Published

2025-05-28

Bioelectricity Generation in Established Cacao (Theobroma cacao), Oil Palm (Elaeis guineensis), and Peruvian Amazon Grass (Axonopus compresus) Crops: Insights from Amazonian Soils

Generación de bioelectricidad en cultivos establecidos de cacao (Theobroma cacao), palma aceitera (Elaeis guineensis) y grama amazónica peruana (Axonopus compressus): perspectivas desde suelos amazónicos

DOI:

https://doi.org/10.15446/ing.investig.112161

Keywords:

biocells, bioenergy, electrodes (en)
bioceldas, bioenergía, electrodos (es)

Downloads

Authors

As urban populations continue to grow, the global energy demand is expected to rise accordingly. Bioelectricity generation constitutes a promising and environmentally friendly alternative for sustainable energy production. This study evaluated the energy performance of biocells with galvanized graphite (GG) and copper-aluminum (CA) electrodes, which were installed in soils cultivated with three typical Amazonian crops: cacao (Theobroma cacao), oil palm (Elaeis guineensis), and Peruvian amazon grass (Axonopus compressus). Voltage and current measurements were recorded twice a day over a seven-day period. According to the results, the cacao-cultivated soil with GG electrodes achieved the highest electricity generation, with a voltage of 537 mV, a current of 0.17 mA, and power density of 26.2 mW/m2. In comparison, the oil palm soil with GG electrodes reached a maximum voltage of 444 mV and a power density of 10.8 mW/m2. CA electrodes showed lower energy yields across all crop types, reinforcing the importance of electrode material selection. By demonstrating significant bioelectricity generation in Amazonian agro-industrial crops and ornamental grass, this research highlights the potential of agricultural soils as renewable energy sources. As the first study to assess electricity generation in established Amazonian soils, our work provides novel insights into soil-based bioelectricity, an underexplored avenue for sustainable energy production. These findings pave the way for further research on optimizing bioelectricity generation in tropical soils, offering an innovative perspective on integrating renewable energy solutions into agricultural landscapes.

A medida que las poblaciones urbanas continúan creciendo, se espera que la demanda global de energía aumente proporcionalmente. La generación de bioelectricidad constituye una alternativa prometedora y respetuosa con el medio ambiente para la producción de energía sostenible. Este estudio evaluó el rendimiento energético de bioceldas con electrodos de grafito galvanizado (GG) y cobre-aluminio (CA) instaladas en suelos cultivados con tres cultivos típicos de la Amazonía: cacao (Theobroma cacao), palma aceitera (Elaeis guineensis) y pasto amazónico peruano (Axonopus compressus). Se realizaron mediciones de voltaje y corriente dos veces al día durante un período de siete días. Según muestran los resultados, el suelo cultivado con cacao y electrodos GG logró la mayor generación de electricidad, con un voltaje de 537 mV, una corriente de 0.17 mA y una densidad de potencia de 26.2 mW/m². En comparación, el suelo de palma aceitera con electrodos GG alcanzó un voltaje máximo de 444 mV y una densidad de potencia de 10.8 mW/m². Los electrodos CA mostraron menores rendimientos energéticos en todos los tipos de cultivo, reforzando la importancia de la selección del material del electrodo. Al demostrar una generación significativa de bioelectricidad en cultivos agroindustriales amazónicos y césped ornamental, esta investigación destaca el potencial de los suelos agrícolas como fuentes de energía renovable. Como el primer estudio en evaluar la generación de electricidad en suelos amazónicos establecidos, nuestro trabajo proporciona conocimientos novedosos sobre la bioelectricidad basada en suelos, un campo poco explorado en la producción de energía sostenible. Estos hallazgos abren el camino para futuras investigaciones orientadas a optimizar la generación de bioelectricidad en suelos tropicales, ofreciendo una perspectiva innovadora para la integración de soluciones energéticas renovables en los paisajes agrícolas.

