Published
Path Tracking for a Differential-Drive Robot Applied in the Automatic Disinfection of Hospital Environments
Seguimiento de ruta para un robot de guiado diferencial aplicado en la desinfección auto-mática de entornos hospitalarios
DOI:
https://doi.org/10.15446/ing.investig.111403Keywords:
hospital disinfection, mobile robotics, path tracking, robot positioning with scanners, ROS (en)desinfección hospitalaria, robótica móvil, seguimiento de ruta, posicionamiento robótico con escáner, ROS (es)
Downloads
Since the end of the COVID-19 emergency was declared, the development and implementation of robotic systems aimed at mitigating exposure to the virus or to similar diseases has increased. This work proposed a simulation algorithm aimed at automatic route tracking for a differential-drive mobile robot in the disinfection of hospital environments, using scanners as proximity sensors. Furthermore, to validate the route-tracking algorithm, scenarios were created in the robot operating system (ROS), which were based on the floor plans of two healthcare institutions in the Tolima region (Colombia), i.e., the Emergency Room and the Coronary Intensive Care Unit of the Tolima Clinic and the Neonatal Intensive Care Unit of the Maternal and Child Health Unit of Tolima. For validation, route tracking was first performed automatically using the proposed algorithm. Then, the computer keyboard was used to perform manual tracking, simulating a joystick within a real robotic implementation. Five tests were conducted for each scenario, with better results obtained through automatic tracking, demonstrating the efficiency of this methodology.
Desde que se declaró el fin de la emergencia por COVID-19, se ha incrementado el desarrollo y la implementación de sistemas robóticos enfocados a mitigar la exposición al virus o a enfermedades similares. En este trabajo se propuso un algoritmo de simulación orientado al seguimiento automático de rutas para un robot móvil de guiado diferencial en la desinfección de ambientes hospitalarios, utilizando el escáner como sensor de proximidad. Además, para validar el algoritmo de seguimiento de rutas, se crearon escenarios en el sistema operativo robótico (ROS), con base en los planos de dos instituciones de salud de la región del Tolima (Colombia), i.e., Urgencias y la Unidad Coronaria de Cuidados Intensivos de la Clínica Tolima y la Unidad de Cuidados Intensivos Neonatal de la Unidad Materno Infantil del Tolima. Para la validación, el seguimiento de las rutas se realizó primero de forma automática con el algoritmo propuesto. Luego se empleó el teclado del computador para realizar un seguimiento manual, simulando un joystick en una implementación robótica real. Se realizaron cinco pruebas para cada escenario, obteniendo mejores resultados mediante el seguimiento automático, lo que comprueba la eficiencia de esta metodología.
References
[1] R. Gassert and V. Dietz, “Rehabilitation robots for the treatment of sensorimotor deficits: A neurophysiological perspective,” J. NeuroEng. Rehabil., vol. 15, no. 1, art. 46, 2018. https://doi.org/10.1186/s12984-018-0383-x
[2] D. K. Agarwal et al., “Initial experience with da Vinci single-port robot-assisted radical prostatectomies,” Eur. Urol., vol. 77, no. 3, pp. 373–379, 2020. https://doi.org/10.1016/j.eururo.2019.04.001
[3] A. Begić, “Application of service robots for disinfection in medical institu-tions,” in Advanced Technologies, Systems, and Applications II, M. Hadžikadić and S. Avdaković, S., Eds. Cham, Germany: Springer, 2017, pp. 1056–1065, 2017. https://doi.org/10.1007/978-3-319-71321-2_89
[4] K. L. N., D. N. M. Kumaran, G. R., H. Arshadh, I. D., and V. C., “Design and fabrication of medicine delivery robots for hospitals,” Proc. Int Conf. Recent Trends Comp. Comm. Net. Tech. (ICRTCCNT), 2019, art. 3432156. https://doi.org/10.2139/ssrn.3432156
[5] T. Thinh and H. Nguyen, “Telemedicine mobile robot - Robots to assist in remote medical,” Int. J. Mech. Eng. Robot. Res., vol. 10, pp. 337–342, 2021. https://doi.org/10.18178/ijmerr.10.6.337-342
[6] Z. H. Khan, A. Siddique, and C. W. Lee, “Robotics utilization for healthcare digitization in global COVID-19 management,” Int. J. Environ. Res. Public Health, vol. 17, no. 11, art. 3819, 2020. https://doi.org/10.3390/ijerph17113819
