Published

2025-07-31

Assessing the Interaction between Water Erosion and SOC Storage in a Small Mexican Watershed

Evaluación de la interacción entre la erosión hídrica y el almacenamiento de COS en una microcuenca mexicana

DOI:

https://doi.org/10.15446/ing.investig.113022

Keywords:

RUSLE, Kendall's tau coefficient, conservation practices, terracing, soil carbon stock (en)
RUSLE, coeficiente tau de Kendall, prácticas de conservación, terrazas, almacenamiento de carbono en suelo (es)

Downloads

Authors

Water erosion is a significant issue that impacts a substantial portion of Mexico. The purpose of this study is to establish a connection between soil erosion and soil organic carbon (SOC) reserves. This work was conducted within a small watershed in the Mixteca Alta region of Oaxaca, in order to examine the correlation between erosion intensity, determined via the revised universal soil loss equation (RUSLE), and SOC storage, calculated using spatial models. The results reveal erosion values between 0.19 and 266.99 Mg ha-1 year-1, with 305 693 t of erosion in the micro-watershed. The erosion patterns are closely linked to land use categories. The average SOC values (​​in Mg ha-1) were associated with erosion, which was reclassified as null (31.79), light (22.36), moderate (16.19), and high (5.22). Kendall's tau coefficient showed a negative correlation of -0.39 between erosion and SOC. This inverse relationship can be attributed to the influence of erosive processes on the transport and exposure of SOC, the later replacement of carbon in the vegetation, and a reduced decomposition in deposition areas. Therefore, conservation practices, particularly terracing, have the potential to improve carbon storage.

La erosión hídrica es un problema significativo que afecta gran parte de México. El propósito de este estudio es establecer una conexión entre la erosión del suelo y las reservas de carbono orgánico del suelo (COS). Este trabajo fue realizado dentro de una pequeña cuenca hidrográfica en la región Mixteca Alta de Oaxaca para evaluar la correlación entre la intensidad de la erosión, determinada a través de la   ecuación universal de pérdida de suelo revisada (RUSLE), y el almacenamiento del COS, calculado mediante modelado espacial. Los resultados revelan valores de erosión entre 0.19 y 266. 99 Mg ha-1 año-1, con una erosión total de 305 693 t en la microcuenca. Los patrones de erosión están estrechamente vinculados a las categorías de uso del suelo. Los valores promedio de COS (en Mg ha-1) se asociaron a la erosión, reclasificada como nula (31.79), ligera (22.36), moderada (16.19) y alta (5.22). El coeficiente tau de Kendall mostró una correlación negativa de -0.39 entre la erosión y el COS.  Esta relación inversa puede atribuirse a la influencia de los procesos de erosión en el transporte y la exposición del COS, el posterior reemplazo de carbono de la vegetación y la reducción de la descomposición en las áreas de depósito. Por lo tanto, las prácticas de conservación, en particular las terrazas, tienen potencial para mejorar el almacenamiento de carbono.

References

[1] R. Lal, “Fate of soil carbon transported by erosional processes,” Appl. Sci., vol. 12, no. 1, p. 48, Dec. 2021. http://doi.org/10.3390/app12010048

[2] S. Doetterl, A. A. Berhe, E. Nadeu, Z. Wang, M. Sommer, and P. Fiener, “Erosion, deposition and soil carbon: A re-view of process-level controls, experimental tools and models to address C cycling in dynamic landscapes,” Earth-Sci. Rev., vol. 154, pp. 102–122, Mar. 2016. http://doi.org/10.1016/j.earscirev.2015.12.005

[3] R. Lal, “Accelerated soil erosion as a source of atmos-pheric CO2,” Soil Tillage Res., vol. 188, pp. 35–40, May 2019. http://doi.org/10.1016/j.still.2018.02.001

[4] C. Lefèvre, F. Rekik, V. Alcantara, and L. Wiese, Soil organic carbon: The hidden potential. Rome, Italy: Food and Agriculture Organization of the United Nations, 2017.

