Published

2024-12-01

Electromechanical Impedance-Based Damage Detection Using Machine Learning Approaches

Detección de daños basada en impedancia electromecánica mediante métodos de aprendizaje automático

DOI:

https://doi.org/10.15446/ing.investig.111646

Keywords:

Electromechanical Impedance Method, K-Means algorithm, Decision Tree, Random Forest, Structural Health Monitoring (en)
Método de impedancia electromecánica, Algoritmo K-Medias, Árbol de Decisión, Bosque Aleatorio, Control del Estado Estructural (es)

Authors

Electromechanical impedance-based structural health monitoring has been the subject of extensive research in recent decades. The method’s low cost and ability to detect minor structural damages make it an appealing alternative to other non-destructive techniques. Ongoing research on damage detection approaches continues to be a topic of interest in relation to the electromechanical impedance method. This work proposes the use of the K-Means, Decision Tree, and Random Forest algorithms to distinguish between four structural conditions in an aluminum beam. These techniques were applied to raw impedance data and a dataset reduced via principal components analysis. The findings revealed that the compressed dataset improved the accuracy of all models, except for the Random Forest approach, whose accuracy decreased by 2.9%. The K-Means algorithm was most affected by the reduction in dimensionality, with a 105.9% increase in accuracy. The Decision Tree and Random Forest methods yielded outstanding outcomes, comparable or superior to other state-of-the-art approaches. This makes them a compelling choice for detecting damage using electromechanical impedance data, even when using raw data as the input information.

El monitoreo de la salud estructural basado en la impedancia electromagnética ha sido objeto de investigación exhaustiva en las últimas décadas. El bajo coste del método y su capacidad para detectar daños estructurales menores lo convierten en una alternativa atractiva a otras técnicas no destructivas. La investigación actual sobre enfoques de detección de daños sigue siendo un tema de interés en lo que concierne al método de impedancia electromecánica. En este trabajo se propone utilizar los algoritmos K-Means, Decision Tree y Random Forest para diferenciar entre cuatro condiciones estructurales en una viga de aluminio. Estas técnicas se aplicaron a datos de impedancia en bruto y a un conjunto de datos reducido mediante análisis de componentes principales. Los resultados revelaron que el conjunto de datos comprimido mejoro la precisión de todos los modelos, excepto en el caso del método Random Forest, cuya precisión disminuyo en un 2,9 %. El algoritmo K-Means fue el más afectado por la reducción de la dimensionalidad, con un aumento del 105,9 % en la precisión. Los métodos Decision Tree y Random Forest produjeron resultados sobresalientes, comparables o superiores a otros enfoques de vanguardia. Esto los convierte en una opción convincente para detectar daños a traves de datos de impedancia electromecánica, incluso cuando se utilizan datos en bruto como informacion de entrada.

References

Ai, D., and Cheng, J. (2023). A deep learning approach for electromechanical impedance-based concrete structural damage quantification using a two- dimensional convolutional neural network. Mechanical Systems and Signal Processing, 183, 109634. https://doi.org/10.1016/j.ymssp.2022.109634

Ai, D., Mo, F., Yang, F., and Zhu, H. (2022). Electromechanical impedance-based concrete structural damage detection using principal component analysis incorporated with a neural network. Journal of Intelligent Material Systems and Structures, 33(17), 2241–2256. https://doi.org/10.1177/1045389X221077440

Alazzawi, O., and Wang, D. (2021). Damage identification using the PZT impedance signals and residual learning algorithm. Journal of Civil Structural Health Monitoring, 11, 1225–1238. https://doi.org/10.1007/s13349-021-00505-9

Albakri, M. I., and Tarazaga, P. A. (2017). Dynamic analysis of a piezoelectric augmented beam system with adhesive bonding layer effects. Journal of Intelligent Materials Systems and Structures, 28(2), 178–194. https://doi.org/10.1177/1045389X16648426

Alelyani, S., Tang, J., and Liu, H. (2014). Feature Selection for Clustering: A Review. In C. C. Aggarwal and C. K. Reddy (Eds.), Data Clustering: Algorithms and Applications (pp. 29–60). CRC Press.

