Published

2025-10-24

Path Tracking for a Differential-Drive Robot Applied in the Automatic Disinfection of Hospital Environments

Seguimiento de ruta para un robot de guiado diferencial aplicado en la desinfección auto-mática de entornos hospitalarios

DOI:

https://doi.org/10.15446/ing.investig.111403

Keywords:

hospital disinfection, mobile robotics, path tracking, robot positioning with scanners, ROS (en)
desinfección hospitalaria, robótica móvil, seguimiento de ruta, posicionamiento robótico con escáner, ROS (es)

Downloads

Authors

Since the end of the COVID-19 emergency was declared, the development and implementation of robotic systems aimed at mitigating exposure to the virus or to similar diseases has increased. This work proposed a simulation algorithm aimed at automatic route tracking for a differential-drive mobile robot in the disinfection of hospital environments, using scanners as proximity sensors. Furthermore, to validate the route-tracking algorithm, scenarios were created in the robot operating system (ROS), which were based on the floor plans of two healthcare institutions in the Tolima region (Colombia), i.e., the Emergency Room and the Coronary Intensive Care Unit of the Tolima Clinic and the Neonatal Intensive Care Unit of the Maternal and Child Health Unit of Tolima. For validation, route tracking was first performed automatically using the proposed algorithm. Then, the computer keyboard was used to perform manual tracking, simulating a joystick within a real robotic implementation. Five tests were conducted for each scenario, with better results obtained through automatic tracking, demonstrating the efficiency of this methodology.

Desde que se declaró el fin de la emergencia por COVID-19, se ha incrementado el desarrollo y la implementación de sistemas robóticos enfocados a mitigar la exposición al virus o a enfermedades similares. En este trabajo se propuso un algoritmo de simulación orientado al seguimiento automático de rutas para un robot móvil de guiado diferencial en la desinfección de ambientes hospitalarios, utilizando el escáner como sensor de proximidad. Además, para validar el algoritmo de seguimiento de rutas, se crearon escenarios en el sistema operativo robótico (ROS), con base en los planos de dos instituciones de salud de la región del Tolima (Colombia), i.e., Urgencias y la Unidad Coronaria de Cuidados Intensivos de la Clínica Tolima y la Unidad de Cuidados Intensivos Neonatal de la Unidad Materno Infantil del Tolima. Para la validación, el seguimiento de las rutas se realizó primero de forma automática con el algoritmo propuesto. Luego se empleó el teclado del computador para realizar un seguimiento manual, simulando un joystick en una implementación robótica real. Se realizaron cinco pruebas para cada escenario, obteniendo mejores resultados mediante el seguimiento automático, lo que comprueba la eficiencia de esta metodología.

References

[1] R. Gassert and V. Dietz, “Rehabilitation robots for the treatment of sensorimotor deficits: A neurophysiological perspective,” J. NeuroEng. Rehabil., vol. 15, no. 1, art. 46, 2018. https://doi.org/10.1186/s12984-018-0383-x

[2] D. K. Agarwal et al., “Initial experience with da Vinci single-port robot-assisted radical prostatectomies,” Eur. Urol., vol. 77, no. 3, pp. 373–379, 2020. https://doi.org/10.1016/j.eururo.2019.04.001

[3] A. Begić, “Application of service robots for disinfection in medical institu-tions,” in Advanced Technologies, Systems, and Applications II, M. Hadžikadić and S. Avdaković, S., Eds. Cham, Germany: Springer, 2017, pp. 1056–1065, 2017. https://doi.org/10.1007/978-3-319-71321-2_89

[4] K. L. N., D. N. M. Kumaran, G. R., H. Arshadh, I. D., and V. C., “Design and fabrication of medicine delivery robots for hospitals,” Proc. Int Conf. Recent Trends Comp. Comm. Net. Tech. (ICRTCCNT), 2019, art. 3432156. https://doi.org/10.2139/ssrn.3432156

[5] T. Thinh and H. Nguyen, “Telemedicine mobile robot - Robots to assist in remote medical,” Int. J. Mech. Eng. Robot. Res., vol. 10, pp. 337–342, 2021. https://doi.org/10.18178/ijmerr.10.6.337-342