[5] H. Burbano Orjuela, “El carbono orgánico del suelo y su papel frente al cambio climático,” Rev. Cienc. Agríc., vol. 35, no. 1, p. 82, Jun. 2018. http://doi.org/10.22267/rcia.183501.85

[6] F. Paz and J. Etchevers, “Distribución a profundidad del carbono orgánico en los suelos de México,” Terra Lati-noam., vol. 34, no. 3, pp. 339–335, 2016. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0187-57792016000300339&lng=es&tlng=es.

[7] K. R. Olson, M. Al-Kaisi, R. Lal, and L. Cihacek, “Impact of soil erosion on soil organic carbon stocks,” J. Soil Water Conserv., vol. 71, no. 3, pp. 61A–67A, May 2016. http://doi.org/10.2489/jswc.71.3.61A

[8] L. Cui, X. Li, J. Lin, G. Guo, X. Zhang, and G. Zeng, “The mineralization and sequestration of soil organic carbon in relation to gully erosion,” CATENA, vol. 214, art. 106218, Jul. 2022. http://doi.org/10.1016/j.catena.2022.106218

[9] D. B. Tiruwa, B. R. Khanal, S. Lamichhane, and B. S. Acharya, “Soil erosion estimation using geographic in-formation system (GIS) and revised universal soil loss equation (RUSLE) in the Siwalik Hills of Nawalparasi, Ne-pal,” J. Water Clim. Change, vol. 12, no. 5, pp. 1958–1974, Aug. 2021. http://doi.org/10.2166/wcc.2021.198

[10] INEGI (National Institute of Statistics and Geography), “Soil erosion dataset, scale 1:250 000 series I, national continuum,” 2014. [Online]. Available: https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=702825004223

[11] INEGI (National Institute of Statistics and Geography), “Soil map, scale 1:250,000. National continuum,” 2002-2006. [Online]. Available: https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=794551131916

[12] O. Aguirre-Salado, J. Pérez-Nieto, C. Aguirre-Salado, and A. Monterroso-Rivas, “Factors regarding the spatial vari-ability of soil organic carbon in a Mexican small water-shed,” Rev. Fac. Agron. Univ. Zulia, vol. 41, no. 1, art. e244101, Dec. 2023. http://doi.org/10.47280/RevFacAgron(LUZ).v41.n1.01

[13] CLICOM, “Daily climate data from the CLICOM of the SMN through its CICESE web platform,” 2023. [Online]. Available: https://cucapa-clicom.cicese.mx/mapa.html

[14] A. Walkley and C. A. Black, “An examination of the Degtjareff method for determining soil organic matter and a proposed modification of chromic acid titration method,” Soil Sci., vol. 37, pp. 29–38, 1934. DOI: https://doi.org/10.1097/00010694-193401000-00003

[15] INEGI (National Institute of Statistics and Geography), “Digital surface-type elevation model with 5m resolution derived from satellite and airborne remote sensing da-ta,” 2017. [Online]. Available: https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=889463542605

[16] W. H. Wischmeier and D. D. Smith, Predicting rainfall erosion losses – A guide to conservation planning. Wash-ington, DC, USA: Department of Agriculture, Science and Education Administration, 1978.

[17] K. G. Renard, G. R. Foster, G. A. Weesies, D. K. McCool, and D. C. Yoder, Predicting soil erosion by water: A guide to conservation planning with the revised univer-sal soil loss equation (RUSLE). Washington, DC, USA: US Government Printing Office, 1997.