Bari, Sk. A., and Moharana, S. (2024). A novel approach to alloy-based bonding for piezoelectric sensor integrated in impedance-based structural health monitoring. Journal of Asian Architecture and Building Engineering, 23(3), 898–920. https://doi.org/10.1080/13467581.2023.2257279

Barros, B., Conde, B., Cabaleiro, M., and Riveiro, B. (2023). Design and testing of a decision tree algorithm for early failure detection in steel truss bridges. Engineering Structures, 289, 116243. https://doi.org/10.1016/j.engstruct.2023.116243

Bergmayr, T., Holl, S., Kralovec, C., and Schagerl, M. (2023). Local residual random forest classifier for strain-based damage detection and localization in aerospace sandwich structures. Composite Structures, 304(1), 116331. https://doi.org/10.1016/j.compstruct.2022.116331

Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.

Biswal, T., and Parida, S. K. (2022). A novel high impedance fault detection in the micro-grid system by the summation of accumulated difference of residual voltage method and fault event classification using discrete wavelet transforms and a decision tree approach. Electric Power Systems Research, 209, 108042. https://doi.org/10.1016/j.epsr.2022.108042

Caswell, T. A., Sales de Andrade, E., Lee, A., Droettboom, M., Hoffmann, T., Klymak, J., Hunter, J., Firing, E., Stansby, D., Varoquaux, N., Nielsen, J. H., Gustafsson, O., Root, B., May, R., Sunden, K., Elson, P., Seppanen, J. K., Lee, J.-J., Dale, D., ... Silvester, S. (2023). matplotlib/matplotlib: REL: v3.7.3 (v3.7.3). Zenodo. https://doi.org/10.5281/zenodo.8336761

Chen, D., Montano, V., Huo, L., and Song, G. (2020). Depth detection of subsurface voids in concrete-filled steel tubular (CFST) structure using percussion and decision tree. Measurement, 163, 107869. https://doi.org/10.1016/j.measurement.2020.107869

Chen, W., Zhang, S., Li, R., and Shahabi, H. (2018). Performance evaluation of the GIS-based data mining techniques of best-first decision tree, random forest, and naıve Bayes tree for landslide susceptibility modeling. Science of The Total Environment, 644, 1006–1018. https://doi.org/10.1016/j.scitotenv.2018.06.389

Chencho, J., Li, H., Hao, R., Wang, L., and Li, L. (2021). Development and application of random forest technique for element level structural damage quantification. Structural Control and Health Monitoring, 28(3), e2678. https://doi.org/10.1002/stc.2678

Davis, J. C. (2002). Statistics and Data Analysis in Geology (3rd ed.). John Wiley & Sons. de Rezende, S. W. F., de Moura Jr., J. R. V., Finzi Neto, R. M., Gallo, C. A., and Steffen Jr., V. (2020). Convolutional neural network and impedance-based SHM applied to damage detection. Engineering Research Express, 2(3), Article 035031. https://doi.org 10.1088/2631-8695/abb568

Dinh, T. P., Pham-Quoc, C., Thinh, T. N., Nguyen, B. K. D., and Kha, P. C. (2023). A flexible and efficient FPGA-based random forest architecture for IoT applications. Internet of Things, 22, 100813. https://doi.org/10.1016/j.iot.2023.100813

Djemana, M., Hrairi, M., and Al Jeroudi, Y. (2017). Using Electromechanical impedance and extreme learning machine to detect and locate damage in structures. Journal of Nondestructive Evaluation, 36, 39. https://doi.org/10.1007/s10921-017-0417-5

Du, F., Wu, S., Xu, C., Yang, Z., and Su, Z. (2023). Electromechanical Impedance Temperature Compensation and Bolt Loosening Monitoring Based on Modified Unet and Multitask Learning. IEEE Sensors Journal, 23(5), 4556–4567. https://doi.org/10.1109/JSEN.2021.3132943

