Published

2025-12-15

Study of the Fermentation Potential of Eichhornia crassipes Hydrolysate with Water Kefir Tibicos

Estudio del potencial fermentativo del hidrolizado de Eichhornia crassipes con tíbicos de kéfir de agua

DOI:

https://doi.org/10.15446/ing.investig.112442

Keywords:

cellulose hydrolysis, cellulase, dextran, kefir tibicos, lactic acid bacteria, yeast (en)
hidrólisis de celulosa, celulasa, dextrano, granos de kéfir, bacterias ácido lácticas, levadura (es)

Authors

Eichhornia crassipes is an invasive aquatic plant that reduces oxygen availability, posing a threat to aquatic ecosystems. This was evidenced in the cooling lagoons of the Paipa Thermoelectric Power Plant in Boyacá, Colombia. Due to its low lignin content (~15%), this plant does not require rigorous treatments for utilization, which allows exploring its potential as a precursor in obtaining value-added products while contributing to the conservation of affected aquatic ecosystems. The objective of this study was to evaluate the growth of kefir tibicos in a culture medium with hydrolysates of E. crassipes obtained from sequential and simultaneous pretreatments with cellulase and the inclusion of activated charcoal suspensions, using sucrose as a co-substrate. All processes were monitored with measurements of soluble solids, reducing sugars, acidity, and pH. Finally, the kefir tibicos were characterized using Fourier-transform infrared spectroscopy and X-ray diffraction, and the thermal properties of dextran were identified through differential scanning calorimetry and thermogravimetric analysis. According to the results, the difference in exopolysaccharide production between the sequential and simultaneous applications of cellulase was less than 10%. However, the inclusion of activated charcoal increased the difference to 22.8% and revealed that insoluble dextran could be applied as a matrix for the in situ immobilization of particles during the microorganism growth stage.

Eichhornia crassipes es una planta acuática invasora que genera disminución en la disponibilidad de oxígeno, representando una amenaza para los ecosistemas acuáticos. Esto se evidenció en las lagunas de enfriamiento de la Central Termoeléctrica de Paipa, en Boyacá, Colombia. Debido a su bajo contenido de lignina (~15 %), esta planta no requiere tratamientos rigurosos para su aprovechamiento, lo que permite explorar su potencial como precursora en la obtención de productos de valor agregado, al tiempo que se contribuye a la conservación de ecosistemas acuáticos afectados. El objetivo de este estudio fue evaluar el crecimiento de tíbicos de kéfir en un medio de cultivo con hidrolizados de E. crassipes, obtenidos a partir de pretratamientos secuenciales y simultáneos con celulasa y de la inclusión de suspensiones de carbón activado, utilizando sacarosa como cosustrato. Todos los procesos se monitorearon con mediciones de sólidos solubles, azúcares reductores, acidez y pH. Por último, los tíbicos fueron caracterizados mediante espectroscopia infrarroja por transformada de Fourier y difracción de rayos X, y se identificaron las propiedades térmicas del dextrano mediante calorimetría diferencial de Barrido y análisis termogravimétrico. De acuerdo con los resultados, la diferencia en la producción de exopolisacárido entre la aplicación secuencial y simultánea de celulasa fue inferior al 10 %. Sin embargo, la inclusión de carbón activado hizo que la diferencia se incrementase hasta 22.8 % y reveló que el dextrano insoluble podría aplicarse como matriz para la inmovilización de partículas in situ en la etapa de crecimiento de los microorganismos.

References

[1] J. I. Barrera Catño, M. F. Mora Goyes, R. Ocampo, and J. Rubio, “Catálogo de especies invasoras del territorio car” 2015. [Online]. Available: https://www.car.gov.co/uploads/files/5b451c903677d.pdf

[2] Corpoboyacá, “El ABC de la especie invasora Buchón de agua (Eichhornia crassipes).” Accessed: Jun. 11, 2021. [Online]. Available: https://www.corpoboyaca.gov.co/noticias/abc-de-la-especie-invasora-buchon-de-agua-eichhornia-crassipes/

[3] Gestión Energética S.A. E.S.P., "Pliego de condiciones: GENSA,", 2020. [Online]. Available:

[4] F. Monterroso, J. Menegazzo, R. Barillas de Klee, H. Paniagua de Díaz, and M. A. Díaz, “Estudio preliminar sobre la asociación de macrofitas del lago de Amatitlan,” Universidad San Carlos de Guatemala, 1989. Accessed: Apr. 23, 2021. [Online]. Available: https://dialnet.unirioja.es/servlet/articulo?codigo=5159668&info=resumen&idioma=SPA