[18] C. A. Aguirre-Salado et al., “Improving identification of areas for ecological restoration for conservation by in-tegrating USLE and MCDA in a GIS-environment: A pilot study in a priority region northern Mexico,” ISPRS Int. J. Geo-Inf., vol. 6, no. 9, art. 262, Aug. 2017. http://doi.org/10.3390/ijgi6090262

[19] K. G. Renard and J. R. Freimund, “Using monthly precipi-tation data to estimate the R-factor in the revised USLE,” J. Hydrol., vol. 157, no. 1, pp. 287–306, 1994. DOI: https://doi.org/10.1016/0022-1694(94)90110-4

[20] S. Lee, G. Wolberg, and S. Y. Shin, “Scattered data interpolation with multilevel B-splines,” IEEE Trans. Vis. Comput. Graph., vol. 3, no. 3, pp. 228–244, Sep. 1997. http://doi.org/10.1109/2945.620490

[21] N. Efthimiou, “The new assessment of soil erodibility in Greece,” Soil Tillage Res., vol. 204, art. 104720, Oct. 2020. http://doi.org/10.1016/j.still.2020.104720

[22] S. M. De Jong, L. C. Brouwer, and H. T. Riezebos, “Erosion hazard assessment in the La Peyne Catchment, France,” Department of Physical Geography, University of Utrecht, Utrecht, The Netherlands, 1998. [Online]. Avail-able: https://research.wur.nl/en/publications/erosion-hazard-assessment-in-the-la-peyne-catchment-france

[23] C. J. Tucker, “Red and photographic infrared linear combinations for monitoring vegetation,” Remote Sens. Environ., vol. 8, pp. 127–150, 1979. DOI: https://doi.org/10.1016/0034-4257(79)90013-0

[24] G. Shin., “The Analysis of Soil Erosion Analysis in Watershed Using GIS,” PhD dissertation, Gang-Won National Universi-ty, Chuncheon, Korea, 1999. [Online]. Available: https://www.scirp.org/reference/referencespapers?referenceid=3870069

[25] F. Karamage, C. Zhang, T. Liu, A. Maganda, and A. Isabwe, “Soil Erosion Risk Assessment in Uganda,” Forests, vol. 8, no. 2, p. 52, Feb. 2017. http://doi.org/10.3390/f8020052

[26] S. S. Shapiro and M. B. Wilk, “An analysis of variance test for normality (complete samples),” Biometrika, vol. 52, no. 3/4, pp. 591–611, 1965. DOI: https://doi.org/10.1093/biomet/52.3-4.591

[27] H. Hernandez, “Testing for Normality: What is the Best Method?,” 2021. [Online]. Available: https://doi.org/10.13140/RG.2.2.13926.14406

[28] RStudio Team, "RStudio: Integrated development for R," 2023. [Online]. Available: http://www.rstudio.com/

[29] L. Liu, Q. Zhang, Q. Liu, and Z. Li, “Is soil an organic carbon sink or source upon erosion, transport and depo-sition?,” Eur. J. Soil Sci., vol. 74, no. 1, art. e13344, Jan. 2023. http://doi.org/10.1111/ejss.13344

[30] F. M. S. A. Kirkels, L. H. Cammeraat, and N. J. Kuhn, “The fate of soil organic carbon upon erosion, transport and deposition in agricultural landscapes — A review of dif-ferent concepts,” Geomorphology, vol. 226, pp. 94–105, Dec. 2014. http://doi.org/10.1016/j.geomorph.2014.07.023

[31] E. Bojago, M. W. Delango, and D. Milkias, “Effects of soil and water conservation practices and landscape posi-tion on soil physicochemical properties in Anuwa water-shed, Southern Ethiopia,” J. Agric. Food Res., vol. 14, art. 100705, Dec. 2023. http://doi.org/10.1016/j.jafr.2023.100705

[32] D. Chen, W. Wei, S. Daryanto, and P. Tarolli, “Does terrac-ing enhance soil organic carbon sequestration? A na-tional-scale data analysis in China,” Sci. Total Environ., vol. 721, art. 137751, Jun. 2020. http://doi.org/10.1016/j.scitotenv.2020.137751

[33] M. Mekonnen and M. Getahun, “Soil conservation prac-tices contribution in trapping sediment and soil organic carbon, Minizr watershed, northwest highlands of Ethio-pia,” J. Soils Sed., vol. 20, no. 5, pp. 2484–2494, May 2020. http://doi.org/10.1007/s11368-020-02611-5