Fan, X., and Li, J. (2020). Damage identification in plate structures using sparse regularization based electromechanical impedance technique. Sensors, 20(24), 7069. https://doi.org/10.3390/s20247069

Fletcher, S., and Md. Islam, Z. (2019). Decision tree classification with differential privacy: A survey. ACM Computing Surveys, 52(4), 83. https://doi.org/10.1145/3337064

Géron, A. (2019). Mãos à obra aprendizado de máquina com Scikit-Learn and TensorFlow: Conceitos, ferramentas e técnicas para a construcão de sistemas inteligentes. Alta Books.

Giurgiutiu, V. (2014). Structural health monitoring with piezoelectric wafer active sensors (2nd ed.). Academic Press. https://doi.org/10.1016/C2013-0-00155-7

Gonçalves, D. R., de Moura Jr., J. R. V., Pereira, P. E. C., Mendes, M. V. A., and Diniz-Pinto, H. S. (2021). Indicator kriging for damage position prediction by the use of electromechanical impedance-based structural health monitoring. CR Mécanique, 349(2), 225–240. https://doi.org/10.5802/crmeca.81

Hamzeloo, S. R., Barzegar, M., and Mohsenzadeh, M. (2020). Damage detection of L-shaped beam structure with a crack by electromechanical impedance response: Analytical approach and experimental validation. Journal of Nondestructive Evaluation, 39(2), 47. https://doi.org/10.1007/s10921-020-00692-3

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., del Rı́o, J. F., Wiebe, M., Peterson, P., ... Oliphant, T. E. (2020). Array programming with NumPy. Nature, 585, 357–362. https://doi.org/10.1038/s41586-020-2649-2

Harrison, M. (2020). Machine learning: Guia de referencia rápida. Novatec Editora.

Hong, H., Liu, J., Bui, D. T., Pradhan, B., Acharya, T. D., Pham, B. T., Zhu, A.-X., Chen, W., and Ahmad, B. B. (2018). Landslide susceptibility mapping using J48 Decision Tree with AdaBoost, bagging and Rotation Forest ensembles in the Guangchang area (China). CATENA, 163, 399–413. https://doi.org/10.1016/j.catena.2018.01.005

Islam, M. M., and Huang, H. (2014). Understanding the effects of adhesive layer on the electromechanical impedance (EMI) of bonded piezoelectric wafer transducer. Smart Materials and Structures, 23(12), 125037. https://doi.org/10.1088/0964-1726/23/12/125037

Jegadeeshwaran, R., and Sugumaran, V. (2013). Comparative study of decision tree classifier and best first tree classifier for fault diagnosis of automobile hydraulic brake system using statistical features. Measurement, 46(9), 3247–3260. https://doi.org/10.1016/j.measurement.2013.04.068

Jiang, X., Zhang, X., Tang, T., and Zhang, Y. (2021c). Electromechanical impedance-based self-diagnosis of piezoelectric smart structure using principal component analysis and LibSVM. Scientific Reports, 11, 11345. https://doi.org/10.1038/s41598-021-90567-y

Jiang, X., Zhang, X., and Zhang, Y. (2021a). Establishment and optimization of sensor fault identification model based on classification and regression tree and particle swarm optimization. Materials Research Express, 8(8), 085703. https://doi.org/10.1088/2053-1591/ac1cae

Jiang, X., Zhang, X., and Zhang, Y. (2021b). Piezoelectric active sensor self-diagnosis for electromechanical impedance monitoring using K-means clustering analysis and artificial neural network. Shock and Vibration, 2021, 5574898. https://doi.org/10.1155/2021/5574898

Kim, J., and Wang, K.-W. (2019). Electromechanical impedance-based damage identification enhancement using bistable and adaptive piezoelectric circuitry. Structural Health Monitoring, 18(4), 1268–1281. https://doi.org/10.1177/1475921718794202

Kim, S. Y., and Upneja, A. (2014). Predicting restaurant financial distress using decision tree and AdaBoosted decision tree models. Economic Modelling, 36, 354–362. https://doi.org/10.1016/j.econmod.2013.10.005

Koza, J. R. (1990). Concept formation and decision tree induction using the genetic programming paradigm. In H.-P. Schwefel and R. Manner (Eds.), PPSN I: Proceedings of the 1st Workshop on Parallel Problem Solving from Nature (pp. 124{-128). Springer-Verlag.