[5] E. A. Omondi, P. G. Njuru, y P. K. Ndiba, "Characterization of water hyacinth (E. crassipes) from Lake Victoria and ruminal slaughterhouse waste as co substrates in biogas production," SN Appl. Sci., vol. 1, no. 8, art. 848, Jul. 2019. https://doi.org/10.1007/s42452-019-0871-z

[6] J. C. Barragán Vega, F. A. Colmenares Mestizo, M. A. Mayorga Betancourt, and A. G. Rodríguez Meléndez, “Aprovechamiento energético integral de la Eichhornia crassipes (Buchón de agua) - Dialnet,” Ingenium, vol. 18, no. 35, pp. 134–151, 2017. https://dialnet.unirioja.es/servlet/articulo?codigo=6089821

[7] A. Kartik et al., “A critical review on production of biopolymers from algae biomass and their applications,” Biores. Tech., vol. 329, art. 124868, Jun. 2021. https://doi.org/10.1016/j.biortech.2021.124868

[8] M. Monar, I. Dávalos, S. Zapata, M. Caviedes, and L. Ramírez-Cárdenas, "Chemical and microbiological characterization of Ecuadorian homemade water kefir," ACI Av. Cienc. Ing., vol. 6, no. 1, pp. B60–B66, Jun. 2014. https://doi.org/10.18272/aci.v6i1.160

[9] F. W. Waldherr, V. M. Doll, and R. F. Vogel, "Identification and characterization of a glucan-producing enzyme from Lactobacillus hilgardii TMW 1.828 involved in granule formation of water kefir," Food Microbiol., vol. 27, no. 5, pp. 672–678, Aug. 2010. https://doi.org/10.1016/j.fm.2010.03.013

[10] C. A. Caro Vélez and Á. M. León Peláez, “Fungal growth inhibition of Aspergillus ochraceus with ‘panela’fermented with water kefir grains,” Vitae, vol. 21, no. 3, pp. 191–200, 2014. http://www.redalyc.org/articulo.oa?id=169833713004

[11] C. A. Caro Vélez and L. Peláez. A.M, “Capacidad antifúngica de sobrenadantes libres de células obtenidos de la fermentación de un sustrato de ‘panela’ con gránulos de kéfir de agua.,” Rev Colomb Biotecnol, vol. 17, no. 2, pp. 22–32, 2015. https://doi.org/10.15446/rev.colomb.biote.v17n2.42758

[12] D. Laureys, M. Aerts, P. Vandamme, and L. De Vuyst, "The type and concentration of inoculum and substrate as well as the presence of oxygen impact the water kefir fermentation process," Front. Microbiol., vol. 12, art. 628599, Feb. 2021. https://doi.org/10.3389/fmicb.2021.628599

[13] D. Laureys and L. De Vuyst, “Microbial species diversity, community dynamics, and metabolite kinetics of water Kefir fermentation,” App. Environ. Microbiol., vol. 80, no. 8, pp. 2564–2572, 2014. https://doi.org/10.1128/AEM.03978-13

[14] V. K. Ponnusamy et al., “A review on lignin structure, pretreatments, fermentation reactions and biorefinery potential,” Biores. Tech., vol. 271, no. September 2018, pp. 462–472, 2019. https://doi.org/10.1016/j.biortech.2018.09.070

[15] A. Bosch, M. A. Golowczyc, A. G. Abraham, G. L. Garrote, G. L. De Antoni, and O. Yantorno, “Rapid discrimination of lactobacilli isolated from kefir grains by FT-IR spectroscopy,” Int. J. Food Microbiol., vol. 111, no. 3, pp. 280–287, 2006. https://doi.org/10.1016/j.ijfoodmicro.2006.05.010

[16] M. A. Hernández Torres, "Caracterización fisicoquímica de un polímero obtenido a partir de tibicos (kéfir de agua) y su evaluación como agente encapsulante de Bacillus thuringiensis," MS thesis, Univ. Autónoma de Nuevo León, San Nicolás de los Garza, Mexico, 2018. [Online]. Available: https://eprints.uanl.mx/15890/