How to Cite

APA

Aguirre-Salado, O. T., Pérez-Nieto, J., Aguirre-Salado, C. A. & Monterroso Rivas, A. I. (2025). Assessing the Interaction between Water Erosion and SOC Storage in a Small Mexican Watershed. Ingeniería e Investigación, 45(1), e113022. https://doi.org/10.15446/ing.investig.113022

ACM

[1]
Aguirre-Salado, O.T., Pérez-Nieto, J., Aguirre-Salado, C.A. and Monterroso Rivas, A.I. 2025. Assessing the Interaction between Water Erosion and SOC Storage in a Small Mexican Watershed. Ingeniería e Investigación. 45, 1 (Mar. 2025), e113022. DOI:https://doi.org/10.15446/ing.investig.113022.

ACS

(1)
Aguirre-Salado, O. T.; Pérez-Nieto, J.; Aguirre-Salado, C. A.; Monterroso Rivas, A. I. Assessing the Interaction between Water Erosion and SOC Storage in a Small Mexican Watershed. Ing. Inv. 2025, 45, e113022.

ABNT

AGUIRRE-SALADO, O. T.; PÉREZ-NIETO, J.; AGUIRRE-SALADO, C. A.; MONTERROSO RIVAS, A. I. Assessing the Interaction between Water Erosion and SOC Storage in a Small Mexican Watershed. Ingeniería e Investigación, [S. l.], v. 45, n. 1, p. e113022, 2025. DOI: 10.15446/ing.investig.113022. Disponível em: https://revistas.unal.edu.co/index.php/ingeinv/article/view/113022. Acesso em: 25 dec. 2025.

Chicago

Aguirre-Salado, Olimpya Talya, Joel Pérez-Nieto, Carlos A. Aguirre-Salado, and Alejandro Ismael Monterroso Rivas. 2025. “Assessing the Interaction between Water Erosion and SOC Storage in a Small Mexican Watershed”. Ingeniería E Investigación 45 (1):e113022. https://doi.org/10.15446/ing.investig.113022.

Harvard

Aguirre-Salado, O. T., Pérez-Nieto, J., Aguirre-Salado, C. A. and Monterroso Rivas, A. I. (2025) “Assessing the Interaction between Water Erosion and SOC Storage in a Small Mexican Watershed”, Ingeniería e Investigación, 45(1), p. e113022. doi: 10.15446/ing.investig.113022.

IEEE

[1]
O. T. Aguirre-Salado, J. Pérez-Nieto, C. A. Aguirre-Salado, and A. I. Monterroso Rivas, “Assessing the Interaction between Water Erosion and SOC Storage in a Small Mexican Watershed”, Ing. Inv., vol. 45, no. 1, p. e113022, Mar. 2025.

MLA

Aguirre-Salado, O. T., J. Pérez-Nieto, C. A. Aguirre-Salado, and A. I. Monterroso Rivas. “Assessing the Interaction between Water Erosion and SOC Storage in a Small Mexican Watershed”. Ingeniería e Investigación, vol. 45, no. 1, Mar. 2025, p. e113022, doi:10.15446/ing.investig.113022.

Turabian

Aguirre-Salado, Olimpya Talya, Joel Pérez-Nieto, Carlos A. Aguirre-Salado, and Alejandro Ismael Monterroso Rivas. “Assessing the Interaction between Water Erosion and SOC Storage in a Small Mexican Watershed”. Ingeniería e Investigación 45, no. 1 (March 31, 2025): e113022. Accessed December 25, 2025. https://revistas.unal.edu.co/index.php/ingeinv/article/view/113022.

Vancouver

1.
Aguirre-Salado OT, Pérez-Nieto J, Aguirre-Salado CA, Monterroso Rivas AI. Assessing the Interaction between Water Erosion and SOC Storage in a Small Mexican Watershed. Ing. Inv. [Internet]. 2025 Mar. 31 [cited 2025 Dec. 25];45(1):e113022. Available from: https://revistas.unal.edu.co/index.php/ingeinv/article/view/113022

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

154

Downloads

Download data is not yet available.