Li, H., Ai, D., Zhu, H., and Luo, H. (2021). Integrated electromechanical impedance technique with convolutional neural network for concrete structural damage quantification under varied temperatures. Mechanical Systems and Signal Processing, 152, 107467. https://doi.org/10.1016/j.ymssp.2020.107467

Lim, D. K., Mustapha, K. B., and Pagwiwoko, C. P. (2021). Delamination detection in composite plates using random forests. Composites Structures, 278, 114676. https://doi.org/10.1016/j.compstruct.2021.114676

Liu, J., and Han, J. (2014). Spectral clustering. In C. C. Aggarwal and C. K. Reddy (Eds.), Data Clustering: Algorithms and Applications (pp. 177{-200). CRC Press.

Liu, R., Li, S., Zhang, G., and Jin, W. (2021). Depth detection of void defect in sandwich-structured immersed tunnel using elastic wave and decision tree. Construction and Building Materials, 305, 124756. https://doi.org/10.1016/j.conbuildmat.2021.124756

Loyola-González, O., Ramı́rez-Sáyago, E., and Medina-Pérez, M. A. (2023). Towards improving decision tree induction by combining split evaluation measures. Knowledge-Based Systems, 277, 110832. https://doi.org/10.1016/j.knosys.2023.110832

Malinowski, P. H., Wandowski, T., and Singh, S. K. (2021). Employing principal component analysis for assessment of damage in GFRP composites using electromechanical impedance. Composite Structures, 266, 113820. https://doi.org/10.1016/j.compstruct.2021.113820

Martowicz, A., and Rosiek, M. (2013). Electromechanical impedance method. In T. Stepinski, T. Uhl, and W. Staszewski (Eds.). Advanced Structural Damage Detection: From Theory to Engineering Applications (ch. 6, pp. 141–176). John Wiley & Sons. https://doi.org/10.1002/9781118536148.ch6

Mayer, C. (2020). Python one-liners: Write concise, eloquent Python like a professional. No Starch Press, Inc. Meher, U., Mishra, S. K., and Sunny, M. R. (2022). Impedance-based looseness detection of bolted joints using artificial neural network: An experimental study. Structural Control and Health Monitoring, 29(10), e3049. https://doi.org/10.1002/stc.3049

Na, S., and Lee, H. K. (2013). A multi-sensing electromechanical impedance method for non-destructive evaluation of metallic structures. Smart Materials and Structures, 22(9), 095011. https://doi.org/10.1088/0964-1726/22/9/095011

Na, W. S. (2021). Bolt loosening detection using impedance-based non-destructive method and probabilistic neural network technique with minimal training data. Engineering Structures, 226, 111228. https://doi.org/10.1016/j.engstruct.2020.111228

Ning, F., Cheng, Z., Meng, D., and Wei, J. (2021). A framework combining acoustic features extraction method and random forest algorithm for gas pipeline leak detection and classification. Applied Acoustics, 182, 108255. https://doi.org/10.1016/j.apacoust.2021.108255

Nomelini, Q. S. S., da Silva, J. V., Gallo, C. A., Finzi Neto, R. M., Tsuruta, K. M., and de Moura Jr., J. R. V. (2020). Non-parametric inference applied to damage detection in the electromechanical impedance-based health monitoring. International Journal of Advanced Engineering Research and Science, 7(9), 73–79. https://doi.org/10.22161/ijaers.79.9

