Published
Assessing the Interaction between Water Erosion and SOC Storage in a Small Mexican Watershed
Evaluación de la interacción entre la erosión hídrica y el almacenamiento de COS en una microcuenca mexicana
DOI:
https://doi.org/10.15446/ing.investig.113022Keywords:
RUSLE, Kendall's tau coefficient, conservation practices, terracing, soil carbon stock (en)RUSLE, coeficiente tau de Kendall, prácticas de conservación, terrazas, almacenamiento de carbono en suelo (es)
Downloads
Water erosion is a significant issue that impacts a substantial portion of Mexico. The purpose of this study is to establish a connection between soil erosion and soil organic carbon (SOC) reserves. This work was conducted within a small watershed in the Mixteca Alta region of Oaxaca, in order to examine the correlation between erosion intensity, determined via the revised universal soil loss equation (RUSLE), and SOC storage, calculated using spatial models. The results reveal erosion values between 0.19 and 266.99 Mg ha-1 year-1, with 305 693 t of erosion in the micro-watershed. The erosion patterns are closely linked to land use categories. The average SOC values (in Mg ha-1) were associated with erosion, which was reclassified as null (31.79), light (22.36), moderate (16.19), and high (5.22). Kendall's tau coefficient showed a negative correlation of -0.39 between erosion and SOC. This inverse relationship can be attributed to the influence of erosive processes on the transport and exposure of SOC, the later replacement of carbon in the vegetation, and a reduced decomposition in deposition areas. Therefore, conservation practices, particularly terracing, have the potential to improve carbon storage.
La erosión hídrica es un problema significativo que afecta gran parte de México. El propósito de este estudio es establecer una conexión entre la erosión del suelo y las reservas de carbono orgánico del suelo (COS). Este trabajo fue realizado dentro de una pequeña cuenca hidrográfica en la región Mixteca Alta de Oaxaca para evaluar la correlación entre la intensidad de la erosión, determinada a través de la ecuación universal de pérdida de suelo revisada (RUSLE), y el almacenamiento del COS, calculado mediante modelado espacial. Los resultados revelan valores de erosión entre 0.19 y 266. 99 Mg ha-1 año-1, con una erosión total de 305 693 t en la microcuenca. Los patrones de erosión están estrechamente vinculados a las categorías de uso del suelo. Los valores promedio de COS (en Mg ha-1) se asociaron a la erosión, reclasificada como nula (31.79), ligera (22.36), moderada (16.19) y alta (5.22). El coeficiente tau de Kendall mostró una correlación negativa de -0.39 entre la erosión y el COS. Esta relación inversa puede atribuirse a la influencia de los procesos de erosión en el transporte y la exposición del COS, el posterior reemplazo de carbono de la vegetación y la reducción de la descomposición en las áreas de depósito. Por lo tanto, las prácticas de conservación, en particular las terrazas, tienen potencial para mejorar el almacenamiento de carbono.
References
[1] R. Lal, “Fate of soil carbon transported by erosional processes,” Appl. Sci., vol. 12, no. 1, p. 48, Dec. 2021. http://doi.org/10.3390/app12010048
[2] S. Doetterl, A. A. Berhe, E. Nadeu, Z. Wang, M. Sommer, and P. Fiener, “Erosion, deposition and soil carbon: A re-view of process-level controls, experimental tools and models to address C cycling in dynamic landscapes,” Earth-Sci. Rev., vol. 154, pp. 102–122, Mar. 2016. http://doi.org/10.1016/j.earscirev.2015.12.005
[3] R. Lal, “Accelerated soil erosion as a source of atmos-pheric CO2,” Soil Tillage Res., vol. 188, pp. 35–40, May 2019. http://doi.org/10.1016/j.still.2018.02.001
[4] C. Lefèvre, F. Rekik, V. Alcantara, and L. Wiese, Soil organic carbon: The hidden potential. Rome, Italy: Food and Agriculture Organization of the United Nations, 2017.
[5] H. Burbano Orjuela, “El carbono orgánico del suelo y su papel frente al cambio climático,” Rev. Cienc. Agríc., vol. 35, no. 1, p. 82, Jun. 2018. http://doi.org/10.22267/rcia.183501.85
[6] F. Paz and J. Etchevers, “Distribución a profundidad del carbono orgánico en los suelos de México,” Terra Lati-noam., vol. 34, no. 3, pp. 339–335, 2016. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0187-57792016000300339&lng=es&tlng=es.