References

[1] UNCTAD, “Handbook of statistics 2023,” 2024. Ac-cessed: Feb. 16, 2025. [Online]. Available: https://unctad.org/publication/handbook-statistics-2023

[2] T. K. Ghose, M. R. Islam, K. Aruga, A. Jannat, and Md. M. Islam, “Disaggregated impact of non-renewable energy consumption on the environmental sustainabil-ity of the United States: A novel dynamic ARDL ap-proach,” Sustainability, vol. 16, no. 19, art. 8434, Sep. 2024. https://doi.org/10.3390/su16198434

[3] M. Á. Caraballo Pou and M. J. García Simón, “Ener-gías renovables y desarrollo económico. Un análisis para España y las grandes economías europeas,” Trimest. Econ., vol. 84, no. 335, art. 571, Jul. 2017. https://doi.org/10.20430/ete.v84i335.508

[4] A. T. Hoang et al., “Microbial fuel cells for bioelectrici-ty production from waste as sustainable prospect of future energy sector,” Chemosphere, vol. 287, art. 132285, Jan. 2022. https://doi.org/10.1016/j.chemosphere.2021.132285

[5] P. Jalili, A. Ala, P. Nazari, B. Jalili, and D. D. Ganji, “A comprehensive review of microbial fuel cells consider-ing materials, methods, structures, and microorgan-isms,” Heliyon, vol. 10, no. 3, art. e25439, Feb. 2024. https://doi.org/10.1016/j.heliyon.2024.e25439

[6] K. Obileke, H. Onyeaka, E. L. Meyer, and N. Nwokolo, “Microbial fuel cells, a renewable energy technology for bio-electricity generation: A mini-review,” Electro-chem. Commun., vol. 125, art. 107003, Apr. 2021. https://doi.org/10.1016/j.elecom.2021.107003

[7] Z. Du, H. Li, and T. Gu, “A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy,” Biotechnol. Adv., vol. 25, no. 5, pp. 464–482, Sep. 2007. https://doi.org/10.1016/j.biotechadv.2007.05.004

[8] D. Pant, G. van Bogaert, L. Diels, and K. Van-broekhoven, “A review of the substrates used in mi-crobial fuel cells (MFCs) for sustainable energy pro-duction,” Bioresour. Technol., vol. 101, no. 6, pp. 1533–1543, Mar. 2010. https://doi.org/10.1016/j.biortech.2009.10.017

[9] H. R. González-Moreno et al., “Bioelectricity genera-tion and production of ornamental plants in vertical partially saturated constructed wetlands,” Water (Ba-sel), vol. 13, no. 2, art. 143, Jan. 2021. https://doi.org/10.3390/w13020143

[10] K. R. S. Pamintuan, M. A. L. Calma, K. A. D. Feliciano, and K. J. P. D. Lariba, “Potential of bioelectricity gen-eration in plant-microbial fuel cells growing house plants,” IOP Conf. Ser. Earth. Environ. Sci., vol. 505, no. 1, art. 012043, Jul. 2020. https://doi.org/10.1088/1755-1315/505/1/012043

[11] T. Kuleshova et al., “Plant microbial fuel cells as an innovative, versatile agro-technology for green ener-gy generation combined with wastewater treatment and food production,” Biomass Bioener., vol. 167, art. 106629, Dec. 2022. https://doi.org/10.1016/j.biombioe.2022.106629

[12] F. T. Kabutey et al., “An overview of plant microbial fuel cells (PMFCs): Configurations and applications,” Renew. Sust. Ener. Rev., vol. 110, pp. 402–414, Aug. 2019. https://doi.org/10.1016/j.rser.2019.05.016

[13] R. Agüero-Quiñones et al., “Activated carbon elec-trodes for bioenergy production in microbial fuel cells using synthetic wastewater as substrate,” Sustainabil-ity, vol. 15, no. 18, art. 13767, Sep. 2023. https://doi.org/10.3390/su151813767

[14] M. M. Haque, M. K. Mosharaf, M. A. Haque, M. Z. H. Tanvir, and M. K. Alam, “Biofilm formation, produc-tion of matrix compounds and biosorption of copper, nickel and lead by different bacterial strains,” Front. Microbiol., vol. 12, art. 615113, Jun. 2021. https://doi.org/10.3389/fmicb.2021.615113

[15] J. V. Boas, V. B. Oliveira, M. Simões, and A. M. F. R. Pinto, “Review on microbial fuel cells applications, developments and costs,” J. Environ. Manage., vol. 307, art. 114525, Apr. 2022. https://doi.org/10.1016/j.jenvman.2022.114525