[17] R. Macarron Larumbe, “Purificación y caracterización de endoglucanasa iii de Trichodenna reesei QM9414,” 1992. [Online]. Available: https://eprints.ucm.es/3700/

[18] J. Valldeperas, F. Carrillo, M. J. Lis, and J. A. Navarro, “Kinetics of enzymatic hydrolysis of Lyocell fibers,” Text. Res. J., vol. 70, no. 11, pp. 931–936, 2000. https://doi.org/10.1177/004051750007001108

[19] A. V. Gusakov, A. P. Sinitsyn, and E. Yu. Vlasenko, “Effect of structural and physico-chemical features of cellulosic substrates on the efficiency of enzymatic hydrolysis,” Appl. Biochem. Biotech., vol. 30, pp. 43–59, Jul. 1991. https://doi.org/10.1007/BF02922023

[20] B. Anamica, D. Subhabrata, D. Apurba, and G. Amit, “Enzymatic hydrolysis of water hyacinth biomass for the production of ethanol: Optimization of driving parameters.,” Indian J. Exp. Biol., vol. 51, no. 7, pp. 56–66, 2013. https://pubmed.ncbi.nlm.nih.gov/23898555/

[21] T. Ruan, R. Zeng, and X.-Y. Yin, “Water hyacinth (Eichhornia crassipes) biomass as a biofuel feedstock by enzymatic hydrolysis.,” Bioresources, vol. 11, no. 1, pp. 2372–2380, 2016, doi: 10.15376/biores.11.1.2372 2380

[22] M. Ike, M. Fujita, D. Mishima, and M. Tateda, “Comparative study on chemical pretreatments to accelerate enzymatic hydrolysis of aquatic macrophyte biomass used in water purification processes,” Biores. Tech., vol. 97, pp. 2166–2172, 2006. https://doi.org/10.1016/j.biortech.2005.09.029

[23] A. Adnan, S. A. Bokhari, and and F. A. Idrees, M.Qureshi, “Production of fermentable sugars by combined chemo-enzymatic hydrolysis of cellulosic material for bioethanol production,” Brazilian J. Chem. Eng., vol. 31, no. 02, pp. 355–363, 2014. https://doi.org/10.1590/0104 6632.20140312s00002415

[24] S. Das, P. K. Chatterjee, A. Ganguly, and A. Gupta, "Enzymatic hydrolysis of water hyacinth substrate by cellulase, xylanase and glucosidase: Experiments and optimization," J. Biobased Mater. Bioenergy, vol. 6, no. 3, pp. 353–358, Jun. 2012. https://doi.org/10.1166/jbmb.2012.1223.

[25] J. L. Rohrbach and J. S. Luterbacher, "Investigating the effects of substrate morphology and experimental conditions on the enzymatic hydrolysis of lignocellulosic biomass through modeling," Biotechl. Biofuels, vol. 14, art. 103, May 2021. https://doi.org/10.1186/s13068-021-01953-6

[26] K. Timberlake, Química general, orgánica y biológica: estructuras de la vida, 4th ed. Ciudad de México, Mexico: Pearson Educación, 2013.

[27] B.-Z. Li, Z.-H. Liu, Y.-S. Tan, Y.-J. Yuan, and R.-K. Zhang, "Editorial: Microbial adaptation to enhance stress tolerance," Front. Microbiol., vol. 13, art. 888746, Apr. 2022. https://doi.org/10.3389/fmicb.2022.888746

[28] K. M. Lynch, S. Wilkinson, L. Daenen, and E. K. Arendt, "An update on water kefir: Microbiology, composition and production," Int. J. Food Microbiol., vol. 345, art. 109128, May 2021. https://doi.org/10.1016/j.ijfoodmicro.2021.109128

[29] V. Alves, E. Santos, J. Santos, L. Silva, M. Nascimento, and M. Silva, "Development of fermented beverage with water kefir in water-soluble coconut extract (Cocos nucifera L.) with inulin addition," LWT, vol. 145, art. 111364, Jun. 2021. https://doi.org/10.1016/j.lwt.2021.111364

[30] D. Laureys and L. De Vuyst, "Investigation of the instability and low water kefir grain growth during an industrial water kefir fermentation process," Appl. Microbiol. Biotech., vol. 101, no. 7, pp. 2811–2819, Apr. 2017. https://doi.org/10.1007/s00253-016-8084-5