[6] Z. H. Khan, A. Siddique, and C. W. Lee, “Robotics utilization for healthcare digitization in global COVID-19 management,” Int. J. Environ. Res. Public Health, vol. 17, no. 11, art. 3819, 2020. https://doi.org/10.3390/ijerph17113819

[7] World Health Organization, “Cleaning and disinfection of environmental surfaces in the context of COVID-19,” 2020. [Online]. Available: https://www.who.int/publications/i/item/cleaning-and-disinfection-of-environmental-surfaces-inthe-context-of-covid-19

[8] G. Z. Yang, “Combating COVID-19—The role of robotics in managing public health and infectious diseases,” Sci. Robot., vol. 5, no. 40, art. 5589. https://doi.org/10.1126/scirobotics.abb5589

[9] A. G. Sánchez, N. Bernhart, and W. D. Smart, “Improving UV disinfection of objects by a robot using human feedback,” in Proc. 33rd IEEE Int. Conf. Robot. Hum. Interact. Commun. (RO-MAN), Pasadena, CA, USA, 2024, pp. 1697–1704. https://doi.org/10.1109/RO-MAN60168.2024.10731182

[10] A. M. Padilla Ericksen, “Implementación y comparativa de algoritmos de control y planificación local para robots móviles utilizando ROS,” Bache-lor’s thesis, E.T.S.I. Industriales (UPM), Madrid, Spain, 2017. [Online]. Available: https://oa.upm.es/48146/

[11] B. Ramalingam et al., “A human support robot for the cleaning and maintenance of door handles using a deep-learning framework,” Sen-sors, vol. 20, no. 12, art. 3543, 2020. https://doi.org/10.3390/s20123543

[12] D. Hu, H. Zhong, S. Li, J. Tan, and Q. He, “Segmenting areas of potential contamination for adaptive robotic disinfection in built environments,” Build. Environ., vol. 184, art. 107226, 2020. https://doi.org/10.1016/j.buildenv.2020.107226

[13] M. V. Shikhman and S. V. Shidlovskiy, “Algorithms and models of multi-robot systems and their implementation in ROS,” IOP Conf. Ser. Mater. Sci. Eng., vol. 696, art. 012015, 2019. https://doi.org/10.1088/1757-899X/696/1/012015

[14] Y. Song, T. Zhang, B. Li, and H. Huang, “A virtual experiment platform for 2d robot autonomous navigation algorithm system based on ROS,” in Proc. IEEE Int. Conf. Inf. Autom. (ICIA), 2018, pp. 985–990. https://doi.org/10.1109/ICInfA.2018.8812455

[15] G. Álvarez and O. Flor, “Desempeño en métodos de navegación autó-noma para robots móviles,” Minerva, vol. 1, no. 2, pp. 19–29, 2020. https://doi.org/10.47460/minerva.v1i2.8

[16] Z. Yao, N. Ma, and Y. Chen, “An autonomous mobile combination disinfection system,” Sensors, vol. 24, no. 1, art. 53, 2024. https://doi.org/10.3390/s24010053

[17] X. Yun and Y. Yamamoto, “Internal dynamics of a wheeled mobile robot,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS ’93), vol. 2, pp. 1288–1294, 1993. https://doi.org/10.1109/IROS.1993.583753

[18] B. Pappas, “Multi-robot frontier based map coverage using the ROS environment,” M.S. thesis, Auburn Univ., Auburn, AL, USA, 2014. [Online]. Available: https://etd.auburn.edu/bitstream/handle/10415/4058/BrianThesis.pdf

[19] J. Kerr and K. Nickels, “Robot operating systems: Bridging the gap between human and robot,” in Proc. 44th Southeastern Symp. Syst. Theory (SSST), 2012, pp. 99–104. https://doi.org/10.1109/SSST.2012.6195127

[20] A. Araújo, D. Portugal, M. S. Couceiro, J. Sales, and R. P. Rocha, “Desa-rrollo de un robot móvil compacto integrado en el middleware ROS,” Rev. Iberoam. Autom. Inform. Ind. (RIAI), vol. 11, no. 3, pp. 315–326, 2014. https://doi.org/10.1016/j.riai.2014.02.009