[16] F. J. Rodríguez Varela, O. Solorza Feria, and Z. Her-nández, Celdas de Combustible. Canada: Y1d books, 2010. https://es.scribd.com/document/250218936/Celdas-Combustibles

[17] I. D. Widharyanti, M. A. Hendrawan, and M. Christ-wardana, “Membraneless plant microbial fuel cell us-ing water hyacinth (Eichhornia crassipes) for green energy generation and biomass production,” Int. J. Renew. Ener. Dev., vol. 10, no. 1, pp. 71–78, Feb. 2021. https://doi.org/10.14710/ijred.2021.32403

[18] M. Christwardana, S. W. A. Suedy, U. Harmoko, and K. S. S. Buanawangsa, “Exploring and evaluating the relationship between Saccharomyces cerevisiae bio-film maturation on carbon felt anodes and microbial fuel cell performance,” J. Electrochem. Sci. Eng., vol. 14, no. 5, art. 653–669, Sep. 2024. https://doi.org/10.5599/jese.2383

[19] B. E. Logan et al., “Microbial fuel cells: Methodology and technology,” Environ. Sci. Techno.l, vol. 40, no. 17, pp. 5181–5192, Sep. 2006. https://doi.org/10.1021/es0605016

[20] J. Dziegielowski, M. Mascia, B. Metcalfe, and M. Di Lorenzo, “Voltage evolution and electrochemical be-haviour of soil microbial fuel cells operated in differ-ent quality soils,” Sust. Ener. Tech. Assess., vol. 56, art. 103071, Mar. 2023. https://doi.org/10.1016/j.seta.2023.103071

[21] Y. M. Azri, I. Tou, M. Sadi, and L. Benhabyles, “Bioe-lectricity generation from three ornamental plants: Chlorophytum comosum, Chasmanthe floribunda and Papyrus diffusus,” Int. J. Green Ener., vol. 15, no. 4, pp. 254–263, Mar. 2018. https://doi.org/10.1080/15435075.2018.1432487

[22] Y. Zhang, J. Lin, S. Chen, H. Lu, and C. Liao, “The influence of the genotype and planting density on the structure and composition of root and rhizosphere mi-crobial communities in maize,” Microorganisms, vol. 11, no. 10, art. 2443, Sep. 2023. https://doi.org/10.3390/microorganisms11102443

[23] V. Vives-Peris, C. de Ollas, A. Gómez-Cadenas, and R. M. Pérez-Clemente, “Root exudates: from plant to rhi-zosphere and beyond,” Plant Cell Rep., vol. 39, no. 1, pp. 3–17, Jan. 2020. https://doi.org/10.1007/s00299-019-02447-5

[24] K. Manohar, A. A. Shinde, and S. Supriya, “Green electricity production from living plant and microbial fuel cell,” Int. J. Adv. Res. Sci. Eng., vol. 6, no. 9, pp. 459–466, Sep. 2019. https://ijarse.com/images/fullpdf/1505454223_506.pdf

[25] P. J. Sarma and K. Mohanty, “Epipremnum aureum and Dracaena braunii as indoor plants for enhanced bio-electricity generation in a plant microbial fuel cell with electrochemically modified carbon fiber brush anode,” J. Biosci. Bioeng., vol. 126, no. 3, pp. 404–410, Sep. 2018. https://doi.org/10.1016/j.jbiosc.2018.03.009

[26] J. C. Gómora-Hernández, J. H. Serment-Guerrero, M. C. Carreño-de-León, and N. Flores-Alamo, “Voltage production in a plant-microbial fuel cell using Aga-panthus africanus,” Rev. Mex. Ing. Quím., vol. 19, no. 1, pp. 227–237, Aug. 2019. https://doi.org/10.24275/rmiq/IA542

[27] J. Md Khudzari, Y. Gariépy, J. Kurian, B. Tartakovsky, and G. S. V. Raghavan, “Effects of biochar anodes in rice plant microbial fuel cells on the production of bi-oelectricity, biomass, and methane,” Biochem. Eng. J., vol. 141, pp. 190–199, Jan. 2019. https://doi.org/10.1016/j.bej.2018.10.012