[31] D. Laureys, M. Aerts, P. Vandamme, and L. De Vuyst, "The buffer capacity and calcium concentration of water influence the microbial species diversity, grain growth, and metabolite production during water kefir fermentation," Front. Microbiol., vol. 10, art. 2876, Dec. 2019. https://doi.org/10.3389/fmicb.2019.02876

[32] D. Laureys and L. De Vuyst, "The water kefir grain inoculum determines the characteristics of the resulting water kefir fermentation process," J. App. Microbiol., vol. 122, no. 3, pp. 719–732, Mar. 2017. https://doi.org/10.1111/jam.13370

[33] M. Pendón, A. A. Bengoa, C. Iraporda, M. Medrano, G. Garrote, and A. Abraham, “Water kefir factors affecting grain growth and health-promoting properties of the fermented beverage,” J. App. Microbiol., vol. 2022, no. 133, pp. 162–180, Nov. 2021, doi: 10.1111/jam.15385

[34] G. K. Gaurav, T. Mehmood, L. Cheng, J. J. Klemeš, and D. K. Shrivastava, "Water hyacinth as a biomass: A review," J. Clean. Prod., vol. 277, art. 122214, Dec. 2020. https://doi.org/10.1016/j.jclepro.2020.122214

[35] J. Mu, H. Wang, F. Wu, and Z. Zhang, "Kinetics of the pyrolytic and hydrothermal decomposition of water hyacinth," Biores. Tech., vol. 102, no. 17, pp. 8225–8231, Sep. 2011. https://doi.org/10.1016/j.biortech.2011.04.048

[36] M. A. Weatherhead, J. Burdon, and G. G. Henshaw, "Some effects of activated charcoal as an additive to plant tissue culture media," Z. Pflanzenphysiol., vol. 89, no. 2, pp. 141–147, Oct. 1978. https://doi.org/10.1016/S0044-328X(78)80064-0

[37] T. D. Thomas, "The role of activated charcoal in plant tissue culture," Biotech. Adv., vol. 26, no. 6, pp. 618–631, Nov. 2008. https://doi.org/10.1016/j.biotechadv.2008.08.003

[38] I. Vaca, M. Marulanda, J. Verdesoto, and A. Núñez, "Efecto del carbón activado en la germinación y brotación in vitro de Citrus limon (L.) y su dinámica de crecimiento," Bionatura, vol. 3, no. 3, pp. 648–652, Aug. 2018. https://doi.org/10.21931/RB/2018.03.03.5

[39] D. S. Sparjanbabu, P. N. Kumar, M. S. R. Krishna, D. Ramajayam, and B. Susanthi, "Effect of activated charcoal, culture media and plant growth regulators on in vitro germination and development of elite dura oil palm (Elaeis guineensis Jacq.) zygotic embryos," Plant Cell Biotech. Mol. Biol., vol. 20, no. 7–8, pp. 314–323, Jun. 2019. https://ikprress.org/index.php/PCBMB/article/view/4620

[40] D. P. Wilcox, E. Chang, K. L. Dickson, and K. R. Johansson, “Microbial growth associated with granular activated carbon in a pilot water treatment facility,” App. Environ. Microbiol., vol. 46, no. 2, pp. 406–416, Aug. 1983. https://doi.org/10.1128/aem.46.2.406 416.1983

[41] F. Wu, J. Xie, X. Xin, and J. He, "Effect of activated carbon/graphite on enhancing anaerobic digestion of waste activated sludge," Front. Microbiol., vol. 13, art. 999647, Nov. 2022. https://doi.org/10.3389/fmicb.2022.999647

[42] O. Terry-Igun, P. Meynet, R. J. Davenport, and D. Werner, "Impacts of activated carbon amendments, added from the start or after five months, on the microbiology and outcomes of crude oil bioremediation in soil," Int. Biodeterior. Biodegrad., vol. 140, pp. 1–10, May 2019. https://doi.org/10.1016/j.ibiod.2019.03.012

[43] C. M. Su et al., “Dextran-: G -lauric acid as IKK complex inhibitor carrier,” RSC Adv., vol. 7, no. 89, pp. 56247–56255, 2017. https://doi.org/10.1039/c7ra04544a

[44] Q. Zhou et al., “Characterization of a dextran produced by Leuconostoc pseudomesenteroides XG5 from homemade wine,” Int. J. Biol. Macromol., vol. 107, pp. 2234–2241, Feb. 2018. https://doi.org/10.1016/j.ijbiomac.2017.10.098