[7] K. R. Olson, M. Al-Kaisi, R. Lal, and L. Cihacek, “Impact of soil erosion on soil organic carbon stocks,” J. Soil Water Conserv., vol. 71, no. 3, pp. 61A–67A, May 2016. http://doi.org/10.2489/jswc.71.3.61A
[8] L. Cui, X. Li, J. Lin, G. Guo, X. Zhang, and G. Zeng, “The mineralization and sequestration of soil organic carbon in relation to gully erosion,” CATENA, vol. 214, art. 106218, Jul. 2022. http://doi.org/10.1016/j.catena.2022.106218
[9] D. B. Tiruwa, B. R. Khanal, S. Lamichhane, and B. S. Acharya, “Soil erosion estimation using geographic in-formation system (GIS) and revised universal soil loss equation (RUSLE) in the Siwalik Hills of Nawalparasi, Ne-pal,” J. Water Clim. Change, vol. 12, no. 5, pp. 1958–1974, Aug. 2021. http://doi.org/10.2166/wcc.2021.198
[10] INEGI (National Institute of Statistics and Geography), “Soil erosion dataset, scale 1:250 000 series I, national continuum,” 2014. [Online]. Available: https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=702825004223
[11] INEGI (National Institute of Statistics and Geography), “Soil map, scale 1:250,000. National continuum,” 2002-2006. [Online]. Available: https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=794551131916
[12] O. Aguirre-Salado, J. Pérez-Nieto, C. Aguirre-Salado, and A. Monterroso-Rivas, “Factors regarding the spatial vari-ability of soil organic carbon in a Mexican small water-shed,” Rev. Fac. Agron. Univ. Zulia, vol. 41, no. 1, art. e244101, Dec. 2023. http://doi.org/10.47280/RevFacAgron(LUZ).v41.n1.01
[13] CLICOM, “Daily climate data from the CLICOM of the SMN through its CICESE web platform,” 2023. [Online]. Available: https://cucapa-clicom.cicese.mx/mapa.html
[14] A. Walkley and C. A. Black, “An examination of the Degtjareff method for determining soil organic matter and a proposed modification of chromic acid titration method,” Soil Sci., vol. 37, pp. 29–38, 1934. DOI: https://doi.org/10.1097/00010694-193401000-00003
[15] INEGI (National Institute of Statistics and Geography), “Digital surface-type elevation model with 5m resolution derived from satellite and airborne remote sensing da-ta,” 2017. [Online]. Available: https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=889463542605
[16] W. H. Wischmeier and D. D. Smith, Predicting rainfall erosion losses – A guide to conservation planning. Wash-ington, DC, USA: Department of Agriculture, Science and Education Administration, 1978.
[17] K. G. Renard, G. R. Foster, G. A. Weesies, D. K. McCool, and D. C. Yoder, Predicting soil erosion by water: A guide to conservation planning with the revised univer-sal soil loss equation (RUSLE). Washington, DC, USA: US Government Printing Office, 1997.
[18] C. A. Aguirre-Salado et al., “Improving identification of areas for ecological restoration for conservation by in-tegrating USLE and MCDA in a GIS-environment: A pilot study in a priority region northern Mexico,” ISPRS Int. J. Geo-Inf., vol. 6, no. 9, art. 262, Aug. 2017. http://doi.org/10.3390/ijgi6090262
[19] K. G. Renard and J. R. Freimund, “Using monthly precipi-tation data to estimate the R-factor in the revised USLE,” J. Hydrol., vol. 157, no. 1, pp. 287–306, 1994. DOI: https://doi.org/10.1016/0022-1694(94)90110-4
[20] S. Lee, G. Wolberg, and S. Y. Shin, “Scattered data interpolation with multilevel B-splines,” IEEE Trans. Vis. Comput. Graph., vol. 3, no. 3, pp. 228–244, Sep. 1997. http://doi.org/10.1109/2945.620490
[21] N. Efthimiou, “The new assessment of soil erodibility in Greece,” Soil Tillage Res., vol. 204, art. 104720, Oct. 2020. http://doi.org/10.1016/j.still.2020.104720
[22] S. M. De Jong, L. C. Brouwer, and H. T. Riezebos, “Erosion hazard assessment in the La Peyne Catchment, France,” Department of Physical Geography, University of Utrecht, Utrecht, The Netherlands, 1998. [Online]. Avail-able: https://research.wur.nl/en/publications/erosion-hazard-assessment-in-the-la-peyne-catchment-france
[23] C. J. Tucker, “Red and photographic infrared linear combinations for monitoring vegetation,” Remote Sens. Environ., vol. 8, pp. 127–150, 1979. DOI: https://doi.org/10.1016/0034-4257(79)90013-0