[21] ROS Wiki, “SimulatingOneRobot,” [Online]. Available: https://wiki.ros.org/stage/Tutorials/SimulatingOneRobot

[22] M. F. Jaramillo-Morales, S. Dogru, L. Marques, and J. B. Gomez-Mendoza, “Predictive power estimation for a differential drive mobile robot based on motor and robot dynamic models,” in Proc. 3rd IEEE Int. Conf. Robot. Comput. (IRC), 2019, pp. 301–307. https://doi.org/10.1109/IRC.2019.00056

[23] M. F. Jaramillo-Morales, S. Dogru, and L. Marques, “Energy optimal speed profiles for a differential drive mobile robot with payload,” J. Optim. Theory Appl., vol. 204, art. 17, 2025. https://doi.org/10.1007/s10957-024-02590-46

[24] S. Gatesichapakorn, J. Takamatsu, and M. Ruchanurucks, “ROS-based autonomous mobile robot navigation using 2D LiDAR and RGB-D camera,” in Proc. ICA-SYMP., 2019, pp. 151–154. https://doi.org/10.1109/ICA-SYMP.2019.8645984

[25] C. Jinadatha et al., “Is the pulsed xenon ultraviolet light no-touchdisinfection system effective on methicillin-resistant Staphylococcus aureus in the absence of manual cleaning?” Am. J. Infect. Control, vol. 43, no. 8, pp. 878–881, 2015. https://doi.org/10.1016/j.ajic.2015.04.005

[26] J. H. Yang, U. I. Wu, H. M. Tai, and W. H. Sheng, “Effectiveness of an ultraviolet-C disinfection system for reduction of healthcare-associated pathogens,” J. Microbiol. Immunol. Infect., vol. 52, no. 3, pp. 487–493, 2019. https://doi.org/10.1016/j.jmii.2017.08.017

[27] M. Buonanno, D. Welch, I. Shuryak, and D. J. Brenner, “Far-UVC light (222 nm) efficiently and safely inactivates airborne human coronavirus-es,” Sci. Rep., vol. 10, art. 10285, 2020. https://doi.org/10.31984/oactiva.v5i3.501

[28] C. S. Heilingloh et al., “Susceptibility of SARS-CoV-2 to UV irradiation,” Am. J. Infect. Control, vol. 48, no. 10, pp. 1273–1275, 2020. https://doi.org/10.1016/j.ajic.2020.07.031

[29] B. C. Natali, Z. T. Miriam, F. Fabricio, and C. Katherine, “Luz ultravioleta para desinfección en áreas de salud, frente al covid-19. revisión de litera-tura,” Rev. Oactiva UC Cuenca, vol. 5, no. 3, pp. 107–114, 2020. https://doi.org/10.31984/oactiva.v5i3.501

[30] Webots Documentation, “Adept’s Pioneer 3-DX,” 2020. [Online]. Available: https://cyberbotics.com/doc/guide/pioneer-3dx

[31] S. Kim Min, R. Delgado, and W. Choi Byoung, “Comparative study of ROS on embedded system for a mobile robot,” J. Autom. Mobile Robot. Intell. Syst., vol. 2012, no. 3, pp. 61–67, 2018. https://doi.org/10.14313/JAMRIS_3-2018/19

[32] H. Baez et al., “Desarrollo y simulación de la evasión y navegación de robots móviles utilizando toolboxs de Matlab,” in Proc. LACCEI 2018, 2018, art. 124. https://doi.org/10.18687/LACCEI2018.1.1.124

[33] A. I. Yandún Torres and N. G. Sotomayor, “Planeación y seguimiento de trayectorias para un robot móvil,” Escuela Politécnica Nacional, 2012. [Online]. Available: http://bibdigital.epn.edu.ec/handle/15000/4913

[34] J. Zhao, S. Liu, and J. Li, “Research and implementation of autonomous navigation for mobile robots based on SLAM algorithm under ROS,” Sensors, vol. 22, no. 11, art. 4172, 2022. https://doi.org/10.3390/s22114172

[35] L. Nwankwo, C. Fritze, K. Bartsch, and E. Rueckert, “ROMR: A ROS-based open-source mobile robot,” 2025. [Online]. Available: https://doi.org/10.17605/OSF.IO/K83X7