[45] R. K. Purama, P. Goswami, A. T. Khan, and A. Goyal, “Structural analysis and properties of dextran produced by Leuconostoc mesenteroides NRRL B-640,” Carbohydr. Polym., vol. 76, no. 1, pp. 30–35, Mar. 2009. https://doi.org/10.1016/j.carbpol.2008.09.018

[46] L. Y. Wang, Y. H. Zhang, and L. J. Zhao, “Raman spectroscopic studies on single supersaturated droplets of sodium and magnesium acetate,” J. Phys. Chem. A, vol. 109, no. 4, pp. 609–614, Feb. 2005. https://doi.org/10.1021/jp0458811

[47] Y. Yang, Q. Peng, Y. Guo, and H. Xiao, “Isolation and characterization of dextran produced by Leuconostoc citreum NM105 from manchurian sauerkraut,” Carbohydr. Polym., pp. 365–372, 2015. https://doi.org/10.1016/j.carbpol.2015.07.061

[48] K. Valappil Sajna, R. Sukumaran, and L. Gottumukka, “Studies on structural and physical characteristics of a novel exopolysaccharide from Pseudozyma sp. NII 08165,” Int. J. Biol. Macromol., pp. 84–89, 2013. https://doi.org/10.1016/j.ijbiomac.2013.04.025

[49] M. N. K. Chowdhury, A. F. Ismail, M. D. H. Beg, G. Hegde, and R. J. Gohari, “Polyvinyl alcohol/polysaccharide hydrogel graft materials for arsenic and heavy metal removal,” New J. Chem., vol. 39, no. 7, pp. 5823–5832, Jul. 2015. https://doi.org/10.1039/c5nj00509d

[50] B. Wang, Q. Song, F. Zhao, L. Zhang, Y. Han, and Z. Zhou, "Isolation and characterization of dextran produced by Lactobacillus sakei L3 from Hubei sausage," Carbohydr. Polym., vol. 223, art. 115111, Nov. 2019. https://doi.org/10.1016/j.carbpol.2019.115111

[51] A. Savi, G. C. Calegari, V. A. Q. Santos, E. A. Pereira, and S. D. Teixeira, “Chemical characterization and antioxidant of polysaccharide extracted from Dioscorea bulbifera” J. King Saud. Univ. Sci., vol. 32, no. 1, pp. 636–642, 2020. https://doi.org/10.1016/j.jksus.2018.09.002

[52] S. K. Bajpai, N. Chand, S. Tiwari, and S. Soni, “Swelling behavior of cross-linked dextran hydrogels and preliminary Gliclazide release behavior,” Int. J. Biol. Macromol., vol. 93, pp. 978–987, 2016. https://doi.org/10.1016/j.ijbiomac.2016.09.075

[53] M. G. Llamas-Arriba et al., “Characterization of dextrans produced by Lactobacillus mali CUPV271 and Leuconostoc carnosum CUPV411,” Food Hydrocoll., vol. 89, pp. 613–622, 2019. https://doi.org/10.1016/j.foodhyd.2018.10.053

[54] Y. Zhang and C.-C. Chu, “Thermal and mechanical properties of biodegradable hydrophilic-hydrophobic hydrogels based on dextran and poly (lactic acid),” J. Mater Sci. Mater. Med., vol. 13, no. 8, pp. 773 781, 2002. https://doi.org/10.1023/A:1016123125046

[55] R. Du et al., “Purification, characterization and antioxidant activity of dextran produced by Leuconostoc pseudomesenteroides from homemade wine,” Carbohydr. Polym., vol. 198, pp. 529–536, Oct. 2018. https://doi.org/10.1016/j.carbpol.2018.06.116

[56] P. Faucard et al., “Macromolecular structure and film properties of enzymatically-engineered high molar mass dextrans,” Carbohydr. Polym., vol. 181, pp. 337–344, Feb. 2018. https://doi.org/10.1016/j.carbpol.2017.10.065

[57] K. Wang et al., “Physicochemical characteristics and in vitro and in vivo antioxidant activity of a cell-bound exopolysaccharide produced by Lactobacillus fermentum S1,” Int. J. Biol. Macromol., vol. 139, pp. 252–261, Oct. 2019. https://doi.org/10.1016/j.ijbiomac.2019.07.200