[7] World Health Organization, “Cleaning and disinfection of environmental surfaces in the context of COVID-19,” 2020. [Online]. Available: https://www.who.int/publications/i/item/cleaning-and-disinfection-of-environmental-surfaces-inthe-context-of-covid-19
[8] G. Z. Yang, “Combating COVID-19—The role of robotics in managing public health and infectious diseases,” Sci. Robot., vol. 5, no. 40, art. 5589. https://doi.org/10.1126/scirobotics.abb5589
[9] A. G. Sánchez, N. Bernhart, and W. D. Smart, “Improving UV disinfection of objects by a robot using human feedback,” in Proc. 33rd IEEE Int. Conf. Robot. Hum. Interact. Commun. (RO-MAN), Pasadena, CA, USA, 2024, pp. 1697–1704. https://doi.org/10.1109/RO-MAN60168.2024.10731182
[10] A. M. Padilla Ericksen, “Implementación y comparativa de algoritmos de control y planificación local para robots móviles utilizando ROS,” Bache-lor’s thesis, E.T.S.I. Industriales (UPM), Madrid, Spain, 2017. [Online]. Available: https://oa.upm.es/48146/
[11] B. Ramalingam et al., “A human support robot for the cleaning and maintenance of door handles using a deep-learning framework,” Sen-sors, vol. 20, no. 12, art. 3543, 2020. https://doi.org/10.3390/s20123543
[12] D. Hu, H. Zhong, S. Li, J. Tan, and Q. He, “Segmenting areas of potential contamination for adaptive robotic disinfection in built environments,” Build. Environ., vol. 184, art. 107226, 2020. https://doi.org/10.1016/j.buildenv.2020.107226
[13] M. V. Shikhman and S. V. Shidlovskiy, “Algorithms and models of multi-robot systems and their implementation in ROS,” IOP Conf. Ser. Mater. Sci. Eng., vol. 696, art. 012015, 2019. https://doi.org/10.1088/1757-899X/696/1/012015
[14] Y. Song, T. Zhang, B. Li, and H. Huang, “A virtual experiment platform for 2d robot autonomous navigation algorithm system based on ROS,” in Proc. IEEE Int. Conf. Inf. Autom. (ICIA), 2018, pp. 985–990. https://doi.org/10.1109/ICInfA.2018.8812455
[15] G. Álvarez and O. Flor, “Desempeño en métodos de navegación autó-noma para robots móviles,” Minerva, vol. 1, no. 2, pp. 19–29, 2020. https://doi.org/10.47460/minerva.v1i2.8
[16] Z. Yao, N. Ma, and Y. Chen, “An autonomous mobile combination disinfection system,” Sensors, vol. 24, no. 1, art. 53, 2024. https://doi.org/10.3390/s24010053
[17] X. Yun and Y. Yamamoto, “Internal dynamics of a wheeled mobile robot,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS ’93), vol. 2, pp. 1288–1294, 1993. https://doi.org/10.1109/IROS.1993.583753
[18] B. Pappas, “Multi-robot frontier based map coverage using the ROS environment,” M.S. thesis, Auburn Univ., Auburn, AL, USA, 2014. [Online]. Available: https://etd.auburn.edu/bitstream/handle/10415/4058/BrianThesis.pdf
[19] J. Kerr and K. Nickels, “Robot operating systems: Bridging the gap between human and robot,” in Proc. 44th Southeastern Symp. Syst. Theory (SSST), 2012, pp. 99–104. https://doi.org/10.1109/SSST.2012.6195127
[20] A. Araújo, D. Portugal, M. S. Couceiro, J. Sales, and R. P. Rocha, “Desa-rrollo de un robot móvil compacto integrado en el middleware ROS,” Rev. Iberoam. Autom. Inform. Ind. (RIAI), vol. 11, no. 3, pp. 315–326, 2014. https://doi.org/10.1016/j.riai.2014.02.009
[21] ROS Wiki, “SimulatingOneRobot,” [Online]. Available: https://wiki.ros.org/stage/Tutorials/SimulatingOneRobot
[22] M. F. Jaramillo-Morales, S. Dogru, L. Marques, and J. B. Gomez-Mendoza, “Predictive power estimation for a differential drive mobile robot based on motor and robot dynamic models,” in Proc. 3rd IEEE Int. Conf. Robot. Comput. (IRC), 2019, pp. 301–307. https://doi.org/10.1109/IRC.2019.00056
[23] M. F. Jaramillo-Morales, S. Dogru, and L. Marques, “Energy optimal speed profiles for a differential drive mobile robot with payload,” J. Optim. Theory Appl., vol. 204, art. 17, 2025. https://doi.org/10.1007/s10957-024-02590-46
[24] S. Gatesichapakorn, J. Takamatsu, and M. Ruchanurucks, “ROS-based autonomous mobile robot navigation using 2D LiDAR and RGB-D camera,” in Proc. ICA-SYMP., 2019, pp. 151–154. https://doi.org/10.1109/ICA-SYMP.2019.8645984