[28] A. Sharma et al., “Photosynthetic response of plants under different abiotic stresses: A review,” J. Plant Growth Regul., vol. 39, no. 2, pp. 509–531, Jun. 2020. https://doi.org/10.1007/s00344-019-10018-x

[29] S. F. Bucher, K. Auerswald, C. Grün-Wenzel, S. I. Hig-gins, and C. Römermann, “Abiotic site conditions af-fect photosynthesis rates by changing leaf functional traits,” Basic Appl. Ecol., vol. 57, pp. 54–64, Dec. 2021. https://doi.org/10.1016/j.baae.2021.09.003

[30] D. Linden and T. B. Reddy, “Basic concepts,” in Lin-den’s Handbook of Batteries, 5th ed., T. B. Reddy and D. Linden, Eds. New York, NY, USA: McGraw Hill, 2011, ch. 1.

[31] A. Singh, A. Contractora, R. D. Kale, and V. A. Juve-kar, “Underpotential electroless deposition of metals on polyaniline,” App. Phys., vol. 20, no. 06, pp. 1–18, 2020. https://doi.org/10.48550/arXiv.2006.03635

[32] V. Bhatt, Essentials of coordination chemistry: A simpli-fied approach with 3D visuals. London, UK: Academic Press, 2016. DOI: https://doi.org/10.1016/B978-0-12-803895-6.00001-X

[33] M. M. Ghangrekar, S. Das, and S. Das, “Microbial electrochemical technologies for CO2 sequestration,” in Biomass Biofuels Biochemicals, A. Pandey, R. D. Tyagi, and S. Varjani, Eds., India: Elsevier, 2021, pp. 413–443. https://doi.org/10.1016/B978-0-12-821878-5.00016-7

[34] A. K. Yadav, P. Srivastava, N. Kumar, R. Abbassi, and B. K. Mishra, “Constructed wetland-microbial fuel cell: an emerging integrated technology for potential in-dustrial wastewater treatment and bio-electricity gen-eration,” in Constructed Wetlands for Industrial Wastewater Treatment, Chichester, UK: John Wiley & Sons, 2018, pp. 493–510. https://doi.org/10.1002/9781119268376.ch22

[35] S. R. B. Arulmani et al., “Sustainable bioelectricity production from Amaranthus viridis and Triticum aes-tivum mediated plant microbial fuel cells with efficient electrogenic bacteria selections,” Process Biochemis-try, vol. 107, pp. 27–37, Aug. 2021. https://doi.org/10.1016/j.procbio.2021.04.015

[36] A. Ishida, I. Ogiwara, and S. Suzuki, “Elevated CO2 influences the growth, root morphology, and leaf photosynthesis of cacao (Theobroma cacao L.) seed-lings,” Agronomy, vol. 13, no. 9, p. 2264, Aug. 2023. https://doi.org/10.3390/agronomy13092264

[37] I. Rusyn, “Role of microbial community and plant species in performance of plant microbial fuel cells,” Renew. Sust. Ener. Rev., vol. 152, art. 111697, Dec. 2021. https://doi.org/10.1016/j.rser.2021.111697

How to Cite

APA

Rubina-Arana, E. E., Sandoval-Mendoza, L. L., Sánchez-Sunción, G., Carbonel, D. & Panduro-Pisco, G. (2025). Bioelectricity Generation in Established Cacao (Theobroma cacao), Oil Palm (Elaeis guineensis), and Peruvian Amazon Grass (Axonopus compresus) Crops: Insights from Amazonian Soils. Ingeniería e Investigación, 45(1), e112161. https://doi.org/10.15446/ing.investig.112161

ACM

[1]
Rubina-Arana, E.E., Sandoval-Mendoza, L.L., Sánchez-Sunción, G., Carbonel, D. and Panduro-Pisco, G. 2025. Bioelectricity Generation in Established Cacao (Theobroma cacao), Oil Palm (Elaeis guineensis), and Peruvian Amazon Grass (Axonopus compresus) Crops: Insights from Amazonian Soils. Ingeniería e Investigación. 45, 1 (Mar. 2025), e112161. DOI:https://doi.org/10.15446/ing.investig.112161.