[58] M. de A. Lucena et al., "Biopolymer from water kefir as a potential clean-label ingredient for health applications: Evaluation of new properties," Molecules, vol. 27, no. 12, art. 3895, Jun. 2022. https://doi.org/10.3390/molecules27123895

[59] I. Joulak et al., “Structural characterization and functional properties of novel exopolysaccharide from the extremely halotolerant Halomonas elongata S6,” Int. J. Biol. Macromol., vol. 164, pp. 95–104, Dec. 2020. https://doi.org/10.1016/j.ijbiomac.2020.07.088

How to Cite

APA

Usaquén Hernández, A. P., Caicedo Pineda, G. A. & Martínez Zambrano, J. J. (2025). Study of the Fermentation Potential of Eichhornia crassipes Hydrolysate with Water Kefir Tibicos. Ingeniería e Investigación, 45(3), e112442. https://doi.org/10.15446/ing.investig.112442

ACM

[1]
Usaquén Hernández, A.P., Caicedo Pineda, G.A. and Martínez Zambrano, J.J. 2025. Study of the Fermentation Potential of Eichhornia crassipes Hydrolysate with Water Kefir Tibicos. Ingeniería e Investigación. 45, 3 (Dec. 2025), e112442. DOI:https://doi.org/10.15446/ing.investig.112442.

ACS

(1)
Usaquén Hernández, A. P.; Caicedo Pineda, G. A.; Martínez Zambrano, J. J. Study of the Fermentation Potential of Eichhornia crassipes Hydrolysate with Water Kefir Tibicos. Ing. Inv. 2025, 45, e112442.

ABNT

USAQUÉN HERNÁNDEZ, A. P.; CAICEDO PINEDA, G. A.; MARTÍNEZ ZAMBRANO, J. J. Study of the Fermentation Potential of Eichhornia crassipes Hydrolysate with Water Kefir Tibicos. Ingeniería e Investigación, [S. l.], v. 45, n. 3, p. e112442, 2025. DOI: 10.15446/ing.investig.112442. Disponível em: https://revistas.unal.edu.co/index.php/ingeinv/article/view/112442. Acesso em: 24 dec. 2025.

Chicago

Usaquén Hernández, Angie Paola, Gerardo Andrés Caicedo Pineda, and José Jobanny Martínez Zambrano. 2025. “Study of the Fermentation Potential of Eichhornia crassipes Hydrolysate with Water Kefir Tibicos”. Ingeniería E Investigación 45 (3):e112442. https://doi.org/10.15446/ing.investig.112442.

Harvard

Usaquén Hernández, A. P., Caicedo Pineda, G. A. and Martínez Zambrano, J. J. (2025) “Study of the Fermentation Potential of Eichhornia crassipes Hydrolysate with Water Kefir Tibicos”, Ingeniería e Investigación, 45(3), p. e112442. doi: 10.15446/ing.investig.112442.

IEEE

[1]
A. P. Usaquén Hernández, G. A. Caicedo Pineda, and J. J. Martínez Zambrano, “Study of the Fermentation Potential of Eichhornia crassipes Hydrolysate with Water Kefir Tibicos”, Ing. Inv., vol. 45, no. 3, p. e112442, Dec. 2025.

MLA

Usaquén Hernández, A. P., G. A. Caicedo Pineda, and J. J. Martínez Zambrano. “Study of the Fermentation Potential of Eichhornia crassipes Hydrolysate with Water Kefir Tibicos”. Ingeniería e Investigación, vol. 45, no. 3, Dec. 2025, p. e112442, doi:10.15446/ing.investig.112442.

Turabian

Usaquén Hernández, Angie Paola, Gerardo Andrés Caicedo Pineda, and José Jobanny Martínez Zambrano. “Study of the Fermentation Potential of Eichhornia crassipes Hydrolysate with Water Kefir Tibicos”. Ingeniería e Investigación 45, no. 3 (December 15, 2025): e112442. Accessed December 24, 2025. https://revistas.unal.edu.co/index.php/ingeinv/article/view/112442.

Vancouver

1.
Usaquén Hernández AP, Caicedo Pineda GA, Martínez Zambrano JJ. Study of the Fermentation Potential of Eichhornia crassipes Hydrolysate with Water Kefir Tibicos. Ing. Inv. [Internet]. 2025 Dec. 15 [cited 2025 Dec. 24];45(3):e112442. Available from: https://revistas.unal.edu.co/index.php/ingeinv/article/view/112442

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

22

Downloads

Download data is not yet available.