[25] C. Jinadatha et al., “Is the pulsed xenon ultraviolet light no-touchdisinfection system effective on methicillin-resistant Staphylococcus aureus in the absence of manual cleaning?” Am. J. Infect. Control, vol. 43, no. 8, pp. 878–881, 2015. https://doi.org/10.1016/j.ajic.2015.04.005
[26] J. H. Yang, U. I. Wu, H. M. Tai, and W. H. Sheng, “Effectiveness of an ultraviolet-C disinfection system for reduction of healthcare-associated pathogens,” J. Microbiol. Immunol. Infect., vol. 52, no. 3, pp. 487–493, 2019. https://doi.org/10.1016/j.jmii.2017.08.017
[27] M. Buonanno, D. Welch, I. Shuryak, and D. J. Brenner, “Far-UVC light (222 nm) efficiently and safely inactivates airborne human coronavirus-es,” Sci. Rep., vol. 10, art. 10285, 2020. https://doi.org/10.31984/oactiva.v5i3.501
[28] C. S. Heilingloh et al., “Susceptibility of SARS-CoV-2 to UV irradiation,” Am. J. Infect. Control, vol. 48, no. 10, pp. 1273–1275, 2020. https://doi.org/10.1016/j.ajic.2020.07.031
[29] B. C. Natali, Z. T. Miriam, F. Fabricio, and C. Katherine, “Luz ultravioleta para desinfección en áreas de salud, frente al covid-19. revisión de litera-tura,” Rev. Oactiva UC Cuenca, vol. 5, no. 3, pp. 107–114, 2020. https://doi.org/10.31984/oactiva.v5i3.501
[30] Webots Documentation, “Adept’s Pioneer 3-DX,” 2020. [Online]. Available: https://cyberbotics.com/doc/guide/pioneer-3dx
[31] S. Kim Min, R. Delgado, and W. Choi Byoung, “Comparative study of ROS on embedded system for a mobile robot,” J. Autom. Mobile Robot. Intell. Syst., vol. 2012, no. 3, pp. 61–67, 2018. https://doi.org/10.14313/JAMRIS_3-2018/19
[32] H. Baez et al., “Desarrollo y simulación de la evasión y navegación de robots móviles utilizando toolboxs de Matlab,” in Proc. LACCEI 2018, 2018, art. 124. https://doi.org/10.18687/LACCEI2018.1.1.124
[33] A. I. Yandún Torres and N. G. Sotomayor, “Planeación y seguimiento de trayectorias para un robot móvil,” Escuela Politécnica Nacional, 2012. [Online]. Available: http://bibdigital.epn.edu.ec/handle/15000/4913
[34] J. Zhao, S. Liu, and J. Li, “Research and implementation of autonomous navigation for mobile robots based on SLAM algorithm under ROS,” Sensors, vol. 22, no. 11, art. 4172, 2022. https://doi.org/10.3390/s22114172
[35] L. Nwankwo, C. Fritze, K. Bartsch, and E. Rueckert, “ROMR: A ROS-based open-source mobile robot,” 2025. [Online]. Available: https://doi.org/10.17605/OSF.IO/K83X7
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2025 Diana Lorena Gómez Lasso, Juan Sebastián Cardozo Ramos, David Alejandro Ramírez Gámez, Mauricio Jaramillo Morales

This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors or holders of the copyright for each article hereby confer exclusive, limited and free authorization on the Universidad Nacional de Colombia's journal Ingeniería e Investigación concerning the aforementioned article which, once it has been evaluated and approved, will be submitted for publication, in line with the following items:
1. The version which has been corrected according to the evaluators' suggestions will be remitted and it will be made clear whether the aforementioned article is an unedited document regarding which the rights to be authorized are held and total responsibility will be assumed by the authors for the content of the work being submitted to Ingeniería e Investigación, the Universidad Nacional de Colombia and third-parties;
2. The authorization conferred on the journal will come into force from the date on which it is included in the respective volume and issue of Ingeniería e Investigación in the Open Journal Systems and on the journal's main page (https://revistas.unal.edu.co/index.php/ingeinv), as well as in different databases and indices in which the publication is indexed;
3. The authors authorize the Universidad Nacional de Colombia's journal Ingeniería e Investigación to publish the document in whatever required format (printed, digital, electronic or whatsoever known or yet to be discovered form) and authorize Ingeniería e Investigación to include the work in any indices and/or search engines deemed necessary for promoting its diffusion;
4. The authors accept that such authorization is given free of charge and they, therefore, waive any right to receive remuneration from the publication, distribution, public communication and any use whatsoever referred to in the terms of this authorization.