Oliveira, M. A. de, Monteiro, A. V., and Vieira Filho, J. (2018a). A new structural health monitoring strategy based on PZT sensors and convolutional neural network. Sensors, 18(9), 2955. https://doi.org/10.3390/s18092955

Parida, L., Moharana, S., and Giri, S. K. (2023). Machine learning approach for predicting impedance signatures of construction steel structures in various tensile pull action. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.03.741

Park, G., Sohn, H., Farrar, C. R., and Inman, D. J. (2003). Overview of piezoelectric impedance-based health monitoring and path forward. Shock and Vibration Digest, 35(6), 451–463. https://doi.org/10.1177/05831024030356001

Park, S., Lee, J.-J., Yun, C.-B., and Inman, D. J. (2008). Electro-mechanical impedance-based wireless structural health monitoring using PCA-data compression and K-means clustering algorithms. Journal of Intelligent Material Systems and Structures, 19(4), 509–520. https://doi.org/10.1177/1045389X07077400

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, É. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830

Perera, R., Torres, L., Ruiz, A., Barris, C., and Baena, M. (2019). An EMI-based clustering for structural health monitoring of NSM FRP strengthening systems. Sensors, 19(17), 3775. https://doi.org/10.3390/s19173775

Reddy, C. K., and Vinzamuri, B. (2014). A survey of partitional and hierarchical clustering algorithms. In C. C. Aggarwal and C. K. Reddy (Eds.). Data Clustering: Algorithms and Applications (pp. 87–110). CRC Press

Rokach, L., and Maimon, O. (2009). Classification trees. In L. Rokach and O. Maimon (Eds.), Data Mining and Knowledge Discovery Handbook (pp. 165–192). Springer. https://doi.org/10.1007/978-0-387-09823-4_9

Scikit-Learn Team (2023). Model selection and evaluation. https://scikit-learn.org/stable/model_selection.html

Simeone, O. (2018). A brief introduction to machine learning for engineers. Foundations and Trends® in Signal Processing, 12(3-4), 200-431. https://doi.org/10.1561/2000000102

Sun, F. P., Chaudhry, Z., Liang, C., and Rogers, C. A. (1995). Truss structure integrity identification using PZT sensor-actuator. Journal of Intelligent Materials Systems and Structures, 6(1), 134–139. https://doi.org/10.1177/1045389X9500600117

Tang,

X., Gu, X., Rao, L., and Lu, J. (2021). A single fault detection method of gearbox based on random forest hybrid classifier and improved Dempster-Shafer information fusion. Computers and Electrical Engineering, 92, 107101. https://doi.org/10.1016/j.compeleceng.2021.107101

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., ... SciPy 1.0 Contributors. (2020). SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nature Methods, 17, 261–272. https://doi.org/10.1038/s41592-019-0686-2

Wang, L., Yuan, B., Xu, Z., and Sun, Q. (2022). Synchronous detection of bolts looseness position and degree based on fusing electro-mechanical impedance. Mechanical Systems and Signal Processing, 174, 109068. https://doi.org/10.1016/j.ymssp.2022.109068

Yan, Q., Liao, X., Zhang, C., Zhang, Y., Luo, S., and Zhang, D. (2022). Intelligent monitoring and assessment on early-age hydration and setting of cement mortar through an EMI-integrated neural network. Measurement,203, 111984. https://doi.org/10.1016/j.measurement.2022.111984

Zhou, L., Chen, S.-X., Ni, Y.-Q., and Choy, A. W.-H. (2021). EMI-GCN: A hybrid model for real-time monitoring of multiple bolt looseness using electromechanical impedance and graph convolutional networks. Smart Materials and Structures, 30(3), 035032. https://doi.org/10.1088/1361-665X/abe292