[24] G. Shin., “The Analysis of Soil Erosion Analysis in Watershed Using GIS,” PhD dissertation, Gang-Won National Universi-ty, Chuncheon, Korea, 1999. [Online]. Available: https://www.scirp.org/reference/referencespapers?referenceid=3870069
[25] F. Karamage, C. Zhang, T. Liu, A. Maganda, and A. Isabwe, “Soil Erosion Risk Assessment in Uganda,” Forests, vol. 8, no. 2, p. 52, Feb. 2017. http://doi.org/10.3390/f8020052
[26] S. S. Shapiro and M. B. Wilk, “An analysis of variance test for normality (complete samples),” Biometrika, vol. 52, no. 3/4, pp. 591–611, 1965. DOI: https://doi.org/10.1093/biomet/52.3-4.591
[27] H. Hernandez, “Testing for Normality: What is the Best Method?,” 2021. [Online]. Available: https://doi.org/10.13140/RG.2.2.13926.14406
[28] RStudio Team, "RStudio: Integrated development for R," 2023. [Online]. Available: http://www.rstudio.com/
[29] L. Liu, Q. Zhang, Q. Liu, and Z. Li, “Is soil an organic carbon sink or source upon erosion, transport and depo-sition?,” Eur. J. Soil Sci., vol. 74, no. 1, art. e13344, Jan. 2023. http://doi.org/10.1111/ejss.13344
[30] F. M. S. A. Kirkels, L. H. Cammeraat, and N. J. Kuhn, “The fate of soil organic carbon upon erosion, transport and deposition in agricultural landscapes — A review of dif-ferent concepts,” Geomorphology, vol. 226, pp. 94–105, Dec. 2014. http://doi.org/10.1016/j.geomorph.2014.07.023
[31] E. Bojago, M. W. Delango, and D. Milkias, “Effects of soil and water conservation practices and landscape posi-tion on soil physicochemical properties in Anuwa water-shed, Southern Ethiopia,” J. Agric. Food Res., vol. 14, art. 100705, Dec. 2023. http://doi.org/10.1016/j.jafr.2023.100705
[32] D. Chen, W. Wei, S. Daryanto, and P. Tarolli, “Does terrac-ing enhance soil organic carbon sequestration? A na-tional-scale data analysis in China,” Sci. Total Environ., vol. 721, art. 137751, Jun. 2020. http://doi.org/10.1016/j.scitotenv.2020.137751
[33] M. Mekonnen and M. Getahun, “Soil conservation prac-tices contribution in trapping sediment and soil organic carbon, Minizr watershed, northwest highlands of Ethio-pia,” J. Soils Sed., vol. 20, no. 5, pp. 2484–2494, May 2020. http://doi.org/10.1007/s11368-020-02611-5
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2025 Olimpya Talya Aguirre-Salado, Joel Pérez-Nieto, Carlos A. Aguirre-Salado, Alejandro Ismael Monterroso Rivas

This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors or holders of the copyright for each article hereby confer exclusive, limited and free authorization on the Universidad Nacional de Colombia's journal Ingeniería e Investigación concerning the aforementioned article which, once it has been evaluated and approved, will be submitted for publication, in line with the following items:
1. The version which has been corrected according to the evaluators' suggestions will be remitted and it will be made clear whether the aforementioned article is an unedited document regarding which the rights to be authorized are held and total responsibility will be assumed by the authors for the content of the work being submitted to Ingeniería e Investigación, the Universidad Nacional de Colombia and third-parties;
2. The authorization conferred on the journal will come into force from the date on which it is included in the respective volume and issue of Ingeniería e Investigación in the Open Journal Systems and on the journal's main page (https://revistas.unal.edu.co/index.php/ingeinv), as well as in different databases and indices in which the publication is indexed;
3. The authors authorize the Universidad Nacional de Colombia's journal Ingeniería e Investigación to publish the document in whatever required format (printed, digital, electronic or whatsoever known or yet to be discovered form) and authorize Ingeniería e Investigación to include the work in any indices and/or search engines deemed necessary for promoting its diffusion;
4. The authors accept that such authorization is given free of charge and they, therefore, waive any right to receive remuneration from the publication, distribution, public communication and any use whatsoever referred to in the terms of this authorization.