ACS

(1)
Rubina-Arana, E. E.; Sandoval-Mendoza, L. L.; Sánchez-Sunción, G.; Carbonel, D.; Panduro-Pisco, G. Bioelectricity Generation in Established Cacao (Theobroma cacao), Oil Palm (Elaeis guineensis), and Peruvian Amazon Grass (Axonopus compresus) Crops: Insights from Amazonian Soils. Ing. Inv. 2025, 45, e112161.

ABNT

RUBINA-ARANA, E. E.; SANDOVAL-MENDOZA, L. L.; SÁNCHEZ-SUNCIÓN, G.; CARBONEL, D.; PANDURO-PISCO, G. Bioelectricity Generation in Established Cacao (Theobroma cacao), Oil Palm (Elaeis guineensis), and Peruvian Amazon Grass (Axonopus compresus) Crops: Insights from Amazonian Soils. Ingeniería e Investigación, [S. l.], v. 45, n. 1, p. e112161, 2025. DOI: 10.15446/ing.investig.112161. Disponível em: https://revistas.unal.edu.co/index.php/ingeinv/article/view/112161. Acesso em: 26 dec. 2025.

Chicago

Rubina-Arana, Edwar Edinson, Letty Leonor Sandoval-Mendoza, Glendy Sánchez-Sunción, Dalia Carbonel, and Grober Panduro-Pisco. 2025. “Bioelectricity Generation in Established Cacao (Theobroma cacao), Oil Palm (Elaeis guineensis), and Peruvian Amazon Grass (Axonopus compresus) Crops: Insights from Amazonian Soils”. Ingeniería E Investigación 45 (1):e112161. https://doi.org/10.15446/ing.investig.112161.

Harvard

Rubina-Arana, E. E., Sandoval-Mendoza, L. L., Sánchez-Sunción, G., Carbonel, D. and Panduro-Pisco, G. (2025) “Bioelectricity Generation in Established Cacao (Theobroma cacao), Oil Palm (Elaeis guineensis), and Peruvian Amazon Grass (Axonopus compresus) Crops: Insights from Amazonian Soils”, Ingeniería e Investigación, 45(1), p. e112161. doi: 10.15446/ing.investig.112161.

IEEE

[1]
E. E. Rubina-Arana, L. L. Sandoval-Mendoza, G. Sánchez-Sunción, D. Carbonel, and G. Panduro-Pisco, “Bioelectricity Generation in Established Cacao (Theobroma cacao), Oil Palm (Elaeis guineensis), and Peruvian Amazon Grass (Axonopus compresus) Crops: Insights from Amazonian Soils”, Ing. Inv., vol. 45, no. 1, p. e112161, Mar. 2025.

MLA

Rubina-Arana, E. E., L. L. Sandoval-Mendoza, G. Sánchez-Sunción, D. Carbonel, and G. Panduro-Pisco. “Bioelectricity Generation in Established Cacao (Theobroma cacao), Oil Palm (Elaeis guineensis), and Peruvian Amazon Grass (Axonopus compresus) Crops: Insights from Amazonian Soils”. Ingeniería e Investigación, vol. 45, no. 1, Mar. 2025, p. e112161, doi:10.15446/ing.investig.112161.

Turabian

Rubina-Arana, Edwar Edinson, Letty Leonor Sandoval-Mendoza, Glendy Sánchez-Sunción, Dalia Carbonel, and Grober Panduro-Pisco. “Bioelectricity Generation in Established Cacao (Theobroma cacao), Oil Palm (Elaeis guineensis), and Peruvian Amazon Grass (Axonopus compresus) Crops: Insights from Amazonian Soils”. Ingeniería e Investigación 45, no. 1 (March 31, 2025): e112161. Accessed December 26, 2025. https://revistas.unal.edu.co/index.php/ingeinv/article/view/112161.

Vancouver

1.
Rubina-Arana EE, Sandoval-Mendoza LL, Sánchez-Sunción G, Carbonel D, Panduro-Pisco G. Bioelectricity Generation in Established Cacao (Theobroma cacao), Oil Palm (Elaeis guineensis), and Peruvian Amazon Grass (Axonopus compresus) Crops: Insights from Amazonian Soils. Ing. Inv. [Internet]. 2025 Mar. 31 [cited 2025 Dec. 26];45(1):e112161. Available from: https://revistas.unal.edu.co/index.php/ingeinv/article/view/112161

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

360

Downloads

Download data is not yet available.