How to Cite

APA

Pereira, P. E. C., de Rezende, S. W. F., Barella, B. P., de Moura Junior, J. dos R. V. and Finzi Neto, R. M. (2024). Electromechanical Impedance-Based Damage Detection Using Machine Learning Approaches. Ingeniería e Investigación, 44(3), e111646. https://doi.org/10.15446/ing.investig.111646

ACM

[1]
Pereira, P.E.C., de Rezende, S.W.F., Barella, B.P., de Moura Junior, J. dos R.V. and Finzi Neto, R.M. 2024. Electromechanical Impedance-Based Damage Detection Using Machine Learning Approaches. Ingeniería e Investigación. 44, 3 (Dec. 2024), e111646. DOI:https://doi.org/10.15446/ing.investig.111646.

ACS

(1)
Pereira, P. E. C.; de Rezende, S. W. F.; Barella, B. P.; de Moura Junior, J. dos R. V.; Finzi Neto, R. M. Electromechanical Impedance-Based Damage Detection Using Machine Learning Approaches. Ing. Inv. 2024, 44, e111646.

ABNT

PEREIRA, P. E. C.; DE REZENDE, S. W. F.; BARELLA, B. P.; DE MOURA JUNIOR, J. dos R. V.; FINZI NETO, R. M. Electromechanical Impedance-Based Damage Detection Using Machine Learning Approaches. Ingeniería e Investigación, [S. l.], v. 44, n. 3, p. e111646, 2024. DOI: 10.15446/ing.investig.111646. Disponível em: https://revistas.unal.edu.co/index.php/ingeinv/article/view/111646. Acesso em: 6 mar. 2025.

Chicago

Pereira, Paulo Elias Carneiro, Stanley Washington Ferreira de Rezende, Bruno Pereira Barella, José dos Reis Vieira de Moura Junior, and Roberto Mendes Finzi Neto. 2024. “Electromechanical Impedance-Based Damage Detection Using Machine Learning Approaches”. Ingeniería E Investigación 44 (3):e111646. https://doi.org/10.15446/ing.investig.111646.

Harvard

Pereira, P. E. C., de Rezende, S. W. F., Barella, B. P., de Moura Junior, J. dos R. V. and Finzi Neto, R. M. (2024) “Electromechanical Impedance-Based Damage Detection Using Machine Learning Approaches”, Ingeniería e Investigación, 44(3), p. e111646. doi: 10.15446/ing.investig.111646.

IEEE

[1]
P. E. C. Pereira, S. W. F. de Rezende, B. P. Barella, J. dos R. V. de Moura Junior, and R. M. Finzi Neto, “Electromechanical Impedance-Based Damage Detection Using Machine Learning Approaches”, Ing. Inv., vol. 44, no. 3, p. e111646, Dec. 2024.

MLA

Pereira, P. E. C., S. W. F. de Rezende, B. P. Barella, J. dos R. V. de Moura Junior, and R. M. Finzi Neto. “Electromechanical Impedance-Based Damage Detection Using Machine Learning Approaches”. Ingeniería e Investigación, vol. 44, no. 3, Dec. 2024, p. e111646, doi:10.15446/ing.investig.111646.

Turabian

Pereira, Paulo Elias Carneiro, Stanley Washington Ferreira de Rezende, Bruno Pereira Barella, José dos Reis Vieira de Moura Junior, and Roberto Mendes Finzi Neto. “Electromechanical Impedance-Based Damage Detection Using Machine Learning Approaches”. Ingeniería e Investigación 44, no. 3 (December 1, 2024): e111646. Accessed March 6, 2025. https://revistas.unal.edu.co/index.php/ingeinv/article/view/111646.

Vancouver

1.
Pereira PEC, de Rezende SWF, Barella BP, de Moura Junior J dos RV, Finzi Neto RM. Electromechanical Impedance-Based Damage Detection Using Machine Learning Approaches. Ing. Inv. [Internet]. 2024 Dec. 1 [cited 2025 Mar. 6];44(3):e111646. Available from: https://revistas.unal.edu.co/index.php/ingeinv/article/view/111646

Download Citation