How to Cite

APA

Gómez Lasso, D. L., Cardozo Ramos, J. S., Ramírez Gámez, D. A. & Jaramillo Morales, M. (2025). Path Tracking for a Differential-Drive Robot Applied in the Automatic Disinfection of Hospital Environments. Ingeniería e Investigación, 45(2), e111403. https://doi.org/10.15446/ing.investig.111403

ACM

[1]
Gómez Lasso, D.L., Cardozo Ramos, J.S., Ramírez Gámez, D.A. and Jaramillo Morales, M. 2025. Path Tracking for a Differential-Drive Robot Applied in the Automatic Disinfection of Hospital Environments. Ingeniería e Investigación. 45, 2 (Aug. 2025), e111403. DOI:https://doi.org/10.15446/ing.investig.111403.

ACS

(1)
Gómez Lasso, D. L.; Cardozo Ramos, J. S.; Ramírez Gámez, D. A.; Jaramillo Morales, M. Path Tracking for a Differential-Drive Robot Applied in the Automatic Disinfection of Hospital Environments. Ing. Inv. 2025, 45, e111403.

ABNT

GÓMEZ LASSO, D. L.; CARDOZO RAMOS, J. S.; RAMÍREZ GÁMEZ, D. A.; JARAMILLO MORALES, M. Path Tracking for a Differential-Drive Robot Applied in the Automatic Disinfection of Hospital Environments. Ingeniería e Investigación, [S. l.], v. 45, n. 2, p. e111403, 2025. DOI: 10.15446/ing.investig.111403. Disponível em: https://revistas.unal.edu.co/index.php/ingeinv/article/view/111403. Acesso em: 25 dec. 2025.

Chicago

Gómez Lasso, Diana Lorena, Juan Sebastián Cardozo Ramos, David Alejandro Ramírez Gámez, and Mauricio Jaramillo Morales. 2025. “Path Tracking for a Differential-Drive Robot Applied in the Automatic Disinfection of Hospital Environments”. Ingeniería E Investigación 45 (2):e111403. https://doi.org/10.15446/ing.investig.111403.

Harvard

Gómez Lasso, D. L., Cardozo Ramos, J. S., Ramírez Gámez, D. A. and Jaramillo Morales, M. (2025) “Path Tracking for a Differential-Drive Robot Applied in the Automatic Disinfection of Hospital Environments”, Ingeniería e Investigación, 45(2), p. e111403. doi: 10.15446/ing.investig.111403.

IEEE

[1]
D. L. Gómez Lasso, J. S. Cardozo Ramos, D. A. Ramírez Gámez, and M. Jaramillo Morales, “Path Tracking for a Differential-Drive Robot Applied in the Automatic Disinfection of Hospital Environments”, Ing. Inv., vol. 45, no. 2, p. e111403, Aug. 2025.

MLA

Gómez Lasso, D. L., J. S. Cardozo Ramos, D. A. Ramírez Gámez, and M. Jaramillo Morales. “Path Tracking for a Differential-Drive Robot Applied in the Automatic Disinfection of Hospital Environments”. Ingeniería e Investigación, vol. 45, no. 2, Aug. 2025, p. e111403, doi:10.15446/ing.investig.111403.

Turabian

Gómez Lasso, Diana Lorena, Juan Sebastián Cardozo Ramos, David Alejandro Ramírez Gámez, and Mauricio Jaramillo Morales. “Path Tracking for a Differential-Drive Robot Applied in the Automatic Disinfection of Hospital Environments”. Ingeniería e Investigación 45, no. 2 (August 1, 2025): e111403. Accessed December 25, 2025. https://revistas.unal.edu.co/index.php/ingeinv/article/view/111403.

Vancouver

1.
Gómez Lasso DL, Cardozo Ramos JS, Ramírez Gámez DA, Jaramillo Morales M. Path Tracking for a Differential-Drive Robot Applied in the Automatic Disinfection of Hospital Environments. Ing. Inv. [Internet]. 2025 Aug. 1 [cited 2025 Dec. 25];45(2):e111403. Available from: https://revistas.unal.edu.co/index.php/ingeinv/article/view/111403

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

117

Downloads

Download data is not yet available.