAKIRCI, Altug, Tayfun SIGIRTMAC, Mustafa Cemal CAKIR, and Agah UGUZ. 2024. “Investigating the Effects of Cutting Methods for Aluminum Metallic Foams”. Ingeniería E Investigación 44 (3):110998. https://doi.org/10.15446/ing.investig.110998.

Harvard

BAKIRCI, A., SIGIRTMAC, T., CAKIR, M. C. and UGUZ, A. (2024) “Investigating the Effects of Cutting Methods for Aluminum Metallic Foams”, Ingeniería e Investigación, 44(3), p. 110998. doi: 10.15446/ing.investig.110998.

IEEE

[1]
A. BAKIRCI, T. SIGIRTMAC, M. C. CAKIR, and A. UGUZ, “Investigating the Effects of Cutting Methods for Aluminum Metallic Foams”, Ing. Inv., vol. 44, no. 3, p. 110998, Dec. 2024.

MLA

BAKIRCI, A., T. SIGIRTMAC, M. C. CAKIR, and A. UGUZ. “Investigating the Effects of Cutting Methods for Aluminum Metallic Foams”. Ingeniería e Investigación, vol. 44, no. 3, Dec. 2024, p. 110998, doi:10.15446/ing.investig.110998.

Turabian

BAKIRCI, Altug, Tayfun SIGIRTMAC, Mustafa Cemal CAKIR, and Agah UGUZ. “Investigating the Effects of Cutting Methods for Aluminum Metallic Foams”. Ingeniería e Investigación 44, no. 3 (December 1, 2024): 110998. Accessed March 24, 2025. https://revistas.unal.edu.co/index.php/ingeinv/article/view/110998.

Vancouver

1.
BAKIRCI A, SIGIRTMAC T, CAKIR MC, UGUZ A. Investigating the Effects of Cutting Methods for Aluminum Metallic Foams. Ing. Inv. [Internet]. 2024 Dec. 1 [cited 2025 Mar. 24];44(3):110998. Available from: https://revistas.unal.edu.co/index.php/ingeinv/article/view/110998

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

57

Downloads

Download data is not yet available.